
Agents on the Web

Weaving a
Computing Fabric

A gents — in the form of elves, sprites, ava-
tars, jinis, and genome agents — are form-
ing the new fabric for our computing

infrastructure. Working behind the scenes, they are
automating mundane tasks to free people for more
interesting and creative endeavors.

Because they are easy for people to use,
agents perform this role well. People work best
with things that seem familiar. Software com-
ponents are typically not familiar, but if the
components resemble assistants, aides, helpers,
or colleagues, users will feel more in control and
be more productive.

Agents seem to be the right size as well — larg-
er than methods, which are often too numerous to
find and use, but smaller than major applications,
which are often too complex to be completely un-
derstood. (Does anyone understand all the features
in MS Excel?) Agents also enable scalability. An
agent-based system can cope with a growing
application domain by increasing the number of
agents, each agent’s capability, or the computa-
tional resources available to each agent.

Given their flexibility and all-around suitabili-
ty for this broad range of tasks, it is not surprising
to see the variety of agent-based infrastructures
on the landscape.

Electric Elves
Researchers at the University of Southern Califor-
nia Information Sciences Institute have developed
an agent system that represents people in planning
and scheduling tasks.1 The agents, termed electric
elves, run autonomously once deployed, continu-
ously seeking opportunities for the person they
represent to attend meetings. (For their technolo-
gy’s next generation, let’s hope they deploy anti-
elves to help people avoid meetings!)

The elves are flexible and have a wide range of

capabilities: they can arrange a lunch meeting for
project participants, including the selection of
food, or keep track of a project visitor’s schedule,
including possible arrival delays and the associat-
ed necessity for rescheduling meetings. Because
they are implemented on a platform of PDA and
GPS devices, elves can even keep track of the par-
ticipants’ physical locations.

Elves interact with each other often. In schedul-
ing a meeting, for example, one elf might delegate
the task of finding a room to another. To facilitate
these interactions, the system employs an agent
matchmaker system, using a declarative language
to represent each elf’s capabilities and requests.

Jini
Researchers at Sun have developed the agent-like
Jini system (www.jini.org) for controlling access
to physical devices that might be computerized
within our homes, offices, and environment. Jini
extends Java from one machine to a network of
machines. It uses remote method invocation (RMI)
to move code around and provides mechanisms for
devices, services, and users to join and detach from
the network. This approach is essentially a model
for Web services within a local-area network,
which might be implemented using the Bluetooth
or IEEE 802.11x protocol.

The Jini Web services infrastructure offers sev-
eral advantages:

� transactions support a two-phase commit
protocol,

� clients lease services for specific durations,
� lookup services can be arranged hierarchically,
� services occupy nodes in tuple spaces, called

JavaSpaces.

Disadvantages include that

92 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

Michael N. Huhns and Larry M. Stephens • University of South Carolina
John W. Keele, Jim E.Wray,Warren M. Snelling, Greg P. Harhay,
and Randy R. Bradley • Meat Animal Research Center, USDA

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 93

Weaving a Computing Fabric

� lookup services require an exact
match on the name of a Java class
(or its subclass) and

� clients and servers exchange code
synchronously via RMI.

Successful Web service developments
and deployments require that services
be described so that requestors can
accurately find and use them. Early on,
multiagent systems confronted this
problem when attempting to solve
problems cooperatively or compete
intelligently. Although no general, for-
mal language for describing tasks has
emerged, all descriptions must include
information about the problem to be
solved, the nature of the expected so-
lution, the resources involved or re-
quired, and a time by which a solution
is needed. Optional information in-
cludes the task’s importance or priori-
ty, the solution’s value, and the other
requestors that might be interested in
the task’s performance.

Genome Agents
Spurred on by the great potential for
improving the health and welfare of
people and animals, the excitement
surrounding the decoding of the hu-
man genome has fueled an explosion
in the amount of information avail-
able about genomics. In addition,
much of the progress sprang from
advances in algorithms for manipu-
lating genomics information and
sharing the results over the Internet.
Further progress will be aided by
assisting end users — biologists and
geneticists — in obtaining and using
the latest and best information.

Maintaining a comparative genomics
information system is challenging
because data resources are distributed,
heterogeneous, and dynamic. Numerous
analysis programs are available for
sequencing data to determine gene
structures and functions, but to stay cur-
rent, an effective system must download
information from external resources fre-
quently, reconcile differences in data for-
mat, apply various analysis algorithms,
and integrate the resultant information.

