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This paper presents an analysis of four algorithms which are able to register images with
subpixel accuracy; these are correlation interpolation, intensity interpolation, differential
method, and phase correlation. The subpixel registration problem is described in detail and the
resampling process for subpixel registration is analyzed theoretically. It is shown that the main
factors affecting registration accuracy are the interpolation function, sampling frequency,
number of bits per pixel, and frequency content of the image. An iterative version of the
intensity interpolation algorithm, which achieves maximum computational efficiency, is also
presented. Analyses, computer simulations, and experiments for measuring displacements of
objects using their speckle images have shown that this algorithm is faster than a direct
intensity interpolation algorithm by a factor of more than ten thousand. Using bilinear
interpolation and representing pixels by 8-bit samples, a 0.01 to 0.05 pixel registration
accuracy can be achieved. ®© 1986 Academic Press, Inc.

1. INTRODUCTION

Many image processing applications require the registration of pairs of images.
For some of these it is acceptable to achieve a registration result with an error of
+1 pixel; but for others, such as change detection, passive navigation, feature
location measurements in remote sensing, image sequence analysis, and nondestruc-
tive evaluation, registration results with an error less than one pixel distance are
essential [1-6]. For example, in nondestructive evaluation, several images of an
object during deformation are typically taken and analyzed. The translations of
points located on a closed contour on the surface of the object are measured as
accurately as possible. The results yield direct estimates of strain and, if they are
sufficiently accurate, can be used to predict structural failures [3, 4]. A similar
technique has been used to calculate fluid velocity distributions [5]. In remote
sensing [1], a one pixel distance for a Landsat image corresponds to about 80 m
distance on the Earth, so that pixel-level registration provides 440 m resolution. If
an accuracy of 0.1 pixel can be achieved, then +4 m resolution can be obtained.

These applications have led to the development of many different algorithms for
subpixel registration [6-8]. To date, however, little effort has been devoted to
formally defining the subpixel registration problem and systematically comparing
previously developed algorithms. This paper addresses these two topics and presents
an efficient iterative intensity interpolation algorithm.

In Section 2, four algorithms for subpixel registration are reviewed. Section 3
contains a mathematical analysis of the resampling which is used for intensity
interpolation. It is shown that this resampling can be performed by convolving a
given discrete reference image with an interpolation function sampled at a higher
frequency; the error which results can then be evaluated by comparing the frequency
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response of the sampled interpolation function with the frequency response of an
ideal low-pass filter.

Section 4 describes an iterative intensity interpolation algorithm for subpixel
registration. This algorithm speeds up the direct intensity interpolation method
more than ten thousand times. In Section 5, the accuracy of the intensity interpola-
tion algorithm is analyzed as a function of three main factors: sampling frequency,
number of bits per pixel, and interpolation function. Then, all of the algorithms for
subpixel registration are compared in terms of accuracy, computational cost, and
usage. Finally, results for computer simulations and experimental displacement
measurements are presented.

2. SUBPIXEL REGISTRATION

This section describes the signal registration problem and four algorithms for
achieving subpixel accuracy: correlation interpolation, intensity interpolation, dif-
ferential method, and phase correlation.

2.1. Signal Registration

A description of the signal registration problem is presented in one dimension,
but the results can be easily extended to two dimensions. It is assumed that the
signals to be matched differ only by an unknown translation. (In practice, these
signals are two images of the same scene, taken at different times, or from different
perspectives, or by using different sensors. Besides translation, there may be
rotation, noise, and geometrical distortions. Nevertheless, this description reveals
the fundamentals of the problem.) Given a discrete signal f(n) with a duration of N
samples, as indicated in Fig. 1, another signal g(n) results from translating f(n) by
a distance L. The registration problem is, given signals f(n) and g(n), to calculate a
displacement value L’ which approximates the distance L within a fraction of a
sample spacing (pixel).

