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Autonomic computing is the solution proposed to cope with the complexity 

of today’s computing environments. Self-management, an important element of 

autonomic computing, is also characteristic of single and multiagent systems, 

as well as systems based on service-oriented architectures. Combining these 

technologies can be profitable for all — in particular, for the development of 

autonomic computing systems. 

I n recent years, computing environments’ 
complexity has begun to grow beyond the 
limits of what human system administra-

tors can manage. This increasing complexity 
has three sources. First, individual components 
of computing systems, such as workload man-
agers and database management systems, are 
becoming more difficult to configure, manage, 
and maintain as each release includes ever more 
features and tuning parameters. Second, with 
the advent of service-oriented computing (SOC), 
computing environments have become open and 
distributed, and components are no longer under 
a single organization’s control. Third, and worst, 
the typical enterprise computing environment 
is a heterogeneous, irregular, multivendor pas-
tiche that’s difficult to configure, maintain, and 
trouble-shoot. In other words, the complexity of 
a modern-day computing environment is more 
than that of its individually complex parts. 

To cope, IT vendors have recognized that 
there is a need for systems that assume much 
of their own management, referred to by many 
in academia and industry as autonomic comput-
ing systems.1 Paul Horn, senior vice president of 
IBM Research, coined this term in 2001, citing 
an analogy with the human autonomic nervous 

system, which regulates heart and respiratory 
rates, digestion, and other bodily functions, 
freeing the conscious brain to focus on high-
er-level goals. Similarly, autonomic computing 
systems are expected to free system administra-
tors to focus on higher-level goals. Autonomic 
computing systems can perform the following 
functions without human intervention:

self-configuration •	 — configuring themselves 
automatically when computing resources are 
added or removed;
self-healing •	 — discovering when, where, and 
why they’re ailing and performing the ap-
propriate self-repair and fault-correction 
operations;
self-optimization •	 — monitoring and control-
ling resources to ensure optimal functioning 
with respect to defined requirements, as well 
as optimizing performance and efficiency by 
retuning or reconfiguring themselves; and
self-protection •	 — proactively identifying and 
protecting themselves from arbitrary or ma-
licious attacks or cascading failures.

Autonomic computing systems can perform 
these functions at both the infrastructure and 
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application levels. The infrastructure 
level manages processing capacity, 
storage, and communication band-
width. The application level uses the 
functions the infrastructure level 
provides. As such, autonomic com-
puting systems strongly resemble 
multiagent systems (MASs). MASs, 
in turn, interact with services, as 
designed and developed within SOC. 
This article explores the relationships 
between these three paradigms: au-
tonomic computing, MAS, and SOC.

Integrating SOC, MAS,  
and Autonomic Computing 
A commonly cited definition of au-
tonomic computing systems is “com-
puting systems that can manage 
themselves given high-level objec-
tives from administrators.”1 This 
definition strongly resembles a com-
monly cited definition of a software 
agent, “an encapsulated computer 
system, situated in some environment 
and capable of flexible, autonomous 
action in that environment in order to 
meet its design objectives.”2 We can 
readily identify individual agents 
with individual autonomic comput-
ing elements: autonomous, adaptive 
entities representing resources or 
services that act both reactively and 
proactively, sensing and responding 
to the system environment and in-
teracting with each other to satisfy 
individual goals. Thus, in both the 
autonomic computing and software 
agent paradigms, individual autono-
mous entities manage their own be-
havior, their interactions with the 
environment, and their interactions 
with other autonomous entities so as 
to achieve specified individual and 
system-wide goals. The agent para-
digm includes interaction between 
services and agents. Although there 
are currently major differences be-
tween services and agents in terms 
of autonomy and proactiveness, our 
observation is that services are be-
coming more agent-like as they have 
to behave robustly and flexibly in 

dynamically changing execution 
environments. Thus, our treatment 
of services in this article overlaps 
significantly with our treatment of 
agents and MASs. Software agents 
can interact on behalf of services to 
negotiate service-level agreements 
(SLAs) across enterprise boundaries, 
including specifications of expected 
quality concerning both infrastruc-
ture and application. Most autonomic 
computing systems involve multiple 
systems, some of which will be ser-
vices, and most agent systems involve 
multiple agents. An apt analogy is to 
identify autonomic computing sys-
tems with MASs.

