
Web-Scale Workflow

82 	 Published by the IEEE Computer Society	 1089-7801/09/$25.00 © 2009 IEEE� IEEE INTERNET COMPUTING

Editor : M . Br ian Blake • mb7@george town .edu

Agents and Service-
Oriented Computing
for Autonomic Computing
A Research Agenda
Frances M.T. Brazier • Vrije Universiteit Amsterdam
Jeffrey O. Kephart • IBM T.J. Watson Research Center
H. Van Dyke Parunak • Tech Team Government Solutions
Michael N. Huhns • University of South Carolina

Autonomic computing is the solution proposed to cope with the complexity

of today’s computing environments. Self-management, an important element of

autonomic computing, is also characteristic of single and multiagent systems,

as well as systems based on service-oriented architectures. Combining these

technologies can be profitable for all — in particular, for the development of

autonomic computing systems.

I n recent years, computing environments’
complexity has begun to grow beyond the
limits of what human system administra-

tors can manage. This increasing complexity
has three sources. First, individual components
of computing systems, such as workload man-
agers and database management systems, are
becoming more difficult to configure, manage,
and maintain as each release includes ever more
features and tuning parameters. Second, with
the advent of service-oriented computing (SOC),
computing environments have become open and
distributed, and components are no longer under
a single organization’s control. Third, and worst,
the typical enterprise computing environment
is a heterogeneous, irregular, multivendor pas-
tiche that’s difficult to configure, maintain, and
trouble-shoot. In other words, the complexity of
a modern-day computing environment is more
than that of its individually complex parts.

To cope, IT vendors have recognized that
there is a need for systems that assume much
of their own management, referred to by many
in academia and industry as autonomic comput-
ing systems.1 Paul Horn, senior vice president of
IBM Research, coined this term in 2001, citing
an analogy with the human autonomic nervous

system, which regulates heart and respiratory
rates, digestion, and other bodily functions,
freeing the conscious brain to focus on high-
er-level goals. Similarly, autonomic computing
systems are expected to free system administra-
tors to focus on higher-level goals. Autonomic
computing systems can perform the following
functions without human intervention:

self-configuration •	 — configuring themselves
automatically when computing resources are
added or removed;
self-healing •	 — discovering when, where, and
why they’re ailing and performing the ap-
propriate self-repair and fault-correction
operations;
self-optimization •	 — monitoring and control-
ling resources to ensure optimal functioning
with respect to defined requirements, as well
as optimizing performance and efficiency by
retuning or reconfiguring themselves; and
self-protection •	 — proactively identifying and
protecting themselves from arbitrary or ma-
licious attacks or cascading failures.

Autonomic computing systems can perform
these functions at both the infrastructure and

MAY/JUNE 2009� 83

Agents and Service-Oriented Computing

application levels. The infrastructure
level manages processing capacity,
storage, and communication band-
width. The application level uses the
functions the infrastructure level
provides. As such, autonomic com-
puting systems strongly resemble
multiagent systems (MASs). MASs,
in turn, interact with services, as
designed and developed within SOC.
This article explores the relationships
between these three paradigms: au-
tonomic computing, MAS, and SOC.

Integrating SOC, MAS,
and Autonomic Computing
A commonly cited definition of au-
tonomic computing systems is “com-
puting systems that can manage
themselves given high-level objec-
tives from administrators.”1 This
definition strongly resembles a com-
monly cited definition of a software
agent, “an encapsulated computer
system, situated in some environment
and capable of flexible, autonomous
action in that environment in order to
meet its design objectives.”2 We can
readily identify individual agents
with individual autonomic comput-
ing elements: autonomous, adaptive
entities representing resources or
services that act both reactively and
proactively, sensing and responding
to the system environment and in-
teracting with each other to satisfy
individual goals. Thus, in both the
autonomic computing and software
agent paradigms, individual autono-
mous entities manage their own be-
havior, their interactions with the
environment, and their interactions
with other autonomous entities so as
to achieve specified individual and
system-wide goals. The agent para-
digm includes interaction between
services and agents. Although there
are currently major differences be-
tween services and agents in terms
of autonomy and proactiveness, our
observation is that services are be-
coming more agent-like as they have
to behave robustly and flexibly in

dynamically changing execution
environments. Thus, our treatment
of services in this article overlaps
significantly with our treatment of
agents and MASs. Software agents
can interact on behalf of services to
negotiate service-level agreements
(SLAs) across enterprise boundaries,
including specifications of expected
quality concerning both infrastruc-
ture and application. Most autonomic
computing systems involve multiple
systems, some of which will be ser-
vices, and most agent systems involve
multiple agents. An apt analogy is to
identify autonomic computing sys-
tems with MASs.