As also indicated in Fig. 1, instead of using the entire signal g(n), a segment of it
with length m, denoted by gm(n), is typically used. The segment is chosen so that
the position of greatest interest is located in the middle of the segment. For rigid
translations a more accurate result can be achieved by using all of g(n) to perform
the matching procedure. However, there are often intensity distortions and geomet-
rical distortions in real images. Using a segment of g(n) increases the tolerance of
the matching procedure to these distortions. Also, the number of computations
needed is reduced.

Fi16. 1. One-dimensional signals used for subpixel registration: (a) An original signal f(n) and a
derived signal g(n) which results from translating f(n) by a distance L. (b) A segment of g(n), gm(n),
with a duration of m samples.
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The procedure for pixel-level registration is to first calculate the correlation
between f(n) and gm(n) as

s 3 Wbt ] )

n=1

where 1 <k < N— M + 1 and R is a similarity measure, such as a normalized
cross-correlation or an absolute difference function. For the (N — M + 1) samples
of r(k), there is a maximum value r(L’), where L’ is the displacement in sampling
intervals of g(n) with respect to f(n). The actual displacement L, however, is not
necessarily an integer number of sampling intervals.

2.2. Correlation Interpolation

One way to achieve subpixel registration accuracy is to calculate the discrete
correlation function between two images, fit an interpolation surface to samples of
this function, and then accurately search for the maximum of this surface [2, 9].
When the images are sampled at a high enough frequency, the corresponding
discrete correlation function is quite smooth and a second-order interpolation
function can provide an accurate representation. A quadratic estimator for the
maximum of this second-order function is used in [2] for the analysis of a scan-line
jitter that mechanical FLIR’s exhibit; it reduces this jitter from 0.5 pixel to less than
0.1 pixel (worst case).

The quadratic estimator can be expressed as

Pa_Pb

X=
2+(2P, - P, ~ F,)

(2)

where P, is the maximum value of the sampled correlation function, P, and P, are
the samples to the left and right of P,, and X is the estimated location of the peak
in terms of the sample interval, referenced to P,. The accuracy of this estimator
depends on how well a correlation function around the peak approximates a
parabola [2].

2.3. Intensity Interpolation

Subpixel registration can be achieved by using intensity interpolation to create a
much denser grid for selected parts of the reference image. A search using the target
image is then conducted over these parts. Given a target image of size M X M and a
reference image of size N X N, if a registration accuracy of 0.1 pixel is desired, then
the reference image should be interpolated to create a new version with dimensions
(10 X N) X (10 X N). Then, a search potentially could cover all (10N — M + 1)?
positions. An iterative algorithm which decreases this computational cost is de-
scribed in Section 4.

2.4. Differential Method

A differential method is used for estimating 2-dimensional translations to process
a sequence of TV images in [6]. The key idea is to relate the difference between two
successive frames to the spatial intensity gradient of the first image. Given two
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images, f,(x, y) and f,(x, y), assume that translations of an object centered at
(x, y) of image 1 with respect to image 2 are D, and D, in the X and Y directions,
respectively; then

fz(x! J’) =f1(x“Dx’y_Dy)' (3)
The frame difference can be expressed as
I(x, y) = fi(x, ») = fo(x, y)

=f(x,y) - fi(x - D,y - D,)

af].(xs y) afl(xs y)
- ax * dy b, )

D,

where df,/dx and df,/dy are the partial gradients of f,(x, y). This relation holds
only when translations are very small compared to the spatial change of image
gray-levels.

To calculate the translation for one object in the image sequence, a set of
intensity difference equations for a small neighborhood of the object, of size M X M
pixels, must be calculated. M usually has a value between 4 and 64, depending on
the object involved. There are M? simultaneous equations

[7] =[G][D] (5)

where [/] is the frame difference column matrix, [G] the gradient matrix, and [D]
the column vector of translations. Because [G] is not square in general, the
pseudoinverse technique is used to solve this equation. Assuming [G] [D] is
nonsingular, the translation vector [ D] is

(] = [[61"[6]] [6]"[1] (6)

where [[G]T[G]]is 2 X 2, [G]Tis 2 X M, and [I]is M X 2.