Although the analogies among 
autonomic computing, services, 
and multiagent systems are strong 
and obvious, an informal survey of 
autonomic computing papers sug-
gests that little transfer of ideas 
and technology has occurred with 
the MAS and SOC R&D communi-
ties. We believe that this commu-
nication failure both impoverishes 
the emerging autonomic computing 
field and deprives the agents and 
services communities of what could 
be the long-sought “killer app” — a 
key application that would require 
and inspire new developments in 
agent architectures and algorithms, 
and help multiagent systems be-
come a mainstream, multibillion-
dollar industry.

How Agent Technology  
and SOC Can Benefit 
Autonomic Computing
Some of the earliest papers on au-
tonomic computing1,3 describe ar-
chitectures for self-management 
that are strongly agent-oriented. 
They present a vision of autonomic 
computing systems composed of in-
teracting collections of autonomic 
elements representing self-managing 
components such as computing re-
sources (servers, databases, storage 
systems, and so on), management el-
ements such as workload managers 

and monitoring systems. Each auto-
nomic element is akin to a software 
agent in that it manages its own be-
havior by acting on data obtained 
from its sensors in accordance with 
policies and agreements established 
with other autonomic elements. 
System-level autonomic behavior 
arises from interactions among the 
autonomic elements, just as MAS 
behavior arises from interactions 
among individual software agents. 
These interactions are dynamic and 
flexible in pattern (hierarchical, 
peer-to-peer, and so on); relation-
ships among agents are established 
via negotiation and maintained via 
agreements created during the nego-
tiation process. Agreements between 
agents and service providers are, in 
fact, SLAs. Autonomic elements such 
as registries and sentinels play a role 
analogous to that of service regis-
tries and middle agents: to negotiate 
service provisioning as specified in 
the SLA.4,5

Let’s develop this insight by dis-
cussing how the capabilities of in-
dividual agents, MAS, and SOC can 
contribute to autonomic computing.

Individual Agents
Several technologies developed for 
individual agent systems are es-
pecially appropriate for autonomic 
computing, yet haven’t been applied 
much in that realm. These include 
knowledge and reasoning, planning 
and scheduling, and interagent com-
munication. (Learning, another key 
agent technology, has received con-
siderable attention in the autonomic 
computing literature, so we don’t 
discuss it in this article.)

Knowledge and reasoning are 
essential capabilities of a rational 
goal-directed agent that govern 
its behavior and interactions with 
the environment and other agents. 
By definition, an agent possesses 
knowledge of its environment, its 
own abilities and characteristics, and 
those of other agents. This knowl-
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edge includes metalevel knowledge 
with which an agent can reason ex-
plicitly about its own beliefs, inten-
tions, and desires as well as those 
of other agents. Explicit declarative 
metaknowledge lets an agent ex-
plicitly reason about its state and 
environment and determine which 
policies and mechanisms to use in 
which situations. 

Self-healing, for example, requires 
a system to be able to recognize di-
vergence from its normative behavior 
by comparing a computation model 
to an actual computation. Rational 
agents’ introspective reasoning abili-
ties are essential. 

For example, in situations in 
which an agent’s knowledge about its 
environment is incomplete, uncer-
tain, or inconsistent, explicit reason-
ing about these aspects is warranted. 
All of these capabilities are largely 
motivated by agents’ needs to interact 
effectively with their environment. 
Autonomic components have the 
same requirement. They’re immersed 
in a computational environment, 
sensing its state and modifying it as 
needed, and the same techniques that 
enable agents to engage the external 
world could help autonomic compo-
nents do their jobs better.

We can apply agent reason-
ing at both levels we discussed in 
the introduction: the application 
level needs to reason about a com-
putation’s model or requirements, 
whereas the infrastructure level 
focuses more explicitly on the nuts 
and bolts of the computation itself. 
Reasoning at this level can consider 
structural, functional, and behav-
ioral characteristics:

Structure — Are the right com-•	
ponents involved in the right 
configuration? Are the right con-
nections in place and working?
Function — Are the inputs, out-•	
puts, preconditions, and effects 
(IOPE) correct? The Semantic 
Markup language for Web Ser-

vices (OWL-S) provides a means 
with which function can be spec-
ified and evaluated.
Behavior, including quality of •	
service (QoS) — Does the compu-
tation meet its quality require-
ments as specified in an SLA?

