
Multiagent Systems for Workflow

Munindar P. Singh

Computer Science

North Carolina State University

Raleigh, NC 27695-7534, USA

singh@ncsu.edu

Michael N. Huhns

Electrical & Computer Engg.

University of South Carolina

Columbia, SC 29208, USA

huhns@sc.edu

Abstract

Workflows are ubiquitous in business computing. They arise not only within an enter-

prise, but increasingly across enterprises as well—in situations such as virtual enter-

prises and applications such as supply-chain management. Although the importance

of workflows as a basis for understanding and automating business activities is widely

recognized, current workflow practice leaves much to be desired. To a large extent, this

problem arises because of the rigidity of current technology, which does not accord

well with the complex, heterogeneous, dynamic environments in which workflows are

applied. Agent technology promises to alleviate many of these problems and hence

enable adaptive workflows in realistic settings. We consider interaction-oriented pro-

gramming (IOP), an approach to software engineering based on multiagent systems

that we have been developing. We focus on one aspect of IOP, which deals with so-

cial commitments and enables agents to flexibly enact a multienterprise workflow by

entering into and behaving according to their commitments to each other. The agents

can cancel or modify their base-level commitments only if they satisfy the metacom-

mitments that then go into effect.



1 Introduction

The expansion of the computing and communications infrastructure has brought home the problem

of the “islands of automation” that occur in traditional information systems in large enterprises.

Such problems occur with redoubled strength in modern information systems, which in effect—

if not by design—span across enterprise boundaries. Such systems arise directly in the case of

virtual enterprises, but indirectly also in applications such as electronic commerce and supply-

chain management. Such applications are garnering increasing attention among both practitioners

and researchers. As a consequence, technologies such as workflow management have garnered

much interest, but also hype.

To motivate this paper, we begin with an informal definition of workflows. A workflow is a

distributed multitask activity, routinized or systematized in some way, that involves the coordinated

execution of human and system tasks, usually in heterogeneous environments. This definition is

in agreement with the folklore, e.g., see Georgakopoulos et al.’s survey [8], and a special issue on

the subject [11].

Workflows are commonly understood to have certain key features, especially including the

following. One, in consisting of a number of tasks, they are composite. Two, they are structurally

and semantically complex in that they—and possibly some of their component activities—are long-

running and failure-prone; they frequently update multiple data items across a number of resources;

and, their components activities can have subtle consistency requirements. Three, workflows are

often cooperative, meaning that they not only involve human interaction, but also involve back-

and-forth interactions among their constituent activities. Four, workflows by their very nature arise

in heterogeneous environments with unchangeable “legacy” components. Five, the components of

workflows may be of autonomous ownership and not fully under the control of the workflow.

In light of this, it is helpful to think of workflows as the dynamic components of open informa-

tion environments, the static components being the information repositories and ontologies.

1.1 Generations of Workflow Technology

Workflows have been with us from the dawn of time—ever since there have been “business” or-

ganizations or governments of some form or the other that have cared to systematize any of their

activities. Therefore, in understanding the expected development of workflows, it is important to

consider the major generations of workflow technology.

� 1st: Manual. Bureaucracies have long been part of human society, and they typically in-

volve the processing of information. Before there were computational aids for information

processing, it was carried out manually. Although slow, this had the advantage of involving

humans in every stage, thereby facilitating the handling of exception conditions and making

modifications to the workflow as the needs of the organization evolved.

1



� 2nd: Closed. The early days of business computing involved data processing applied in

information management. Often this was based on straightforwardly automating existing

manual processes. There was tight coupling between business objects and control informa-

tion, thereby making system evolution labor-intensive and difficult.

� 3rd: Database-centric. The development of database technology enabled open specifica-

tion of business information. There was a certain amount of decoupling between data and

process. However, control information remained hard-coded in procedures.

� 4th: Current tools. Current workflow tools provide the separation of control from applica-

tion. Processes are thus viewed at two levels of granularity: (a) as units of work that are

composed together through a workflow tool, and (b) as implementations of those units of

work via specific applications. However, the workflows themselves still prove complicated

for both design and redesign. Also, they provide little support for handling exceptions.

� 5th: Agent-based. This is the generation of workflow technology being promoted here. This

generation is emerging through the use of agents and multiagent systems. We will describe

some of its components below.

