
International Journal of Cooperative Information Systems
 World Scientific Publishing Company

1

A PROCEDURE FOR THE ALLOCATION OF TWO-DIMENSIONAL
RESOURCES IN A MULTIAGENT SYSTEM

KARTHIK IYER

Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208, USA

iyerk0@gmail.com

MICHAEL N. HUHNS

Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208, USA

huhns@sc.edu

This paper presents a constructive solution to the classic problem of land division. It is the first
solution that enables the allocation of higher-dimensional resources without degenerating them first
into a series of one-dimensional resource allocation problems. We base our allocation procedure on
the topology of overlaps among the regions of interest of different agents. Our result is an algorithm
suitable for computer implementation, unlike earlier ones that were only existential in nature. It uses
the notion of degree of partial overlap to create a sufficiency condition for the existence of a
solution, and proposes a procedure to find the overlaps in such a case. The proposed solution is fair,
strategy-proof, non-existential, and does not explicitly need the resource to be measurable. The
agents do not have to reveal their private utility functions. We extend our earlier result for one-
dimensional resource allocation to this two-dimensional one and explain the distinctive issues
involved.

Keywords: agent negotiation, resource allocation, cake cutting, land division.

1. Introduction

Multiagent systems have emerged as an important area of research in the field of
distributed computing. They are being used for numerous real world applications, such as
operating distributed sensor networks, automating auctions, and allocating online as well
as physical resources. An important feature of multiagent systems is that the agents
behave autonomously. Autonomy means that agents have a high degree of freedom and
choice in initiating actions on their own, planning goals for themselves, and taking
actions to achieve the goals, all while considering their own self interest. Allocating
resources among the entities in a multiagent application is an important requirement. The
need for resource allocation may be an end in itself for a particular multiagent system. An
example of this is an electronic marketplace, where there might be a mixture of agents
and humans trading goods and services. Alternatively, the need for resource allocation
may also be a means to an end. Such cases arise when agents consume a common
resource in order to achieve a collective goal. In the case of distributed sensor networks1,
the problem might be the allocation of portions of the frequency spectrum to different
sensors that are collectively tracking a target. It is possible that the designer of the

2 K. Iyer and M. Huhns

multiagent system can specify the details of the resource allocation procedure. But the
drawback is that the procedure might not adapt dynamically to changing environmental
conditions or agent preferences. Scalability of the design is also a problem, as is the fact
that there is a single point of failure.

Multiagent negotiation is one of the important mechanisms that can be used to
provide for the allocation of resources. Negotiation2 is “when two parties strike a deal
through argumentation or arbitration for the mutual good of both”. Davis and Smith3
define negotiation as “A discussion in which interested parties exchange information and
come to and agreement.” In open multiagent systems there is generally no global control,
no globally consistent knowledge, and no globally shared goals or success criteria. So
there exists a real competition among agents, which act to maximize their own utilities.
We assume all the utility functions are private to the agents.

The protocol by the agents for their negotiation should be immune to information
hiding and lying by the agents. This has to be ensured as there is no control on the design
of agents that interact in open environments and the only check that could be made is by
cleverly designing their interaction mechanism: the protocol. In addition, protocols can
be evaluated on various criteria such as fairness, envy-freeness, equitability, and
efficiency4. Brams and Taylor have discussed extensively various procedures that can be
used to allocate resources. They show that it is generally difficult for any given procedure
to fulfill more than two of the above mentioned criteria. These criteria are by no means
exhaustive, but may be taken as an initial test of the allocation procedure that is being
proposed. For example, other criteria5 that can used to evaluate protocols are: simplicity,
computational complexity, and verifiability.

A protocol is said to be verifiable if the allocation of the resource is invariant to the
bias of the mediator or agent. The issue of verifiability was encountered when the authors
earlier described a procedure for one-dimensional cake cutting6. In that paper, a
multiagent negotiation protocol was presented that divides a one-dimensional resource in
a fair and unbiased manner among n agents. We provided proof that if the agents
followed the protocol, then it is possible to have a fair and unbiased allocation of the
resource. In this paper, the authors propose a negotiation protocol and procedure for the
allocation of a two-dimensional resource. The negotiation protocol in its current form is a
one-shot protocol. This is less common than the typical iterative forms of negotiation. At
the end of the negotiation, one of the agents volunteers to act as a mediator and executes
the procedure. Based on the computation of agent preferences, there is one of two
outcomes:

(i) The procedure is able to find a solution and all agents get a fair deal.
(ii) The procedure is unable to find a solution and all agents receive the conflict deal,

i.e., no agent receives any part of the resource.
The salient point to be noted here is that if the agent playing the role of the mediator

is biased, its attempt to manipulate the results in its favor will be detected. This is because
the procedure we put forth does not involve any subjective evaluations. It is an
algorithmic method based on the preferences that various agents have indicated. Hence
the results of this method are verifiable to any agent who wants to check them. Thus the

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 3

role of the mediator need not be performed by an outsider with special characteristics
(such as being unbiased). The resource allocation can be handled by the agents
themselves. Another point that needs to be mentioned is that we do not make any
assumptions about the nature of the utility functions that the agents can use. This is
because we do not make any explicit utility comparisons. Hence, utility functions of
individual agents can be of any form, as the procedure allocates individual portions based
on the topology of the agent preferences. We use the problem domain of cake cutting as
a running example to explain our procedure and discuss various issues that need to be
addressed for allocating such resources. Before starting the discussion on how two-
dimensional resources are to be allocated, we describe the context for such problems.