Planning and scheduling let an 
agent determine a partial order of 
actions that achieves a specified 
goal over time, a key function for 
autonomic computing. Present-day 
planning engines’ capabilities pro-
vide functionality needed by auto-
nomic computing applications. Yet 
few papers and only one workshop 
have been devoted to applying 
planning to autonomic computing.6 
One stumbling block is that, to be 
truly practical, planners must take 
into account several real-world is-
sues, such as coping with change 
in open environments. Specifi-
cally, a need exists for planning 
techniques that help assemble do-
main descriptions (specifications of 
pre- and postconditions for actions) 
from available data and gracefully 
handle incomplete domain specifi-
cations. In addition, autonomic sys-
tems must also be able to assess and 
plan execution progress and re-plan 
when plans go awry mid-course, as 
they inevitably will in large, com-
plex computing environments.

Formal agent communication lan
guages and interaction protocols 
govern the content and sequence of 
messages that agents exchange with 
one another. Although autonomic 
computing elements that are framed 
as Web services do respond to indi-
vidual messages, those messages are 
relatively simple and inflexible in 
form, and the mapping to the core 
application’s functionality is clear-
cut. As autonomic elements begin to 
evolve from Web services to agents, 
their interactions will evolve from 
one-shot to extended multimessage 
interactions that are governed by 
standard interaction protocols that 

support negotiations or conversa-
tions. Agent toolkits will need to 
support: semantics and ontologies; 
increasingly flexible communica-
tion languages and interaction pat-
terns; protocols to support extended, 
stateful interactions; and a degree 
of reasoning capability sufficient to 
drive appropriate responses to other 
agents’ messages.

MASs 
The composition of autonomic ele-
ments into autonomic systems is 
strongly analogous to the composi-
tion of agents into MASs, so transi-
tioning many multiagent paradigms 
and technologies to autonomic com-
puting should be straightforward. 
In both paradigms, autonomic en-
tities can negotiate contracts with 
other autonomic entities and other 
service providers for dynamic ser-
vice provisioning.5 The entities often 
monitor and manage the resulting 
agreements independently. They can 
form dynamic virtual organizations 
that manage their collective behav-
ior in interaction with other such 
organizations. They might also use 
integration, repair, and other ser-
vices provided by directories, bro-
kers, and sentries, which themselves 
can be autonomous and distributed. 
Multiagent system research has ex-
plored many issues pertaining to 
multiparty service and resource ne-
gotiation. Virtual emergent organi-
zations, auctions, and brokering are 
organizational structures designed 
for this purpose. Many different 
types of applications have modeled, 
explored, and implemented multi-
level commitments between multiple 
agents, services, and virtual orga-
nizations, both competitive and co-
operative, often specified in explicit 
agreements. Analogously, autonomic 
computing systems negotiate service 
contracts with (multiple) providers 
(either directly or through a media-
tor) and renegotiate such contracts 
when needed, taking reliability, cred-
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ibility, risks, penalties, and QoS into 
account. Risk assessment of global 
system behavior with new configu-
rations of system components or ser-
vices (that is, virtual organizations) 
is essentially unexplored.

Markets and auctions now con-
stitute a major subbranch of multi-
agent technology. Although several 
authors have explored using such 
economic mechanisms to allocate 
computing resources, very few of 
these mechanisms have been used in 
autonomic computing systems. These 
paradigms’ potential is particularly 
strong in applications that cross en-
terprise boundaries. 

A naïve approach to achieving 
self-management in the data center 
is to define feedback loops covering 
a data center’s operations, compar-
ing a current output to a predicted 
output and taking appropriate ac-
tion if they don’t match. This fails 
in an open environment with ex-
ternal services because including 
an uncontrollable external service 
inside an internally defined feed-
back control loop is difficult. Mod-
ern computing applications often 
execute in open environments that 
cross enterprise boundaries. Such 
applications include those for sup-
ply-chain management, military 
logistics, and e-commerce. In ad-
dition, applications based on Web 
services or that use the “cloud” 
necessarily execute in open envi-
ronments. All of these application 
types provide important function-
ality for their owners and clients, 
and could benefit from interaction 
models developed in MAS.

In discussing applications of in-
dividual agent technology to au-
tonomic computing, we noted that 
both agents and autonomic compo-
nents need to sense, reason about, 
and manipulate the environment in 
which they’re situated. This insight 
opens the door for one particular 
MAS model that might provide a 
path for early adoption in the au-

tonomic systems community. This 
model is variously known as swarm 
intelligence, insect-based agents, or 
stigmergic systems. Stigmergy is a 
neologism from the French biologist 
Pierre-P. Grassé7 to describe how so-
cial insects collaborate — that is, not 
by direct message exchange but by 
jointly making and sensing changes 
to a shared environment. In turn, 
that environment’s dynamics con-
tribute to the community’s informa-
tion processing. Researchers have 
applied principles derived from this 
biological model to a wide range of 
engineered systems.