Although the analogies among
autonomic computing, services,
and multiagent systems are strong
and obvious, an informal survey of
autonomic computing papers sug-
gests that little transfer of ideas
and technology has occurred with
the MAS and SOC R&D communi-
ties. We believe that this commu-
nication failure both impoverishes
the emerging autonomic computing
field and deprives the agents and
services communities of what could
be the long-sought “killer app” — a
key application that would require
and inspire new developments in
agent architectures and algorithms,
and help multiagent systems be-
come a mainstream, multibillion-
dollar industry.

How Agent Technology
and SOC Can Benefit
Autonomic Computing
Some of the earliest papers on au-
tonomic computing1,3 describe ar-
chitectures for self-management
that are strongly agent-oriented.
They present a vision of autonomic
computing systems composed of in-
teracting collections of autonomic
elements representing self-managing
components such as computing re-
sources (servers, databases, storage
systems, and so on), management el-
ements such as workload managers

and monitoring systems. Each auto-
nomic element is akin to a software
agent in that it manages its own be-
havior by acting on data obtained
from its sensors in accordance with
policies and agreements established
with other autonomic elements.
System-level autonomic behavior
arises from interactions among the
autonomic elements, just as MAS
behavior arises from interactions
among individual software agents.
These interactions are dynamic and
flexible in pattern (hierarchical,
peer-to-peer, and so on); relation-
ships among agents are established
via negotiation and maintained via
agreements created during the nego-
tiation process. Agreements between
agents and service providers are, in
fact, SLAs. Autonomic elements such
as registries and sentinels play a role
analogous to that of service regis-
tries and middle agents: to negotiate
service provisioning as specified in
the SLA.4,5

Let’s develop this insight by dis-
cussing how the capabilities of in-
dividual agents, MAS, and SOC can
contribute to autonomic computing.

Individual Agents
Several technologies developed for
individual agent systems are es-
pecially appropriate for autonomic
computing, yet haven’t been applied
much in that realm. These include
knowledge and reasoning, planning
and scheduling, and interagent com-
munication. (Learning, another key
agent technology, has received con-
siderable attention in the autonomic
computing literature, so we don’t
discuss it in this article.)

Knowledge and reasoning are
essential capabilities of a rational
goal-directed agent that govern
its behavior and interactions with
the environment and other agents.
By definition, an agent possesses
knowledge of its environment, its
own abilities and characteristics, and
those of other agents. This knowl-

Web-Scale Workflow

84 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

edge includes metalevel knowledge
with which an agent can reason ex-
plicitly about its own beliefs, inten-
tions, and desires as well as those
of other agents. Explicit declarative
metaknowledge lets an agent ex-
plicitly reason about its state and
environment and determine which
policies and mechanisms to use in
which situations.

Self-healing, for example, requires
a system to be able to recognize di-
vergence from its normative behavior
by comparing a computation model
to an actual computation. Rational
agents’ introspective reasoning abili-
ties are essential.

For example, in situations in
which an agent’s knowledge about its
environment is incomplete, uncer-
tain, or inconsistent, explicit reason-
ing about these aspects is warranted.
All of these capabilities are largely
motivated by agents’ needs to interact
effectively with their environment.
Autonomic components have the
same requirement. They’re immersed
in a computational environment,
sensing its state and modifying it as
needed, and the same techniques that
enable agents to engage the external
world could help autonomic compo-
nents do their jobs better.

We can apply agent reason-
ing at both levels we discussed in
the introduction: the application
level needs to reason about a com-
putation’s model or requirements,
whereas the infrastructure level
focuses more explicitly on the nuts
and bolts of the computation itself.
Reasoning at this level can consider
structural, functional, and behav-
ioral characteristics:

Structure — Are the right com-•	
ponents involved in the right
configuration? Are the right con-
nections in place and working?
Function — Are the inputs, out-•	
puts, preconditions, and effects
(IOPE) correct? The Semantic
Markup language for Web Ser-

vices (OWL-S) provides a means
with which function can be spec-
ified and evaluated.
Behavior, including quality of •	
service (QoS) — Does the compu-
tation meet its quality require-
ments as specified in an SLA?