1.2 Themes in Workflow

The strong industry interest in workflow technology has led to a variety of descriptions of what

workflows are. Often these are implicit in the definitions or the technical problems addressed by

an approach. We identify the following most reasonable ones.

� Form management and flow. This applies to the most traditional organizations, which are

essentially doing business in a manner closest to that of purely paper-based organizations—

sometimes like the same organization used to, if it is old enough. However, these organi-

zations use new technology to put forms on-line (imaging applications) and distribute and

disseminate them on-line (transmittal applications). Much of the current workflow market is

about form management. Sometimes, the term “document” may be used instead of “form,”

but more general documents are rarely intended in this category of approaches.

� Groupware. This is most appropriate for addressing the human collaboration aspect of an or-

ganization. Groupware tools can handle some components of organization modeling. Some

of these tools are about documents, and take a broader view of documents than in the above.

They help in the creation, dissemination, and maintenance of (versions of) documents even

as users work on them concurrently.

� Control logic specifications. This view treats the workflow as primarily consisting of orches-

trating the application activities that underlie it [4]. In this view, the workflow is specified by

showing how the different activities are to be wired together. Frequently, these specifications

2



are given in a graphical activity modeling language, such as flow charts or activity diagrams

[6]. The details of the individual activities are not specified. In some variants, the data flow

may be explicitly shown as well.

� Distributed programs. Sometimes, virtually any distributed program may be referred to as a

workflow. This is not entirely unreasonable if the program is modeled with some workflow

metamodel. However, sometimes the term is used loosely, in which case it has little meaning;

if every distributed program can be a workflow, then the term “workflow” is unnecessary.

� Transactions. An interesting view of workflow treats them as transactions of some form:

traditional or extended. This view builds on the database basis of most information environ-

ments. It is most suitable when the integrity of the stored data is given primacy [1, 3, 5, 20].

� Coherent computations. The view we promote in this paper is that workflows are coherent.

By coherent, we mean that the components tasks of a workflow are selected and ordered to

ensure the coherence of the entire workflow. In this view, the consistency of data items is

important only to the extent that it helps ensure that the behavior is coherent; the behavior

may often be coherent when data consistency is lost, e.g., by informing a user or sending out

retractions for previous results.

Each of the previous views of workflow is suitable for some class of applications and environments

either because it is designed for specific applications, or because they support certain properties

(such as data integrity), which are of primary value only for some applications. The groupware

view emphasizes the human aspects of any organization and is of special value in modeling impor-

tant aspects of practical workflows, especially how people may participate in performing a shared

task. Although somewhat restrictive in scope, the transactional view is supported by sound com-

putational abstractions. The control logic view is able to accommodate the computational aspects

of any other view, especially of any extended transaction model. However, it takes a lower-level

stance than is often appropriate for modeling.

The technical challenge is to synthesize the considerations behind the above views into a more

comprehensive and powerful view. This is the basis for our ongoing research program, whose

results we describe below.

1.3 Agents

Agents are persistent active entities that can perceive, reason, and act in their environment, and

communicate with other agents. Often, the agents are autonomous, intelligent, and sociable. What

makes agents interesting for our purposes is that they can form multiagent systems. Agents are

autonomous, but in order to form and participate in multiagent systems, they must be able to

compromise on their autonomy somewhat—just so they can coordinate with others. The agents in

a multiagent system would often be heterogeneous.

3



A variety of abstractions for agents have been proposed. These include those inspired from

folk psychology, such as beliefs, knowledge, and intentions, and those inspired from organizations

and societies, such as commitments and teams. Both kinds are appropriate in general. For our

purposes, the latter are more relevant. Of course, even an entire multiagent system or team may be

treated as if it were a monolithic agent. Viewed in this light, agents are structured—this accords

well with hierarchical decomposition, which is a common theme in the analysis and design of

complex systems.

1.4 Cooperative Information Systems

Cooperative Information Systems (CISs) are multiagent systems with organizational and database

abstractions geared to open environments. Typically, a CIS includes an environment consisting of a

variety of related information resources. A CIS also includes some means of attaching semantics to

its resources and ways to view and update those resources in a manner that respects the semantics.

Because CISs are based on multiagent systems, they are open in admitting new resources, flexible

in allowing the resources to evolve, intelligent in ensuring valid states and coherent behaviors

despite complex constraints, and adaptive in adjusting their behavior to accommodate unexpected

changes in their environment.