The operational requirements for

such a system we constructed for use at
the US Department of Agriculture,
essentially mandate the use of an agent-
based infrastructure because multiagent
software systems can integrate infor-
mation from many external resources
and reconcile differences in format.2

� The system should be robust, so
that if it crashes, restarts occur
automatically or with minimal op-
erator intervention, without any
loss of work.

� The system should be controllable
and modifiable from multiple
locations.

� Monitoring of the system should be
possible from multiple locations.

� The system’s workload should be dis-
tributable across multiple platforms.

� Several administrators or users
should be able to initiate, modify,
or halt data-acquisition activities.

� System control should be declarative
and not procedural: users should be
able to tell the system what they
would like done, and the system
should figure out how to do it.

� The system should be modifiable
while it is running, without requir-
ing a restart for the modifications
to take effect.

� The system should not do any
unnecessary work, such as down-
loading an already current file.

As Figure 1 illustrates, our autonomous
multiagent system can download
sequence information from a variety of
online data sources, apply the Basic
Local Alignment Search Tool (BLAST)
to the information to find matches,
infer sequence function from annota-
tions, integrate the results into com-
parative maps, and display the maps
and data.3 The agent-based system fea-

Post

NCBI
data

NCBI
Web site

Data
checker

Data
downloader

“Start
download”

Post

TIGR
data

TIGR
Web site

Data
checker

Data
downloader

“Start
download”

Data manager

Task manager

Task agent:
reformat data

Task agent:
relate and
compare

Task agent:
BLAST data

Task agent:
store results

Task agent:
reformat data

Task agent:
BLAST data

Task agent:
show results

Scientist Sleep

12

6

9 3
2

111

57

10

48

Figure 1. Operational view of agent-based infrastructure for managing genomics
information.A Data Manager agent creates and monitors agents that download
new information when it becomes available.A Task manager agent then man-
ages the agents that process the new information.

94 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Agents on the Web

tures a mediated general architecture4

that contains a management agent,
directory agents (for both yellow and
white pages), a database control agent,
agents responsible for monitoring
Internet sources and downloading new
data, and a workflow agent to control
processing tasks on the new data.

A database control agent is in
charge of all runtime changes to a
local database. Because all database
changes transmit through this agent,
it can both make the changes and eas-
ily inform appropriate agents about
the changes. A data-manager agent
starts multiple pairs of data-check-
er–data-downloader agents in res-
ponse to messages from users or after
querying instructions from a database
during initialization. Each data-check-
er agent looks for changes in the file
date of the external resource for which
it is responsible. When it detects a
change, the agent sends a message to
its corresponding data-downloader
agent to download the file.

Once a download completes, the
system sends messages to agents con-
trolling downstream processes — such
as gunzip, formatdb, cross_match,
BLAST, and perl data parsing — indi-
cating that new data is in the pipeline
to be integrated into the information

system. Task and downloading agents,
perhaps distributed over multiple plat-
forms, interact by exchanging mes-
sages encoded in the FIPA agent-com-
munication language syntax; we
implemented all agents using the pub-
lic-domain Java Agent Development
Framework (Jade) (http://sharon.
cselt.it/projects/jade/). Overall, the sys-
tem behaves as a distributed agent-
based workflow execution system.5

Our genomics information system
lets researchers produce comparative
maps that show how to map

� cattle and swine chromosomal
sequences to human chromosomal
sequences

� human chromosomal sequences to
cattle and swine chromosomal
sequences

Figure 2 shows an example result.

Avatars and Sprites
An avatar is a graphical character or
persona that inhabits a virtual world,
whereas a sprite is an inanimate graph-
ical object in that world. Virtual worlds
are the domain of computer games, but
they are moving increasingly into
online training and education. They
help engineers and artists shape arti-

facts for the real world, assisting us in
understanding things we would not
normally be able to see, such as atom-
ic, cosmic, and imaginary structures.

Avatars populate these virtual
worlds, interacting with each other
and the world and often representing
our interests and us. By providing a
familiar form for what is essentially a
computing operation, they let people
comfortably interact with complex
computations.

Services for an Agent-
Based Infrastructure
Elves and avatars cannot exist on their
own; they need an environment and
an infrastructure in which to live and
act. The most essential service an envi-
ronment can provide is to enable
agents to locate and engage each
other. Agent-based infrastructures typ-
ically provide this capability in the
form of a directory service. Other ser-
vices might provide transaction-pro-
cessing monitors, loggers for saving
records and recovering from failed
operations, visualizers to help track the
status of ongoing activities, sniffers to
eavesdrop on agent conversations, and
controllers to start and stop agents. To
be understood, agents must communi-
cate according to well-defined seman-
tics, often provided by an ontology
service. For example, Figure 3 shows
the ontology used for the genomics
domain. Development and execution
platforms such as Jade provide most of
these services.