Planning and scheduling let an
agent determine a partial order of
actions that achieves a specified
goal over time, a key function for
autonomic computing. Present-day
planning engines’ capabilities pro-
vide functionality needed by auto-
nomic computing applications. Yet
few papers and only one workshop
have been devoted to applying
planning to autonomic computing.6
One stumbling block is that, to be
truly practical, planners must take
into account several real-world is-
sues, such as coping with change
in open environments. Specifi-
cally, a need exists for planning
techniques that help assemble do-
main descriptions (specifications of
pre- and postconditions for actions)
from available data and gracefully
handle incomplete domain specifi-
cations. In addition, autonomic sys-
tems must also be able to assess and
plan execution progress and re-plan
when plans go awry mid-course, as
they inevitably will in large, com-
plex computing environments.

Formal agent communication lan
guages and interaction protocols
govern the content and sequence of
messages that agents exchange with
one another. Although autonomic
computing elements that are framed
as Web services do respond to indi-
vidual messages, those messages are
relatively simple and inflexible in
form, and the mapping to the core
application’s functionality is clear-
cut. As autonomic elements begin to
evolve from Web services to agents,
their interactions will evolve from
one-shot to extended multimessage
interactions that are governed by
standard interaction protocols that

support negotiations or conversa-
tions. Agent toolkits will need to
support: semantics and ontologies;
increasingly flexible communica-
tion languages and interaction pat-
terns; protocols to support extended,
stateful interactions; and a degree
of reasoning capability sufficient to
drive appropriate responses to other
agents’ messages.

MASs
The composition of autonomic ele-
ments into autonomic systems is
strongly analogous to the composi-
tion of agents into MASs, so transi-
tioning many multiagent paradigms
and technologies to autonomic com-
puting should be straightforward.
In both paradigms, autonomic en-
tities can negotiate contracts with
other autonomic entities and other
service providers for dynamic ser-
vice provisioning.5 The entities often
monitor and manage the resulting
agreements independently. They can
form dynamic virtual organizations
that manage their collective behav-
ior in interaction with other such
organizations. They might also use
integration, repair, and other ser-
vices provided by directories, bro-
kers, and sentries, which themselves
can be autonomous and distributed.
Multiagent system research has ex-
plored many issues pertaining to
multiparty service and resource ne-
gotiation. Virtual emergent organi-
zations, auctions, and brokering are
organizational structures designed
for this purpose. Many different
types of applications have modeled,
explored, and implemented multi-
level commitments between multiple
agents, services, and virtual orga-
nizations, both competitive and co-
operative, often specified in explicit
agreements. Analogously, autonomic
computing systems negotiate service
contracts with (multiple) providers
(either directly or through a media-
tor) and renegotiate such contracts
when needed, taking reliability, cred-

MAY/JUNE 2009� 85

Agents and Service-Oriented Computing

ibility, risks, penalties, and QoS into
account. Risk assessment of global
system behavior with new configu-
rations of system components or ser-
vices (that is, virtual organizations)
is essentially unexplored.

Markets and auctions now con-
stitute a major subbranch of multi-
agent technology. Although several
authors have explored using such
economic mechanisms to allocate
computing resources, very few of
these mechanisms have been used in
autonomic computing systems. These
paradigms’ potential is particularly
strong in applications that cross en-
terprise boundaries.

A naïve approach to achieving
self-management in the data center
is to define feedback loops covering
a data center’s operations, compar-
ing a current output to a predicted
output and taking appropriate ac-
tion if they don’t match. This fails
in an open environment with ex-
ternal services because including
an uncontrollable external service
inside an internally defined feed-
back control loop is difficult. Mod-
ern computing applications often
execute in open environments that
cross enterprise boundaries. Such
applications include those for sup-
ply-chain management, military
logistics, and e-commerce. In ad-
dition, applications based on Web
services or that use the “cloud”
necessarily execute in open envi-
ronments. All of these application
types provide important function-
ality for their owners and clients,
and could benefit from interaction
models developed in MAS.