We recast workflows in terms of CISs simply by defining workflows as the dynamic aspects of

CISs. More precisely, a workflow is a well-defined specification of some coherent class of behav-

iors of a CIS. The coherence requirements are captured during modeling, can evolve, and provide

a basis for the control logic and execution. Our claim is that by introducing the “right” high-level

abstractions, multiagent systems can capture workflows better than conventional workflow tech-

nology. The rest of this paper is how we might achieve this with an appropriate combination of

rigor and flexibility.

Organization. Section 2 reviews the traditional abstractions for describing CISs and analyzing,

specifying, and realizing workflows. Section 3 shows how we may apply agent and multiagent

techniques to address the above challenges. It also discusses a specific example in some detail.

Section 4 concludes with a discussion of the important issues.

2 Abstractions

We consider the modeling and computational abstractions used to capture different components or

aspects of an information system. The dynamic ones such as transaction models have immediate

relevance for workflows, but even the static ones such as conceptual and organizational models

relate to workflows, because ultimately any effective workflow must deal with those aspects as

well.

4



Module Chart

Context Diagram

Object/Class Model

Activity Decomposition

Materiel Flowchart

Data Flow Diagram

Control Flow Diagram

E-R Diagram

Figure 1: Metamodels Used to Describe a CIS

5



For CISs applied to enterprises or virtual enterprises, a variety of models are typically built.

Figure 1 shows some of the common modeling approaches. Of the main ones, entity-relationship

(E-R) diagrams describe a conceptual model of the information stored in (a subset of the databases

in) the enterprise. Activity decomposition describes the relationship of inclusion among different

activities, whereas the control, data, and materiel flows give additional information about it. E-R

diagrams correspond to static information as in ontologies; the activity representations correspond

loosely to the workflows. It is important to relate the two categories of representations, because

the actions in the workflows depend on the concepts they manipulate, and the concepts are defined

based on their patterns of usage.

2.1 Relating Models

In a number of settings, including enterprises, the organizational structure of a CIS is important.

By the organizational structure, we mean the set of roles and responsibilities that make up a func-

tioning system [7, 19]. There is an intimate relationship between the workflows executing in a

CIS, and the organizational roles available in it. Figure 2 shows on the left a simple workflow

corresponding to submitting a contract proposal from a company. The write white paper task itself

may be decomposed into a subworkflow. The bottom left shows a possible subworkflow for travel.

The tasks in the workflow impinge upon various databases, and other ongoing processes, such as

budget forecast. They also relate to the organizational structure of the company, because key steps

in the workflow must be performed by people with specific authorities.

Traditionally, the roles are mapped to tasks rigidly. However, in open and dynamic environ-

ments, more flexible role-bindings are needed. For example, if the research director is on leave,

how may the workflow be rerouted? If one person fills multiple roles, how may the workflow be

scheduled to optimize their time? Another, more important, issue is how the obligations of an

organization be mapped to the obligations—and hence actions—of its members. And, how can

be decisions of a member be over-ruled or undone when necessary; conversely, how may a par-

ticipant obtain the necessary exceptions to some default policy in order to respond properly to an

unexpected situation.

2.2 Transactions

Computations are of two main kinds: (a) terminating: these include traditional queries and trans-

actions as well as application programs, and (b) nonterminating or repeating: these include infor-

mation flows as well as administrative activities. Traditional database transactions are terminating

computations that satisfy the so-called ACID properties [10], which describe next.

� Atomicity: all or none of a transaction happens

� Consistency: a transaction preserves the consistency of the database

6



VP

Research
Director

Admin.
Asst.

Project
Leader

Project
Leader

Director

Write it

Send it

Choose
approach

Budget

Mgmt. approve

CBD
Announce

Form technical
team

Go?
No

Yes

End

Write White
Paper

GoodNo

Yes

End

Begin charge
to B&P

Review?

Schedule
sign-off mtg.

Reserve room

Tell attendees

Rooms

Estimate
Revenue

Estimate
Expenditures

Budget

Forecast

Process

RoomNo Date Start Finish
RoomNo Size

3.702
3.632

Travel
authorization

Submit TAR

Mgmt. approve

Figure 2: Relating Different Models

7



� Isolation: intermediate results of a transaction are not visible to any other transaction

� Durability: when a transaction concludes successfully, its effects are permanent.