The differential method in [6] has been used to estimate motion, which is, in turn,
used for motion-compensated temporal filtering to restore and enhance image
sequences. This algorithm is faster than the interpolation algorithms, and can be
used when an image contains several objects moving with different directions and
speeds, but only when the displacements of the objects are small with respect to
their sizes.

2.5. Phase Correlation

The phase correlation technique has been used to implement a video-rate image
correlation processor [7, 8]. It achieves subpixel accuracy with relative insensitivity
to scene content, illumination differences, and narrow-band noise.

It is based on the fact that most of the information about the relative displace-
ments of objects between two images is contained in the phase of their cross-power
spectrum. If F, and F, are the discrete 2-dimensional Fourier transforms of
sampled images f; and f,, then the correlation C between f, and f, can be
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expressed as

C=fi®f,=F {FFE*) (7)
where ® denotes convolution, * denotes the complex conjugate, and %! denotes
the inverse Fourier transform. F)F* is normalized to remove dependencies on

image content, while leaving dependencies on image shifts. The phase matrix ® and
phase correlation matrix D are then

F,F;
®=iEEl W
D=FYa). 9)

In an ideal case of images cyclically translated by L, @ is a delta function located
at L.

To find D with a minimum number of computations, the inverse Fourier
transform is first calculated at low resolution. After the peak of this low-resolution
version of D is found, a 9 X 9 point segment of D, centered at the peak, is
calculated by using an inverse Fourier transform at full resolution. The peak of this
segment is found and a quadratic interpolation of this point with its four surround-
ing points is used to obtain a final peak position with subpixel accuracy. It was
reported that the algorithm provides results with a 0.08 pixel accuracy [7]. The
advantage of the method is that it can be used when images are seriously distorted,
in either geometry or intensity.

3. INTENSITY INTERPOLATION AND RESAMPLING

As stated above, the intensity interpolation algorithm requires that new versions
of the reference image with denser grids be calculated. This process is called
resampling and involves two procedures: restoring the original continuous image
from a given discrete image; and resampling the continuous image at a higher rate
than the one used previously. Registration accuracy depends on how accurately the
new reference image approximates the original image [10].

In one dimension, to create a more densely sampled function f’(n) from a given
function f(n), it is assumed first that the original continuous function f(z) was
band-limited, and that the original sampling frequency was higher than the Nyquist
frequency. f(¢) can then be restored by convolving a sinc function with f(#n), as

f(t) = f(m) @ sinc(z)
= X [f(m)=sinc(t — m*1,)] (10)

m=1
where 1, is the sample spacing. The resampled function is then
K(N-1)+1

f(n)=7@)» ¥ [8(n—jx1)] (11)

j=1
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where delta represents a unit impulse, ¢, = 7,/K is the new sample spacing, and K
is chosen to yield a (1/K )th pixel accuracy.

Because the sinc function has infinite length, all points of f(n) would have to be
used to calculate f(¢). This is time-consuming. Therefore, a finite interpolation
function, such as a nearest neighbor, linear, or cubic B-spline, is usually used.
Beause the interpolation functions have frequency responses other than the ideal
low-pass filter response of the sinc function, aliasing in the restored f(¢) occurs. If
the interpolation function is denoted by s(¢), then

N NK=1)+1
Py = { £ st mel]« £ [an-jon)]
K(N-1)-1
- (fmyos)s L [o(n-sen)]
=f(m) ® s(n) (12)

where s(n) represents a sampled interpolation function with sample spacing ¢,.
Achieving a precise registration depends on how accurately f'(n) approximates
J(¢). This comparison can be done in the frequency domain. The Fourier transform

of (12) is
F'(nwy) = F(nwy)*[S(w) ® Z{8(n*w;)}]. (13)

Analyzing how the interpolation function and resampling frequency affect the
accuracy is the same as analyzing the frequency distribution of s(n). Because the
frequency response of a sampled interpolation function can be obtained by simply
repeating the response of the interpolation function at every n#*w, frequency
position, and if the sampling rate for the interpolation function is high enough so
that aliasing can be ignored, then the main effect of the sampled interpolation
function on the frequency response of f’(n) is attenuation inside the passband.