In discussing applications of in-
dividual agent technology to au-
tonomic computing, we noted that
both agents and autonomic compo-
nents need to sense, reason about,
and manipulate the environment in
which they’re situated. This insight
opens the door for one particular
MAS model that might provide a
path for early adoption in the au-

tonomic systems community. This
model is variously known as swarm
intelligence, insect-based agents, or
stigmergic systems. Stigmergy is a
neologism from the French biologist
Pierre-P. Grassé7 to describe how so-
cial insects collaborate — that is, not
by direct message exchange but by
jointly making and sensing changes
to a shared environment. In turn,
that environment’s dynamics con-
tribute to the community’s informa-
tion processing. Researchers have
applied principles derived from this
biological model to a wide range of
engineered systems.

The stigmergic or swarming
model’s attraction for autonomic
components is that it defers the prob-
lem of adding elaborate communica-

tions protocols to existing elements.
From the swarming perspective,
many autonomic systems are in fact
stigmergic MASs because each ele-
ment both modifies and senses the
shared environment, thus modulat-
ing its behavior on the basis of other
elements’ actions. We can apply in-
sights, methods, and tools from the
stigmergic agent community8,9 to
autonomic systems first at the analy-
sis level, and then at a level recom-
mending configuration changes to
existing components that will yield
more effective coordination among
them. In this way, the autonomic
community can become comfortable
with concepts such as coordination
and collaboration before making
changes in their modules’ actual de-
sign and implementation.

A few researchers10 have built
prototype autonomic computing sys
tems that exploit the agent-like au-

tonomy of individual components
in data centers. To our knowledge,
however, such systems haven’t ex-
ploited agent platforms, such as the
JAVA Agent Development (JADE)
framework (http://jade.tilab.com)11
or AgentScape (www.iids.org),12

multiagent architectures such as
Retsina,13 standard agent com-
munication languages such as the
Foundation for Intelligent Physical
Agent’s Agent Communication Lan-
guage (FIPA-ACL), or (formal) agent
interaction protocols.

SOC
One reason why agent toolkits
haven’t been used to build autonomic
computing systems on a large scale
is that such systems typically re-

quire developers to write their agents
from scratch. This is a nonstarter for
industry. Due to development costs
and established customer bases for
existing products, vendors are much
more inclined to upgrade products
than they are to write them afresh.
The existence of service-oriented ar-
chitecture (SOA) development tools
such as the Eclipse SOA Tools Plat-
form that “enable the design, con-
figuration, assembly, deployment,
monitoring, and management of
software designed around a service-
oriented architecture” (see www.
eclipse.org/stp) make it relatively
easy for vendors to use an incremen-
tal approach to create Web services
from their existing products. Indeed,
industry work on autonomic comput-
ing has typically framed autonomic
elements as services rather than
agents, and an extensive amount of
standards participation has occurred

Industry work on autonomic computing has
typically framed autonomic elements as
services rather than agents.

Web-Scale Workflow

86 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

in the context of Object Management
Group (OMG), the W3C, and the Dis-
tributed Management Task Force, as
opposed to FIPA.

Although the autonomic comput-
ing community’s failure to use agent
toolkits might seem discouraging, in
fact, the SOA trend and the emer-
gence of tools that support creating
services from existing code, support
two strategies for transitioning agent
concepts into autonomic computing.

First, the current world of Web
services that can respond to requests
for service is an evolutionary step
toward a world of agents (or auto-
nomic elements) that can’t just re-
spond to such requests but can issue
them as well. Services, formerly only
reactive, will gradually acquire more
agent capabilities as they anticipate
client requests and proactively pre-
pare for them. In other words, ser-
vices will become agents. Once these
agents proliferate, interacting with
each other will become increasingly
attractive. Second, SOA tools’ emer-
gence suggests at least two strategies
for creating agent toolkits that au-
tonomic computing developers can
really use. One strategy is to create
new agent toolkits that, analogous
to SOA toolkits, let developers add
agency to existing large, complex,
commercial software rather than re-
quiring them to develop agents from
scratch. Examples of this approach
have been around for some time.
Two of the earliest — Hitachi’s Au-
tonomous Decentralized Control ar-
chitecture (used in the control room
architecture of the Shinkansen high-
speed train and at Kawasaki Steel’s
Chiba plant)14 and the ARCHON ar-
chitecture as applied to managing
an electric power grid15,16 — made
their way into the industrial world
by providing agent-based wrappers
for pre-existing modules.