If the individual transactions are programmed correctly, the system guarantees consistency for

any arbitrary concurrent mix of transactions. Atomicity is essential to ensure that the integrity

of distributed data is preserved. Consequently, the actions or subtransactions that constitute a

transaction must either (a) all happen, thereby transforming the database from a consistent state

to a new consistent state, or (b) each fail to happen, thereby leaving the database in its original

(consistent) state. Ensuring the ACID properties requires locking all the data items accessed by a

transaction until it completes (or achieving the same effect through an another, more optimistic,

approach). Practically, this means that ACID transactions are limited to activities that are brief (at

most seconds) and simple (few updates), and usually in homogeneous or centralized information

environments.

The above difficulty has led to a number of extended transaction models (ETMs), which relax

the ACID properties in various ways. ETMs embody some valuable intuitions about structuring

activities, but are themselves not practical either. They usually assume that (a) compensating

actions are defined for some of the subtransactions, and (b) it is acceptable to allow temporary

inconsistencies. Without good conceptual models to back these relaxations up, they may easily be

unrealistic or unsound. Further, ETMs are difficult to specify and schedule. Further, they retain

a focus on data integrity, whereas the real challenge is to allow activities that are coherent, not

necessarily consistency-preserving.

2.3 Speech Acts

Another class of abstractions is based on speech acts. The best known of these is formalized in

the ActionWorkflow product [18], which builds on the theory of speech acts due to Winograd &

Flores [27]. Like other theories of speech acts, Winograd & Flores’ theory treats language as

action. However, their theory focuses on the roles played by different speech acts in the progress

of a conversation. A completed conversation with all nested subconversations thus constitutes a

workflow. This has inspired the “loops” metamodel for workflows used in ActionWorkflow.

In this metamodel, each loop represents an exchange between two actors: a customer and a

performer. The loop consists of four steps: (a) a request from the customer to the performer, (b)

negotiation by the two to determine what the performer should do, (c) actual performance of the

negotiated task by the performer, and (d) evaluation of the performance by the customer. The

four steps close the loop. A step may potentially be nested with other loops and involving other

customer-performer relationships.

We find the idea of taking the perspectives of the customer and the performer both into account

attractive—traditional workflow specifications usually take one or the other perspective. However,

the metamodel has some limitations. It only considers two actors at a time, and does not explicitly

8



consider the surrounding organizational structure. Because it does not include explicit represen-

tation of and reasoning about commitments, it does not easily accommodate modifications in the

commitments, e.g., if an actor wishes to cancel a commitment or modify it in some way. After an

interesting top-level structure, the approach rapidly reduces to a traditional activity network style

specification. There are some other critiques of the speech acts approach, e.g., by Ljungberg &

Holm [17].

Still, it has some important insights, which we incorporate in our approach.

3 Technical Approach

Through the many interesting features that they possess, agents provide autonomy and heterogene-

ity, constrain access to resources and guarantee specialized integrity requirements, model organiza-

tions and nonterminating tasks in them. Moreover, they can create “mini-societies” corresponding

to different business processes, but retain responsibility for resolving conflicts among different

processes. Consequently, agents are best applied to achieving flexibility and agility, improving

efficiency of processes, and helping manage complexity.

3.1 Interaction-Oriented Programming

Merely using the terms “agent” or “multiagent” to describe a system would not ameliorate our

problems. We also need specific solutions based on agents through which the challenges of work-

flow might be addressed. We define Interaction-Oriented Programming (IOP) as a collection of

techniques centered around the notion of interaction. As indicated in Section 1.3, the ability to in-

teract flexibly is the most important feature that agents can have. But this feature—which maps to

a set of related abstractions techniques—is also key in workflow management as envisioned here.

Key issues include the autonomy and heterogeneity of agents, the flexibility and robustness

of the multiagent system, and the assurance of properties of the resulting CIS. Accordingly, IOP

involves high-level primitives for interactions, which synthesize insights from databases and dis-

tributed AI.

Our research program on IOP is developing primitives for the specification of systems of agents

and constraints on their behavior. Distinct primitives are being studied for the three layers of IOP:

(a) coordination [22], (b) commitment [24], and (c) collaboration [23]. Here we focus primarily

on the commitment layer. This includes primitives such as societies, the roles agents may play in

them, what capabilities and commitments they require, and what authorities they grant. Agents

can autonomously instantiate abstract societies by adopting roles in them. The creation, operation,

and dissolution of societies are achieved by agents acting autonomously, but satisfying their com-

mitments. A commitment can be canceled, provided the agent then satisfies the metacommitments

applying to its cancelation.