The stigmergic or swarming 
model’s attraction for autonomic 
components is that it defers the prob-
lem of adding elaborate communica-

tions protocols to existing elements. 
From the swarming perspective, 
many autonomic systems are in fact 
stigmergic MASs because each ele-
ment both modifies and senses the 
shared environment, thus modulat-
ing its behavior on the basis of other 
elements’ actions. We can apply in-
sights, methods, and tools from the 
stigmergic agent community8,9 to 
autonomic systems first at the analy-
sis level, and then at a level recom-
mending configuration changes to 
existing components that will yield 
more effective coordination among 
them. In this way, the autonomic 
community can become comfortable 
with concepts such as coordination 
and collaboration before making 
changes in their modules’ actual de-
sign and implementation. 

A few researchers10 have built 
prototype autonomic computing sys
tems that exploit the agent-like au-

tonomy of individual components 
in data centers. To our knowledge, 
however, such systems haven’t ex-
ploited agent platforms, such as the 
JAVA Agent Development (JADE) 
framework (http://jade.tilab.com)11 
or AgentScape (www.iids.org),12 

multiagent architectures such as 
Retsina,13 standard agent com-
munication languages such as the 
Foundation for Intelligent Physical 
Agent’s Agent Communication Lan-
guage (FIPA-ACL), or (formal) agent 
interaction protocols.

SOC
One reason why agent toolkits 
haven’t been used to build autonomic 
computing systems on a large scale 
is that such systems typically re-

quire developers to write their agents 
from scratch. This is a nonstarter for 
industry. Due to development costs 
and established customer bases for 
existing products, vendors are much 
more inclined to upgrade products 
than they are to write them afresh. 
The existence of service-oriented ar-
chitecture (SOA) development tools 
such as the Eclipse SOA Tools Plat-
form that “enable the design, con-
figuration, assembly, deployment, 
monitoring, and management of 
software designed around a service-
oriented architecture” (see www.
eclipse.org/stp) make it relatively 
easy for vendors to use an incremen-
tal approach to create Web services 
from their existing products. Indeed, 
industry work on autonomic comput-
ing has typically framed autonomic 
elements as services rather than 
agents, and an extensive amount of 
standards participation has occurred 

Industry work on autonomic computing has 
typically framed autonomic elements as 
services rather than agents.
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in the context of Object Management 
Group (OMG), the W3C, and the Dis-
tributed Management Task Force, as 
opposed to FIPA. 

Although the autonomic comput-
ing community’s failure to use agent 
toolkits might seem discouraging, in 
fact, the SOA trend and the emer-
gence of tools that support creating 
services from existing code, support 
two strategies for transitioning agent 
concepts into autonomic computing.

First, the current world of Web 
services that can respond to requests 
for service is an evolutionary step 
toward a world of agents (or auto-
nomic elements) that can’t just re-
spond to such requests but can issue 
them as well. Services, formerly only 
reactive, will gradually acquire more 
agent capabilities as they anticipate 
client requests and proactively pre-
pare for them. In other words, ser-
vices will become agents. Once these 
agents proliferate, interacting with 
each other will become increasingly 
attractive. Second, SOA tools’ emer-
gence suggests at least two strategies 
for creating agent toolkits that au-
tonomic computing developers can 
really use. One strategy is to create 
new agent toolkits that, analogous 
to SOA toolkits, let developers add 
agency to existing large, complex, 
commercial software rather than re-
quiring them to develop agents from 
scratch. Examples of this approach 
have been around for some time. 
Two of the earliest — Hitachi’s Au-
tonomous Decentralized Control ar-
chitecture (used in the control room 
architecture of the Shinkansen high-
speed train and at Kawasaki Steel’s 
Chiba plant)14 and the ARCHON ar-
chitecture as applied to managing 
an electric power grid15,16 — made 
their way into the industrial world 
by providing agent-based wrappers 
for pre-existing modules. 