Implementing Peer-to-
Peer Systems
The information technology communi-
ty is looking hard at peer-to-peer and
grid computing architectures (www.grid-
computing.org/grid2002) to provide
agents the processing services (CPU
cycles) they need. These technologies
represent an approach to distributed
computing based on the use of idle com-
puter resources. Nodes already recruited
into the distributed computing network
locate other nodes by executing search
algorithms that ask the questions, “Are
you available?” or “Do you have the

Human position

C
at

tle
 p

os
iti

on
Both species

Human only

Cattle only

Figure 2.A comparative map of human versus cattle genomic information.The
map shows where on the cattle genome (vertical axis) and the corresponding
human genetic information (horizontal axis) are located.Here we see that human
and cattle have mostly the same genetic information, but arranged differently.

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 95

Weaving a Computing Fabric

appropriate data?” If the node is avail-
able, it is told what to do. If it doesn’t
have the right data, it is given the data.
The search for available nodes and exe-
cution proceed under the basic assump-
tion that each node is stupid and cannot
decide for itself what it should do.

This approach works as a minimal
default assumption, but it fails to cap-
italize on each node’s potential intel-
ligence, previously cached results,
improved algorithms, or other capabil-
ities that could be exploited to improve
performance.

A collection of agents or elves, or
whatever gremlin comes down the
pike next to run on a distributed col-
lection of platforms, can behave like a
distributed operating system — or like
an intelligent P2P system, in that the
agents can actively cooperate to ac-
complish tasks.

Conclusion
As sources of information relevant to
a particular domain proliferate, we
need a methodology for locating,
aggregating, relating, fusing, reconcil-
ing, and presenting information to
users. Interoperability thus must occur
not only among the information, but
also among the different software
applications that process it. Given the
large number of potential sources and
applications, interoperability becomes
an extremely large problem for which
manual solutions are impractical. A
combination of software agents and
ontologies can supply the necessary
methodology for interoperability.

Acknowledgement
The US Department of Agriculture supported the

work on genomic agents described here.

References
1. H. Chalupsky et al., “Electric Elves: Agent

Technology for Supporting Human Organi-
zations,” AI Magazine, Summer 2002, pp.
11-24.

2. K. Bryson et al., “Applying Agents to Bioin-
formatics in GeneWeaver,” Cooperative
Information Agents IV, Lecture Notes in
Artificial Intelligence, vol. 1860, Springer-
Verlag, New York, 2000, pp. 60-71.

3. J.W. Keele et al., “Intelligent Software
Agents for Managing Distributed Genomics
Data,” Proc. 28th Conf. Int’l Soc. Animal

Genetics (ISAG), Blackwell Publishing,
Oxford, UK, 2002, to appear.

4. M.N. Huhns and M.P. Singh, “All Agents Are
Not Created Equal,” IEEE Internet Comput-
ing, vol. 2, no. 3, May/June 1998, pp. 90-92.

5. M.N. Huhns and M.P. Singh, “Managing
Heterogeneous Transaction Workflows with
Cooperating Agents,” Agent Technology:
Foundations, Applications and Markets, N.R.
Jennings and M.J. Wooldridge, eds.,
Springer-Verlag, Berlin, 1998, pp. 219-240.

Michael N. Huhns and Larry M. Stephens are

professors of computer science and engi-

neering at the University of South Carolina,

where they conduct research in multiagent

systems and ontologies.

John W. Keele, Jim E. Wray, Warren M. Snelling,

Gregory P. Harhay, and Randall R. Bradley

are researchers in animal genomics and

bioinformatics at the Meat Animal Research

Center, US Department of Agriculture, Clay

Center, Nebraska.

Readers can contact the authors at {Huhns,

Stephens}@sc.edu and {keele, Wray, Snelling,

Harhay, Bradley}@email.marc.usda.gov.

TaskAgnt
-name
-location

TaskAgnt
-manager
-taskname
-stepnumber
-starttime
-finishtime
-status

DataChecker TaskManager

Workflow

Step
-stepnumber
-command

Role TaskError

Agent
-beliefs
-desires
-intentions
-commitments

Task
-taskname
-host
-status

Sleeptime
-time : long(idl)
-unit : string(idl)

DataManager

Human

Downloader

-writesLog

-sleepsFor

-hasStep -performedBy -generates
-performs

-hasTaskAssignment

-taskOf

-hasTask

Figure 3. Ontology of genomics information management. Genomic agents use
this ontology of concepts to interact and communicate.