9



The representations for IOP must support several functionalities, which typically exist infor-

mally, and are either effected by humans in some unprincipled way, are hard-coded in applications,

or are buried in operating procedures and manuals. Information typically exists in data stores, in

the environment, or with interacting entities. The IOP contribution is that it (a) enhances and

formalizes ideas from different disciplines, (b) separates them out in an explicit conceptual meta-

model to use as a basis for programming and for programming methodologies, and (c) makes them

programmable.

The notion of commitments may be familiar from databases. However, in databases, commit-

ments correspond to a value being declared and are identified with the successful termination of

a transaction. When a transaction terminates successfully, it commits, but it is not around any

more to modify its commitments. Thus the commitments are rigid and irrevocable. If the data

value committed by one transaction must be modified, a separate, logically independent transac-

tion must be executed to commit the modified value. Traditional commitments presuppose that

different computations are fully isolated and that locks can be held long enough that the atomicity

of distributed computations can be assured. Although suitable for traditional data processing, for

the above reasons, traditional commitments are highly undesirable for information-rich environ-

ments, where autonomous entities must carry out prolonged interactions with one another [21].

Commitments reflect an inherent tension between predictability and flexibility. Agents who

can commit are easier to deal with. Also, the desired commitments serve as a sort of requirements

on the construction of the agents who meet those commitments. However, commitments reduce

the options available to an agent.

3.2 Commitments

We propose an alternative characterization of commitments that is better suited to agents and mul-

tiagent systems. In our formulation the commitments are directed to specific parties in a specific

context. Thus an agent may not offer the same commitments to every other agent. The context is

the multiagent system within which the given agents interact. An agent or multiagent system with

jurisdiction over some resources and agents is called a sphere of commitment (SoCom).

A commitment is a four-place relation. The debtor refers to the agent who makes the commit-

ment, and the creditor to the agent who receives the commitment. Commitments are formed in a

context, which is given by the enclosing SoCom (or, ultimately, by society at large). Based on the

above intuitions, we motivate the following logical form for commitments.

A commitment C(x; y; p; G) relates a debtor x, a creditor y, a context G, and a dis-

charge condition p.

We define some useful operations on commitments, which capture how they are created, satisfied,

canceled, delegated to or acquired from another party, or released. We can specify constraints on

when any of these actions may or must be performed. This enables us to capture policies such

as what an agent must do if he cancels a commitment to deliver some goods or if he retracts his

10



claim about the validity of some data item. Some of the theoretical aspects of commitments are

elaborated elsewhere [24].

3.3 Commitments for Coherence

Commitments are computationally applied in the following manner. Initially, abstract SoComs are

defined in terms of their roles. Each role is associated with the capabilities it requires, the commit-

ments it engenders, and the authorities it creates. The capabilities are the tasks the agent can do, the

commitments are what the agent must do, and the authorities are what the agent may do. The com-

mitments, in particular, may be metacommitments. Indeed, they usually are metacommitments,

e.g., that the agent will adopt a base commitment upon receiving a request.

At some point, during configuration or execution, an agent may decide to enter into a SoCom

as a particular role or roles. To do so, he would have to cause the SoCom to be instantiated from

the abstract specification. To adopt a role, the agent must have the necessary capabilities, and

accept the associated commitments. In doing so, he also obtains the authorities to properly play

the role. The agent must then behave according to the commitments. Agents can join a SoCom

when configured by humans or during execution: this requires publishing the definition of the

abstract SoCom.

We consider an example in two parts. The first deals with electronic commerce; the second

combines in aspects of virtual enterprises [13]. The commitments are designed based on the cor-

responding roles in human society.

3.3.1 Electronic Commerce

We first define an abstract SoCom consisting of two roles: buyer and seller, which require capa-

bilities and commitments about, e.g., the requests they will honor, and the validity of price quotes.

To adopt these roles, agents must have the capabilities and acquire the commitments. Example 1

involves two individual agents who adopt the roles of Buyer and Seller to carry out a simple deal.

Example 1 Consider a situation involving two agents, Customer and Vendor, with authority over

their respective databases. The SoCom manager has an abstract SoCom for buy-sell deals with

the roles of Buyer and Seller. Buyer’s capabilities include asking for a price quote and placing

an order. Seller’s capabilities include responding to price quotes and accepting orders based on

checking the inventory locally. Buyer’s commitments include paying the quoted price for anything

she orders. Seller’s commitments include (a) giving price quotes in response to requests and (b)

fulfilling orders that he has accepted.