A second strategy is to add agent 
functionality and communication 
capabilities progressively to existing 
SOA toolkits and enterprise service 

buses (ESBs), as is starting to happen 
with agent-enabled Web services17 
and Semantic Web services.18

C onsiderable value exists in 
bringing together the autonomic 

computing, MAS, and SOC commu-
nities. The agent community has a 
good deal of technology that’s rel-
evant for autonomic computing.19 
The autonomic computing commu-
nity has a set of problems that are 
critically important to industry and 
potentially inspiring to agents re-
searchers, sometimes requiring new 
extensions to agent research. How, 
then, can we forge a closer relation-
ship between them? 

First, we recommend holding 
cross-cultural workshops — that is, 
autonomic computing workshops at 
the major agent conferences, such 
as the International Conference on 
Autonomous Agents and Multiagent 
Systems (AAMAS), and agent work-
shops at the major autonomic con-
ferences, such as the International 
Conference on Autonomic Comput-
ing (ICAC). Specific autonomic com-
puting challenges that are amenable 
to agent architecture, models, and 
technologies, or that require exten-
sions to existing agent paradigms or 
technologies, could provide the fo-
cus. Indeed, this was the rationale for 
holding the 1st International Work-
shop on Agents for Autonomic Com-
puting in 2008 during ICAC. Given 
that SOC appears to be the natural 
stepping stone toward agent-oriented 
computing, we strongly recommend 
involving the SOA community in 
these discussions, particularly those 
working on Semantic Web services 
and other SOA extensions that bring 
it closer to the world of agents. These 
and other connections between 
service-oriented and agent-orient-
ed computing have been noted and 
discussed previously,5 and we must 
capitalize on these insights. Gener-
alizing this statement a bit, we must 

involve the agent-oriented software 
engineering and SOC communities 
in these workshops.

We also recommend holding an 
autonomic computing competition at 
one of the main agent or Semantic 
Web conferences, such as AAMAS, 
the Joint International Conference 
on Web Intelligence and Intelligent 
Agent Technology (WI-IAT), or the 
International Semantic Web Confer-
ence (ISWC). Given the popularity 
and proven success of competitions 
such as RoboCup and the Trading 
Agent Competition in inspiring sig-
nificant technical progress, we be-
lieve it would be valuable to devise 
a new competition that focuses the 
community on problems relevant to 
autonomic computing.�

References
J. Kephart and D. Chess, “The Vision of 1.	

Autonomic Computing,” Computer, vol. 

36, no. 1, 2003, pp. 41–50.

N.R. Jennings, K. Sycara, and M. Wool-2.	

dridge, “A Roadmap of Agent Research 

and Development,” J. Autonomous Agents 

and Multi-Agent Systems, vol. 1, no. 1, 

1998, pp. 7–38.

S.R. White et al., “An Architectural Ap-3.	

proach to Autonomic Computing,” Proc. 

1st Int’l Conf. Autonomic Computing 

(ICAC 04), IEEE CS Press, 2004, pp. 2–9.

K. Decker, K. Sycara, and M. William-4.	

son, “Middle Agents for the Internet,” 

Proc. 15th Int’l Joint Conf. Artificial In-

telligence, Morgan Kaufmann, 1997, pp. 

578–583.

D.G.A. Mobach, B.J. Overeinder, and 5.	

F.M.T. Brazier, “A WS-Agreement-Based 

Resource Negotiation Framework for Mo-

bile Agents,” Scalable Computing: Prac-

tice and Experience, vol. 7, no. 1, 2006, 

pp. 23–36.

B. Srivastava and S. Kambhampati, “The 6.	

Case for Automated Planning in Auto-

nomic Computing,” Proc. 2nd Int’l Conf. 

Autonomic Computing (ICAC 05), IEEE CS 

Press, 2005, pp. 331–332.

P.-P. Grassé, “La Reconstruction du nid 7.	

et les Coordinations Inter-Individuelles 

chez Bellicositermes Natalensis et Cubit-



MAY/JUNE 2009� 87

Agents and Service-Oriented Computing

ermes sp. La théorie de la Stigmergie: Es-

sai d’interprétation du Comportement des 

Termites Constructeurs,” (Reconstruction 

of the Nest and Coordinated Interactions 

among Termites According to the Theory of 

Stigmergy: Essays on the Interpretation of 

Termite Manufacturing Behavior” Insectes 

Sociaux, vol. 6, no. 1, 1959, pp. 41–84.

H.V.D. Parunak, “Go to the Ant: Engi-8.	

neering Principles from Natural Agent 

Systems,” Annals of Operations Research, 

vol. 75, Jan. 1997, pp. 69–101.