As indicated in Fig. 2, among the three interpolation functions, the cubic B-spline
has the best passband response. A nearest neighbor interpolation should be ex-

In;erpo[minn Magnitude of Logarithm of  S(f)
;Jr;c;!on Fourler‘l'wnsform Lar 0 g%
J"! -ao
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F1G. 2. Several interpolation functions and the magnitudes of their Fourier transforms.
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cluded from consideration because it causes a maximum 0.5 pixel shift of the
interpolated signal, and this is not acceptable for subpixel accuracy. Experiments
with computer-generated sinc-function-like images indicate that linear interpolation
provides about 0.005 pixel accuracy. But, in experiments with real images using
bilinear interpolation, system noise reduces the accuracy to 0.05 pixel. Also, the
computation time is lengthy. Therefore, it is better to use a simple interpolation
method, unless the accuracy is mainly limited by this method and the increased
computations which result are acceptable.
4. ITERATIVE INTENSITY INTERPOLATION

As described in the last section, reference images with a denser grid are created by
a resampling procedure. However, a complete search of a more densely sampled
image can be very time-consuming. For example, to achieve a 0.05 pixel accuracy
for a 512 X 512 image requires the search of a 10240 X 10240 image. However, this
can be greatly reduced by conducting the search in an iterative manner. During each
iteration, only a small part of the reference image is created at an increased
resolution; a best match location at this resolution level is then found by searching,.
During the next iteration, a smaller part of the reference image, located around the
best match location, is calculated at an even higher resolution and searched for the
best match. This continues until a final accuracy is reached.

4.1. Notation

Before describing the algorithm, several parameters need to be defined. The initial
resolution, R, is the number of pixels that the target image is shifted between each
search point of the reference image. This can be chosen as one pixel or several
pixels, depending on the images to be registered. It should be chosen, however, so
that a result near the correct match location, with a distance smaller than R can be
located. The final resolution, R /> determines the desired registration accuracy. The
resolution ratio, K, specifies the improvement in accuracy achieved by each itera-
tion, represented as K = R;_;/R,. The number of iterations, Num, needed to reach
the final resolution can be calculated from

R():Rf*(KNum)- (14)

—=% |

F1G. 3. Resampling can be performed by convolving f(n) with a sampled interpolation function
s(n).
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F1G. 4. Resampled reference images for the ith and (i + 1)th iterations in a new coordinate system
(X,Y), where the search begins at (X,(i), ¥,(i)) for the ith iteration, and the match position is
(Xp(1), Ye(i)). (M = 3 and K = 2 are used for this figure.) (a) Iteration i. (b) Iteration i + 1.

Figures 4a and 4b show different versions of the reference image for the ith and
(i + 1)th iterations. These versions have the same number of pixels, [2K + 1)* M]2,
but they have different side lengths. The side length for the ith iteration is
M + 2R, * K. A target image of dimension M X M is shown overlaid (in boldface)
at both the first (top left) and last (bottom right) search positions. The figures
indicate all pixel positions where interpolated values have to be calculated.

The target image is denoted by T(m, n) and is the same for all iterations. The
reference image for the ith iteration is denoted by S,( X, (i), Y,(i), p, ¢, m, n), where
m and n are integer indices of an M X M subimage of the reference image, and
where p and ¢ are integer indices for the top-left corner of the subimage. The real
values X (i) and Y,(i) are the top left corner of this image. A subimage of S, with
the same dimensions M X M as the target image T is represented by
S/(X(i), Y(i), m, n), where m and n are indices of the subimage itself, (X(i), Y(i))
are its top-left corner coordinates, and the distance between neighboring pixels is
the same as the target image—one standard pixel length. The coordinates of the
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mth row and nth column of S/( X(i), Y(i), m, n) in the X-Y coordinate system are
then