Customer asks the manager to instantiate a deal between her (Customer) as Buyer and Vendor

as Seller. The manager asks Vendor if he would like to join as Seller. When Vendor agrees, and

since both agents have the requisite capabilities, capacities, and resources, the deal is set up.

Customer now wishes to check the price of a valve with a diameter of 21mm. Upon the receipt

of the query from Customer, Vendor—based on its role as Seller—offers an appropriate answer.

11



3.3.2 Virtual Enterprises

Example 2 considers a more general situation where the role of Seller is adopted by an agent who

happens to be a Valvano-cum-Hoosier virtual enterprise (VE)—i.e., a SoCom consisting of the

hose and valve vendors. Example 3 considers the situation where the Valvano-cum-Hoosier VE

detects a problem in the supply of valves for which an order has been placed. The VE automatically

meets its commitments by revising the order and notifying the customer.

Now we consider the situation where one or more agents may form a cooperative SoCom or

team. For simplicity, we assume that teams have a distinguished agent who handles their external

interactions. We refer to this agent as the VE.

Example 2 We now consider two agents with authority over the Valvano and Hoosier databases,

respectively. These agents have similar capabilities to the Seller of Example 1. They form a VE,

called Valvano-cum-Hoosier VE, which can adopt the role of Seller. Buyer behaves as before

and expects Seller to behave according to the buy-sell deal. However, Seller is implemented dif-

ferently, with commitments among its members, which we do not elaborate here. The possible

commitments of the Valvano-cum-Hoosier VE include the following.

� The VE will give price quotes to anyone who requests them.

� The VE will refund the purchase price if an order with matching valves and hoses cannot be

fulfilled. There are still no refunds if an order for matching valves and hoses can be fulfilled.

� If the VE cannot fulfill an order, it will try to find an alternative order that will satisfy Cus-

tomer’s requirements.

Recall that val or hos would not take refunds individually. Thus a customer might be saddled

with valves for which matching hoses could not be found. However, when dealing with the VE, a

customer can get a refund in those situations.

In the above examples, the actions are performed by the constituents of the SoCom. Sometimes,

however, it is useful to perform actions at a higher level SoCom. Such actions are necessary when

the actions of the member agents must be atomically performed or undone. Example 3 is related

to this situation.

Example 3 Continuing with Example 2, suppose an order for matching valves and hoses is suc-

cessfully placed. It turns out later that the valve manufacturer discontinued the model that was

ordered, but recommends a substitute. The substitute valve fits different diameter hoses than the

original choice. The VE knows that the original order could be satisfied using the new valve and

a different set of hoses. The VE can handle this replacement itself and, based on its prior com-

mitment, not charge the customer any extra. The customer does not need to know of the internal

exchanges among the members of the VE SoCom. Figure 3 illustrates the execution.

12



�

�

�

�

�

�

�

�

�

�

C

C

�

�

C

C

-

?

-

?

order hoses

ready
change

ready

�

�

� @

@

@

@R

�

�

�

-

66

-

6

order matching hoses & valve

promise

notify of update

confirm revised

ready

order

order valve

ready
cancel

Hoses

Valves

Figure 3: Commitment-Based Recovery

In the above example, the discontinuation of a valve after an order for it was accepted is a kind

of failure that arises after the original interaction had ended. Traditional approaches would be

inapplicable in such a situation.

4 Discussion

We started with an informal characterization of workflow. Although workflows are desirable in

the open, inter-networked information environments of today, current workflow technology leaves

much to be desired. The problems with current technology are not ones of mere detail, but are

fundamental to the abstractions used for modeling and computation. We believe that the careful

application of agents, in the form of multiagent systems, will yield rich dividends.

There are vast bodies of work on both multiagent systems and workflow specification and

management. Even the specific topic of applying agents in workflow has been studied before.

Among the earlier ones was some work in the Carnot project that we previously carried out [25].

In this work, we used a distributed expert system shell to implement a multiagent system, which

was used to enact a telecommunications service order processing workflow. This approach used

a combination of rules and nonmonotonic reasoning to handle exceptions. It got its inspiration in

part from an ETM [2].