H.V.D. Parunak and S.A. Brueckner, “En-9.	

gineering Swarming Systems,” Meth-

odologies and Software Eng. for Agent 

Systems, F. Bergenti, M.-P. Gleizes, and F. 

Zambonelli, eds., Kluwer Academic Press, 

2004, pp. 341–376.

R. Das et al., “Towards Commercialization 10.	

of Utility-Based Resource Allocation,” 

Proc. 3rd Int’l Conf. Autonomic Comput-

ing (ICAC 06), IEEE CS Press, 2006, pp. 

287–290.

F. Bellifemine et al., “JADE: A White Pa-11.	

per,” TILAB, Torino, J., EXP in Search of 

Innovation — Special Issue on JADE, vol. 

3, no. 3, 2003, pp. 6–19.

N.J.E. Wijngaards et al., “Supporting In-12.	

ternet-Scale Multi-Agent Systems,” Data 

and Knowledge Eng., vol. 41, nos. 2–3, 

2002, pp. 229–245.

K. Sycara et al., “The RETSINA MAS In-13.	

frastructure,” Autonomous Agents and 

Multi-Agent Systems, vol. 7, nos. 1–2, 

2003, pp. 29–48.

H. Ihara and K. Mori, “Autonomous De-14.	

centralized Computer Control Systems,” 

Computer, vol. 17, no. 8, 1984, pp. 57–66.

T. Wittig. 15.	 ARCHON: An Architecture for 

Multi-agent Systems, Ellis Horwood, 1992.

N.R. Jennings and T. Wittig, “ARCHON: 16.	

Theory and Practice,” Distributed Artifi-

cial Intelligence: Theory and Praxis, Klu-

wer Academic Press, 1992.

L. Sheremetov and M. Contreras, “In-17.	

dustrial Application Integration using 

Agent-Enabled Semantic SO: Capnet Case 

Study,” Information Technology for Bal-

anced Manufacturing Systems, vol. 220, 

2006, pp. 109–118.

S.A. McIlraith, T.C. Son, and H. Zeng, 18.	

“Semantic Web Services,” IEEE Intelligent 

Systems, vol. 16, no. 2, 2001, pp. 46–53.

M. Huhns et al., “Research Directions for 19.	

Service-Oriented Multiagent Systems,” 

IEEE Internet Computing, vol. 9, no. 6, 

2005, pp. 65–70.

Frances M.T. Brazier is a full professor at Vrije 

University Amsterdam, where she chairs 

the Intelligent Interactive Distributed 

Systems group. Her research focuses on 

many different aspects of complex adap-

tive systems varying from design para-

digms to legal requirements to middleware 

support. Contact her at fmt.brazier@ 

cs.vu.nl. 

Jeffrey O. Kephart is the manager of the 

Agents and Emergent Phenomena Group 

at IBM T.J. Watson Research Center, where 

he also manages IBM’s data center energy 

management research stategy and a joint 

research program with the IBM Tivoli 

Software Group. His research interests 

include autonomic computing and large-

scale systems of agents. Kephart has a 

PhD in electrical engineering from Stan-

ford University. Contact him at kephart@

us.ibm.com.

H. Van Dyke Parunak is chief scientist at the 

Vector Research Center of TechTeam Gov-

ernment Solutions. His research interests 

include biologically inspired multiagent 

systems, emergent behavior in self-

organizing systems, and applications of 

nonlinear dynamics to distributed com-

puting. Parunak has an MA in computer 

and communications sciences from the 

University of Michigan and a PhD in near 

Eastern languages and civilizations from 

Harvard University. Contact him at van.

parunak@newvectors.net.

Michael N. Huhns is the NCR professor of 

computer science and engineering at the 

University of South Carolina, where he 

also directs the Center for Information 

Technology. His research interests are 

in multiagent systems, service-oriented 

computing, and ontologies. Huhns has a 

PhD in electrical engineering from the 

University of Southern California. He 

is a fellow of the IEEE. Contact him at 

huhns@sc.edu.

Author guidelines: www.computer.
org/software/author.htm
Further details: software@computer.org

www.computer.org/
software

IEEE Software seeks practical, 

readable articles that will appeal to 

experts and nonexperts alike. The 

magazine aims to deliver reliable, 

useful, leading-edge information 

to software developers, engineers, 

and managers to help them stay 

on top of rapid technology change. 

Topics include requirements, 

design, construction, tools, project 

management, process improvement, 

maintenance, testing, education and 

training, quality, standards, and more. 

Call
Articlesfor