(%,Y)=[X(i)+m—-1,Y(i) +n-1]. (15)

Thus, for a subimage where the top-left corner is located at ( p, g), the intensity of
the mth row and nth column pixel of the subimage is calculated from

Si’(Xs(i) + (p = 1)* Rl'? }’s(t) + (q - 1)* R;‘I m, .ﬂ)
= interpolated{S(X,(i) +(p—1)*R,+ m—1,
Y,(i)+(¢g—1)*R,+ n—1)} (16)
where m=1,2,...,.M; n=12,...,.M; p=12,...,2K+1); and ¢g=
12 (DK Al
The coordinates for § in most cases are not integer values, but its intensity can be
interpolated by using an algorithm such as the bilinear interpolation shown below.
For simplicity, s(0,0), s(0,1), s(1,0), and s(1, 1) represent the intensities of the four
nearest pixels to (X, ¥). Then
X=X(i)+(p-1D*R,+ m—1
Y=Y(i)+(g-1)*R,+n-1
5(0,0) = S(INT[ X],INT[Y])
s(0,1) = S(INT[ X ], INT[Y] + 1)
5(1,0) = S(INT[ X] + 1,INT[Y])
s(1,1) = S(INT[X] + 1,INT[Y] + 1)
b=15(0,1) — 5(0,0)
¢ =s(1,0) — 5(0,0)
d=15(1,1) — 5(0,0) — 5(1,0) — 5(0,1)

and

S/(X,(i) + (p—1)*R,, Y,(i) + (¢ = 1)*R;, m, n)
=5(0,0) + b*(X — INT[X]) + c*(Y — INT[Y])
+d*(X - INT[X])*(Y — INT[Y]). (17)

(Note. The INT operator takes the integer part of its operand.)

4.2. Iterative Procedure

Suppose that at iteration (i — 1) a position (X,(i — 1), Y,(i — 1)) is determined
as the match location at the search resolution R;_,; then during the next iteration
the search should be performed around this position with a neighborhood of size
[2(R,_,)] X [2(R,_,)). Based on the relation R;,_; = K * R,, there are 2K + 1)2
positions to be searched. In Fig. 4, a 5 X 5 search area is indicated, where M = 3
and K = 2.
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After a match location in the (i — 1)th iteration is determined, the top-left
position of the reference image for the ith iteration is determined. To avoid missing
a match location in the ith iteration, the search is conducted over a square area,
where the (i — 1)th match location is located at its center and both of its sides have
length 2(R; — 1). Thus, the top-left position of the new reference image is

X(i)=X(i-1)-K*R,=X,(i—1) - R,_, (18)
Y(i)=Y(i=1) - KR, = Y(i—1) - R, (19)

The new reference image has the same dimensions as before, but it is denser since
the distance between neighboring pixels is R, where R; = R,_, /K. From the above
expressions, in the ith iteration the cross-correlation function is

CORR(p, q)

= ¥ XY |T(m,n) - S/[X,(i) + (p — 1)* R, Y,(i)

m=1n=1

+(g—1)*R;, m,n]| (20)

where p and ¢ = 1,2,...,(2K + 1).

After comparing (2K + 1)? cross-correlation coefficients, a location with a mini-
mum CORR( p, q) is determined and denoted by p_;, and g_;,. A match location
for the ith iteration is

X, (i) = X,(i) + (Pmin — 1) * R, (21)
Y,(i) = Y,(i) + (qmia — D)% R,: (22)

The process is repeated until a desired R, is reached. Note that although the target
image and all versions of the reference image have the same dimensions, M2 and
((2K + 1)* M)?, respectively, they are at a different resolution. The former has a
resolution of one pixel, while the latter has a resolution which increases with each
iteration.

4.3. Number of Computations

The total number of target and reference images to be compared to achieve a final
resolution of R, can be shown to be

(2K +1)"»log[(N — M) /2% R ]

r= log(K) ' (23)

For fixed values of N, M, and R/, this is a minimum when K = 2. This means that
it is most efficient when the search area for each iteration is a 2K + 1)*(2K + 1)
= 5 X 5 neighborhood.