A second strategy is to add agent
functionality and communication
capabilities progressively to existing
SOA toolkits and enterprise service

buses (ESBs), as is starting to happen
with agent-enabled Web services17
and Semantic Web services.18

C onsiderable value exists in
bringing together the autonomic

computing, MAS, and SOC commu-
nities. The agent community has a
good deal of technology that’s rel-
evant for autonomic computing.19
The autonomic computing commu-
nity has a set of problems that are
critically important to industry and
potentially inspiring to agents re-
searchers, sometimes requiring new
extensions to agent research. How,
then, can we forge a closer relation-
ship between them?

First, we recommend holding
cross-cultural workshops — that is,
autonomic computing workshops at
the major agent conferences, such
as the International Conference on
Autonomous Agents and Multiagent
Systems (AAMAS), and agent work-
shops at the major autonomic con-
ferences, such as the International
Conference on Autonomic Comput-
ing (ICAC). Specific autonomic com-
puting challenges that are amenable
to agent architecture, models, and
technologies, or that require exten-
sions to existing agent paradigms or
technologies, could provide the fo-
cus. Indeed, this was the rationale for
holding the 1st International Work-
shop on Agents for Autonomic Com-
puting in 2008 during ICAC. Given
that SOC appears to be the natural
stepping stone toward agent-oriented
computing, we strongly recommend
involving the SOA community in
these discussions, particularly those
working on Semantic Web services
and other SOA extensions that bring
it closer to the world of agents. These
and other connections between
service-oriented and agent-orient-
ed computing have been noted and
discussed previously,5 and we must
capitalize on these insights. Gener-
alizing this statement a bit, we must

involve the agent-oriented software
engineering and SOC communities
in these workshops.

We also recommend holding an
autonomic computing competition at
one of the main agent or Semantic
Web conferences, such as AAMAS,
the Joint International Conference
on Web Intelligence and Intelligent
Agent Technology (WI-IAT), or the
International Semantic Web Confer-
ence (ISWC). Given the popularity
and proven success of competitions
such as RoboCup and the Trading
Agent Competition in inspiring sig-
nificant technical progress, we be-
lieve it would be valuable to devise
a new competition that focuses the
community on problems relevant to
autonomic computing.�

References
J. Kephart and D. Chess, “The Vision of 1.	

Autonomic Computing,” Computer, vol.

36, no. 1, 2003, pp. 41–50.

N.R. Jennings, K. Sycara, and M. Wool-2.	

dridge, “A Roadmap of Agent Research

and Development,” J. Autonomous Agents

and Multi-Agent Systems, vol. 1, no. 1,

1998, pp. 7–38.

S.R. White et al., “An Architectural Ap-3.	

proach to Autonomic Computing,” Proc.

1st Int’l Conf. Autonomic Computing

(ICAC 04), IEEE CS Press, 2004, pp. 2–9.

K. Decker, K. Sycara, and M. William-4.	

son, “Middle Agents for the Internet,”

Proc. 15th Int’l Joint Conf. Artificial In-

telligence, Morgan Kaufmann, 1997, pp.

578–583.

D.G.A. Mobach, B.J. Overeinder, and 5.	

F.M.T. Brazier, “A WS-Agreement-Based

Resource Negotiation Framework for Mo-

bile Agents,” Scalable Computing: Prac-

tice and Experience, vol. 7, no. 1, 2006,

pp. 23–36.

B. Srivastava and S. Kambhampati, “The 6.	

Case for Automated Planning in Auto-

nomic Computing,” Proc. 2nd Int’l Conf.

Autonomic Computing (ICAC 05), IEEE CS

Press, 2005, pp. 331–332.

P.-P. Grassé, “La Reconstruction du nid 7.	

et les Coordinations Inter-Individuelles

chez Bellicositermes Natalensis et Cubit-

MAY/JUNE 2009� 87

Agents and Service-Oriented Computing

ermes sp. La théorie de la Stigmergie: Es-

sai d’interprétation du Comportement des

Termites Constructeurs,” (Reconstruction

of the Nest and Coordinated Interactions

among Termites According to the Theory of

Stigmergy: Essays on the Interpretation of

Termite Manufacturing Behavior” Insectes

Sociaux, vol. 6, no. 1, 1959, pp. 41–84.

H.V.D. Parunak, “Go to the Ant: Engi-8.	

neering Principles from Natural Agent

Systems,” Annals of Operations Research,

vol. 75, Jan. 1997, pp. 69–101.