The advanced decision environment for decision tasks (ADEPT) project was also applied to

a service order processing workflow [14]. The ADEPT project focused on negotiation among

different agents to carry out a workflow. The agents use speech acts to make various negotiation

moves. However, the underlying notion of commitments doesn’t itself allow a contextual nesting,

as in our approach.

13



The SMART project of the National Industrial Information Infrastructures Protocols (NIIIP)

consortium deals with intelligent manufacturing [26]. A major focus of this project is on using

agents for the manufacturing execution (or ”make-side”) of supply chains. Therefore, it also in-

volves workflows over virtual enterprises [9]. SMART involves an alternative implementation for

the commitment-based approach described here.

There are some interesting conceptual reasons why IOP is ideally suited to workflows. Multia-

gent systems and workflows have the some important unifying themes. Both require an emphasis

on

� openness characterized by environments whose membership and behavior change dynami-

cally

� local control in order to preserve the interests of workflow designers and owners

� coherent behavior instead exclusively of consistent data states, leading to global coherence

in the face of local control.

This leads to a natural match between the two scientific areas, and makes several synergies avail-

able. Here we focused on agents applied in workflow management. However, workflow techniques

for coordination (i.e., control logic specification and execution) also apply naturally in coordinating

agents. Some of these connections are explored elsewhere [22].

Traditionally, the main stages in the workflow lifecycle are (a) analysis of a CIS, (b) design, (c)

validation by simulation, (d) experimental deployment, and (e) production use. To these we add

the stages (f) organize and coordinate and (g) refine in situ. Each stage in the lifecycle requires

tools. However, successful tools must be based on correct models and accompanied by sound

methodologies and patterns of usage.

The foregoing discussion brings forth a number of important shortcomings of current work-

flow technology; a slightly different, but useful, list is presented by Kamath & Ramamritham [15].

Besides accommodating heterogeneity and autonomy, there is need for improved methods for ex-

ception handling. Exceptions are difficult to predict during design. However, as they arise, humans

or software agents (under human supervision) do handle them. This suggests that from the routine

practice of exception handling, new workflow pathways are built, yielding a series of increasingly

more complete production workflows. Indeed, the different between experimental and production

use is primarily one of completeness in handling exceptions. Thus, design and enactment of work-

flows must be interleaved. Another research issue of great importance is specifying and controlling

interactions among workflow instances and models.

14



Acknowledgments

This paper is based on a talk given at the IJCAI Workshop on Business Applications of Artificial

Intelligence held in Nagoya, Japan in August 1997. An seminar on this topic was hosted by the

IBM Intelligent Agents Group in RTP, North Carolina in May 1997. Parts of Section 2 were

presented at the ECAI Workshop on Learning in Distributed Artificial Intelligence Systems held in

Budapest in August 1996, and parts of Section 3 in the 2nd International Workshop on Cooperative

Information Agents held in Paris in July 1998. However, this is the first journal version of this

material. We are indebted to a number of people for comments, especially Manny Aparicio, Carl

Hewitt, and Aditya Ghose.

Munindar Singh is supported by the US National Science Foundation under grant IIS-9624425

(Career Award), IBM, and the NCSU College of Engineering. Michael Huhns is supported by the

US Defense Advanced Research Projects Agency.

References

[1] Yuri Breitbart, Andrew Deacon, Hans-Jörg Schek, Amit P. Sheth, and Gerhard Weikum.

Merging application-centric and data-centric approaches to support transaction-oriented

multi-system workflows. SIGMOD Record, 22(3), September 1993.

[2] Alejandro Buchmann, M. Tamer Özsu, Mark Hornick, Dimitrios Georgakopoulos, and

Frank A. Manola. A transaction model for active distributed object systems. In [5], chapter 5,

pages 123–158. 1992.

[3] Omran A. Bukhres and Ahmed K. Elmagarmid, editors. Object-Oriented Multidatabase

Systems: A Solution for Advanced Applications. Prentice-Hall, 1996.

[4] Panos K. Chrysanthis and Krithi Ramamritham. Synthesis of extended transaction models

using ACTA. ACM Transactions on Database Systems, 19(3):450–491, September 1994.

[5] Ahmed K. Elmagarmid, editor. Database Transaction Models for Advanced Applications.

Morgan Kaufmann, San Mateo, 1992.

[6] Martin Fowler. UML Distilled: Applying the Standard Object Modeling Language. Addison-

Wesley, Reading, MA, 1997.