5. ACCURACY ANALYSIS AND COMPARISONS

Simulations using computer-generated images and displacement measurements
using real speckle images have been conducted to evaluate the accuracy of the
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intensity interpolation algorithm, and to compare it with the other algorithms. In
these simulations, to avoid noise and distortion problems, 1-dimensional signals and
2-dimensional images were computer generated. In this way, the translation between
two given signals was exactly predetermined. Test results could then be compared
with this known translation to determine a method’s inaccuracies. The experiments
with real images were conducted as follows: a board was painted flat white to
generate a speckle pattern when illuminated by a laser. The board was then
translated a known distance by an X-Y translation table.

5.1. Accuracy of Intensity Interpolation Algorithm

Theoretically, if (1) the sampling frequency is high enough, (2) a sinc interpola-
tion function is used to restore the signal, and (3) the signal is digitized with enough
bits to accurately represent it, then the intensity interpolation algorithm yields
perfect registration results. However, errors occur in practice because these three
assumptions are violated.

A sampling frequency below the Nyquist frequency causes aliasing errors. For
interpolation this means that because the samples are too far apart in comparison
with changes in the image signal, interpolating to calculate intensities between these
samples results in errors. Thus, a presmoothing of the sampled signals is often
helpful in improving the accuracy, especially when the image to be sampled is very
detailed. A 1-dimensional sawtooth waveform has been used to demonstrate this
effect. Two-point-average and three-point-average low-pass filters were used to
remove high frequencies, which occur near the sharp points on the waveforms. Table
1 indicates that (1) the accuracy can be improved by one order and (2) the
performance of the three-point-average filter is much better than the two-point-aver-
age filter. In this simulation, real-valued signals were used to test the effects of
filtering independent of the effects of finite-length words.

Second, the finite number of bits per pixel adds to the registration error. To test
the magnitude of this error, two straight lines with slope = 5 are separated by
0.611111 pixel and then sampled. If both signals are represented by real-valued
samples, then the error is 0.000005 pixel; if they are represented by 8-bit integers,
then the error is about 0.01 pixel. For a pair of sine waveforms, errors for using real
and integer-valued signals are 0.0005 and 0.003, respectively. This means that to
achieve registration accuracies better than 0.01 pixel more than 8 bits is required to
represent each sample.

In measuring displacements of a real object, we digitized an image, then moved
the object a known distance in the X direction and digitized a second image. The
displacements measured by using iterative intensity interpolation are shown in

TABLE 1
Test Results to Evaluate Prefiltering

Displacement = 0.6111 Test error

no filtering 0.6186 0.0075
2-point filter 0.6149 0.0038
3-point filter 0.6106 0.0005
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TABLE 2
Measurement Results Using Speckle Images

Values (in pixels)

Actual 0.310 3.100 4.650 6.200 © 71750 9.300
Measured 0.326 3.025 4.607 6.145 7.761 9.338

Error —0.016 0.075 0.043 0.055 —0.011 —0.038

Table 2. The known displacement in the X direction for each step is 0.001 in. and
for the Y direction is 0.000 in.

Another experiment was performed to show the system’s overall accuracy limits.
A VICOM image processing system hosted by a VAX-11 /780 was used. For two
images without any translation the measured translation in the vertical direction was
about 0.03 pixel and in the horizontal direction was about 0.01 pixel. These values
are the overall errors caused by the equipment and the algorithm. Thus, computer
simulations and experiments measuring the displacements of real objects indicate
that by using bilinear interpolation, 8 bits per pixel, and a sampling rate greater
than the Nyquist frequency, a 0.01 to 0.05 pixel accuracy can be expected.