H.V.D. Parunak and S.A. Brueckner, “En-9.	

gineering Swarming Systems,” Meth-

odologies and Software Eng. for Agent

Systems, F. Bergenti, M.-P. Gleizes, and F.

Zambonelli, eds., Kluwer Academic Press,

2004, pp. 341–376.

R. Das et al., “Towards Commercialization 10.	

of Utility-Based Resource Allocation,”

Proc. 3rd Int’l Conf. Autonomic Comput-

ing (ICAC 06), IEEE CS Press, 2006, pp.

287–290.

F. Bellifemine et al., “JADE: A White Pa-11.	

per,” TILAB, Torino, J., EXP in Search of

Innovation — Special Issue on JADE, vol.

3, no. 3, 2003, pp. 6–19.

N.J.E. Wijngaards et al., “Supporting In-12.	

ternet-Scale Multi-Agent Systems,” Data

and Knowledge Eng., vol. 41, nos. 2–3,

2002, pp. 229–245.

K. Sycara et al., “The RETSINA MAS In-13.	

frastructure,” Autonomous Agents and

Multi-Agent Systems, vol. 7, nos. 1–2,

2003, pp. 29–48.

H. Ihara and K. Mori, “Autonomous De-14.	

centralized Computer Control Systems,”

Computer, vol. 17, no. 8, 1984, pp. 57–66.

T. Wittig. 15.	 ARCHON: An Architecture for

Multi-agent Systems, Ellis Horwood, 1992.

N.R. Jennings and T. Wittig, “ARCHON: 16.	

Theory and Practice,” Distributed Artifi-

cial Intelligence: Theory and Praxis, Klu-

wer Academic Press, 1992.

L. Sheremetov and M. Contreras, “In-17.	

dustrial Application Integration using

Agent-Enabled Semantic SO: Capnet Case

Study,” Information Technology for Bal-

anced Manufacturing Systems, vol. 220,

2006, pp. 109–118.

S.A. McIlraith, T.C. Son, and H. Zeng, 18.	

“Semantic Web Services,” IEEE Intelligent

Systems, vol. 16, no. 2, 2001, pp. 46–53.

M. Huhns et al., “Research Directions for 19.	

Service-Oriented Multiagent Systems,”

IEEE Internet Computing, vol. 9, no. 6,

2005, pp. 65–70.

Frances M.T. Brazier is a full professor at Vrije

University Amsterdam, where she chairs

the Intelligent Interactive Distributed

Systems group. Her research focuses on

many different aspects of complex adap-

tive systems varying from design para-

digms to legal requirements to middleware

support. Contact her at fmt.brazier@

cs.vu.nl.

Jeffrey O. Kephart is the manager of the

Agents and Emergent Phenomena Group

at IBM T.J. Watson Research Center, where

he also manages IBM’s data center energy

management research stategy and a joint

research program with the IBM Tivoli

Software Group. His research interests

include autonomic computing and large-

scale systems of agents. Kephart has a

PhD in electrical engineering from Stan-

ford University. Contact him at kephart@

us.ibm.com.

H. Van Dyke Parunak is chief scientist at the

Vector Research Center of TechTeam Gov-

ernment Solutions. His research interests

include biologically inspired multiagent

systems, emergent behavior in self-

organizing systems, and applications of

nonlinear dynamics to distributed com-

puting. Parunak has an MA in computer

and communications sciences from the

University of Michigan and a PhD in near

Eastern languages and civilizations from

Harvard University. Contact him at van.

parunak@newvectors.net.

Michael N. Huhns is the NCR professor of

computer science and engineering at the

University of South Carolina, where he

also directs the Center for Information

Technology. His research interests are

in multiagent systems, service-oriented

computing, and ontologies. Huhns has a

PhD in electrical engineering from the

University of Southern California. He

is a fellow of the IEEE. Contact him at

huhns@sc.edu.

Author guidelines: www.computer.
org/software/author.htm
Further details: software@computer.org

www.computer.org/
software

IEEE Software seeks practical,

readable articles that will appeal to

experts and nonexperts alike. The

magazine aims to deliver reliable,

useful, leading-edge information

to software developers, engineers,

and managers to help them stay

on top of rapid technology change.

Topics include requirements,

design, construction, tools, project

management, process improvement,

maintenance, testing, education and

training, quality, standards, and more.

Call
Articlesfor