[7] Les Gasser. Social conceptions of knowledge and action: DAI foundations and open systems

semantics. In [12], pages 389–404. 1998. (Reprinted from Artificial Intelligence, 1991).

[8] Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of workflow man-

agement: From process modeling to workflow automation infrastructure. Distributed and

Parallel Databases, 3(2):119–152, April 1995.

15



[9] Charles R. Gilman, Manuel Aparicio, J. Barry, Timothy Durniak, Herman Lam, and Rajiv

Ramnath. Integration of design and manufacturing in a virtual enterprise using enterprise

rules, intelligent agents, STEP, and work flow. In SPIE Proceedings on Architectures, Net-

works, and Intelligent Systems for Manufacturing Integration, pages 160–171, 1997.

[10] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, San Mateo, 1993.

[11] Meichun Hsu, editor. Special Issue on Workflow and Extended Transaction Systems, volume

16(2) of Bulletin of the IEEE Technical Committee on Data Engineering. June 1993. Contains

13 articles.

[12] Michael N. Huhns and Munindar P. Singh, editors. Readings in Agents. Morgan Kaufmann,

San Francisco, 1998.

[13] Anuj K. Jain and Munindar P. Singh. Using spheres of commitment to support virtual enter-

prises. In Proceedings of the 4th ISPE International Conference on Concurrent Engineering:

Research and Applications (CE), pages 469–476. International Society for Productivity En-

hancements (ISPE), August 1997.

[14] N. R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O’Brien, and M. E. Wiegand.

Agent-based business process management. International Journal of Cooperative Informa-

tion Systems, 5(2&3):105–130, 1996.

[15] Mohan Kamath and Krithi Ramamritham. Bridging the gap between transaction manage-

ment and workflow management. In Proceedings of the NSF Workshop on Workflow and

Process Automation in Information Systems: State-of-the-art and Future Directions, May

1996. http:// optimus. cs.uga.edu:5080/ activities/NSF-workflow/

kamath.html.

[16] Morten Kyng and Lars Mathiassen, editors. Computers and Design in Context. MIT Press,

Cambridge, MA, 1997.

[17] Jan Ljungberg and Peter Holm. Speech acts on trial. In [16], chapter 12, pages 317–347.

1997.

[18] Raúl Medina-Mora and Kelly W. Cartron. ActionWorkflowR in use: Clark County depart-

ment of business license. In Proceedings of the 12th International Conference on Data En-

gineering (ICDE), pages 288–294, February 1996.

[19] Mike P. Papazoglou, Steven C. Laufmann, and Timothy K. Sellis. An organizational frame-

work for cooperating intelligent information systems. International Journal of Intelligent and

Cooperative Information Systems, 1(1):169–202, 1992.

16



[20] Marek Rusinkiewicz, Amit Sheth, and George Karabatis. Using polytransactions to manage

interdependent data. In [5], chapter 14, pages 555–581. 1992.

[21] Munindar P. Singh. Commitments among autonomous agents in information-rich environ-

ments. In Proceedings of the 8th European Workshop on Modelling Autonomous Agents in a

Multi-Agent World (MAAMAW), pages 141–155. Springer-Verlag, May 1997.

[22] Munindar P. Singh. A customizable coordination service for autonomous agents. In Intelli-

gent Agents IV: Proceedings of the 4th International Workshop on Agent Theories, Architec-

tures, and Languages (ATAL-97), pages 93–106. Springer-Verlag, 1998.

[23] Munindar P. Singh. The intentions of teams: Team structure, endodeixis, and exodeixis. In

Proceedings of the 13th European Conference on Artificial Intelligence (ECAI), pages 303–

307. John Wiley, August 1998.

[24] Munindar P. Singh. An ontology for commitments in multiagent systems: Toward a unifica-

tion of normative concepts. Artificial Intelligence and Law, 1998. In press.

[25] Munindar P. Singh and Michael N. Huhns. Automating workflows for service provisioning:

Integrating AI and database technologies. IEEE Expert, 9(5):19–23, October 1994.

[26] SMART project description. http://smart.npo.org/, 1997. National Industrial Information

Infrastrucure Protocols (NIIIP) Consortium.

[27] Terry Winograd and Fernando Flores. Understanding Computers and Cognition: A New

Foundation for Design. Addison-Wesley, Reading, MA, 1987.

17