5.2. Intensity Interpolation vs Other Algorithms
In Section 2, the correlation interpolation, differential, and phase-correlation
algorithms are described. Here they are compared in terms of accuracy, speed, and
ease of use on computer-generated images. These images are
SIN|K, (I —50.1 SIN| K ,(J — 50.1
Ay = o LD NG -300] -,
K (I-501) K,(J-501)

£(i, j) = fi(i + D, j + D;) (25)

where D; = 0.11111, D, = 1.11111, K, = 0.4, and K, = 0.2. Different values for K,
and K, cause the images to have different shapes in X and Y. 16 X 16 images are
used for all tests.

The correlation interpolation method seems easiest to implement. In one dimen-
sion, a peak of the correlation function can be calculated using second-order
interpolation. In two dimensions, there are several methods which can be used to
find an approximate location of a peak. A 5-point, 6-point, or 9-point neighborhood
near the peak can be used to fit a 2-dimensional equation which approximates the
correlation surface; then, from this equation, a peak can be located. Alternatively,
separate 1-dimensional interpolations in the X and Y directions can be used to
determine the coordinates of the peak. This method can be used if the correlation
peak is symmetric. In performance, correlation interpolation is less accurate than
intensity interpolation while having a much lower computational cost. Table 3
contains the experimental results.

The differential method is appropriate for applications where objects have only
small translations, because it is based on an assumption that during translation the
intensity gradients of an image do not change. Computational costs depend on the
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TABLE 3
Results of Different Algorithms Applied to Sinc Images
Intensity Differential Correlation Phase
interpolation method interpolation correlation
X 0.0029 0.013 0.045 0.092
¥, 0.006 0.010 0.052 0.127

err

dimensions of the area used for the calculation, typically from 4 X 4 to 64 X 64
pixels. Compared with other methods, its computational cost is the lowest, but its
use is limited to the small displacement case. Generally, its accuracy is lower than
intensity interpolation, but higher than correlation interpolation.

The phase-correlation method is most easily used when an entire image frame is
uniformly shifted. Because image content is normalized out, the algorithm is not
sensitive to either geometric distortions or noise. Experiments show that even when
two images have less than 70% common area, the algorithm still provides satisfac-
tory results. The accuracy, however, is the lowest among the subpixel registration
algorithms.

6. CONCLUSIONS

Subpixel registration can be used in a variety of application areas because it
provides a way to accurately measure displacements of individual points of a plane,
without any contact and disturbance. In this paper, several algorithms for subpixel
registration have been both theoretically and experimentally analyzed, and com-
pared in terms of accuracy, computational cost, and usage. In decreasing order of
registration accuracy, the algorithms are intensity interpolation, differential method,
correlation interpolation, and phase correlation. Intensity interpolation is, however,
the most time consuming.

An iterative intensity interpolation algorithm has been described which reduces
this computation time. It is most efficiently performed when optimum parameters
for the start search resolution, final search resolution, and resolution ratio are
chosen. Several criteria for choosing these parameters have been discussed. It also
has been shown that the algorithm can be implemented most efficiently when, for
each iteration, the search is conducted over a 5 X 5 grid. In [4], a hill-climbing
algorithm is incorporated with the iterative intensity interpolation method, and a
factor of 10 improvement in speed is achieved without affecting the accuracy.

An analysis of the resampling process needed for intensity interpolation was
presented, because it determines whether a denser version of the reference image
can be generated accurately. This resampling process can be performed by convolv-
ing the original discrete reference image with an interpolation function sampled at a
higher frequency. The best interpolation functions have frequency responses as close
as possible to that of an ideal low-pass filter. A computer simulation has shown that,
in the ideal case where computer-generated images have no distortion or noise,
bilinear intensity interpolation yields less than a 0.005 pixel error.

Experiments for measuring the displacements of objects by using their speckle
images demonstrate that when bilinear interpolation is used in resampling a
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reference image and image pixels are represented by 8-bit samples, an accuracy of
0.01 to 0.05 pixel can be achieved for the intensity interpolation algorithm. This
error is mainly caused by system noise which arises in the electronics of the image
digitizer. The registration accuracy can be further improved by reducing noise in the
imaging system, increasing the number of bits per pixel, or presmoothing the images

to

10

remove some of the high-frequency details.
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