2. Background

2.1.1. Cake cutting:

Fig. 1. Various flavors of icing on a cake

Consider a rectangular cake with three flavors of icing to be distributed among three
agents as shown in Fig. 1. A typical one-dimensional cake cutting procedure like moving-
knife7 can be applied to allocate portions of the cake to each of the agents in a fair
manner. However, if the agents have mutually exclusive and strong preferences for the
different icings, the allocation will not be efficient. A simple example of such a case
would be when agent 1 values only the chocolate icing, while the rest of the cake is
useless to it. Agents 2 and 3 value the vanilla and strawberry icings, respectively, in a
similar fashion. Efficiency in this case is meant in the Pareto optimal sense. The agents
will be forced to translate their two-dimensional preferences to linear marks on the X-
axis (or Y-axis), which is non-trivial. If a protocol is able to take into account agents’
preferences along both dimensions, then clearly more efficient solutions can be obtained.

Strawberry

Chocolate

Vanilla

4 K. Iyer and M. Huhns

2.1.2. Land distribution:

Another problem domain that demands two-dimensional solutions is land division (Fig.
2). Say a tract of land has various assets, such as an oil field, fertile farmland, and some
hilly areas, and the land needs to be distributed among three agents. Each agent values
the resources differently and in order that they each get the most value, it should be
possible to respect their preferences in two dimensions.

Fig. 2. Land with assets.

2.1.3. Allocating satellite imaging resources

Manufacture and launch of satellites is an expensive and risky proposition. It is preferable
to share the risk and expense of this operation, while giving up some control on the
satellite resources. Say, if the satellite is capable of mapping earth terrain, there could be
multiple agencies that require such a service. Suppose the satellite is capable of mapping
a patch of the earth’s surface of constant width along the earth’s latitude but arbitrary
longitudinal height. We could have agents [representing these agencies] bid for images of
the earth’s surface which specify the latitude interval and the time of day in which the
image should be taken. This makes the allocation of satellite resource a two dimensional
resource allocation problem. The allocation of satellite resources has been previously
looked at 8 and is discussed further in the related work section.

Fertile farmland Oil deposits

Hilly areas

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 5

2.1.4. Allocating radio spectrum:

Fig. 3. Allocating frequency spectrum.

One can envision a future auction where the FCC parcels out not only frequencies but
also what times of the day the frequencies are available. This will give higher efficiency,
as agents will choose the most preferable positions and the remainder can be reused by
the FCC for other purposes. Thus the two independent dimensions in this scenario are
time and frequency. For example, a particular radio frequency band in the 1.0-1.2 GHz
range may be allotted from 7am to 9pm for broadcasting traffic information (Fig. 3),
while it may be used for downloading data onto wireless devices during off-peak hours.

The examples mentioned above show that there are many real world problems whose
solutions in the two-dimensional domain may prove to be far more worthwhile than using
traditional one-dimensional solutions, like the moving knife procedure. Essentially any
real world resource, having two independent dimensions and needing to be allocated, will
be appropriate for the procedure we describe below.

2.2. Case for higher efficiency

Now that the problem space has been illustrated by various examples, a few points about
efficiency are worth mentioning. Consider land division once again. So far we have
assumed that all portions of the land have positive utility for all agents. Relaxing this
assumption, it is possible that portions of land can have negative utility as well. For
example, part of the land may be forest that might need to be maintained as per law or be
taxed, but accrue no benefit to owners. Assume that the agents view their utility as shown
in Fig. 4a.

Time of day

F
re

qu
en

cy

An agent‘s indication of preference for frequency band in

the 1.0-1.2 GHZ range from the times of 7 a.m. to 9 p.m.

6 K. Iyer and M. Huhns

Agent 1 thinks that the portion allocated by the solid rectangle has positive utility,
while the remaining land has negative utility. The same argument can be applied to agent
2 with respect to the dotted rectangle. Now if we use the moving knife technique (with
the knife handled by an external unbiased mediator) along one dimension, say the X-axis
as per the protocol, each agent is forced to include negative utility areas as well as

positive ones. Hence, both agents might get low, possibly negative utilities, although their
allocations will be fair and envy-free. Fairness and envy-freeness are criteria used in the
cake-cutting domain to judge the effectiveness of allocation procedures. An allocation
procedure is called fair if it distributes a resource among n agents such that every agent
values its portion as exactly 1/n of the total value of the resource. An allocation procedure
is called envy-free if every agent values its portion at least as much as the portions
allocated to other agents. Thus, envy-freeness is a stricter condition than fairness and
there are fewer procedures that are envy-free than procedures that are fair. We can
modify the moving-knife protocol so that agents can exclude unwanted regions. But the
efficiency will still be low, because the agents cannot completely eliminate negative
utility regions. Using the modified moving-knife protocol, the agents’ divisions will
appear as in Fig. 4b. Despite being more efficient than the original moving knife, this
modified procedure is still undesirable, because agents are forced to include negative
utility areas (below the rectangles) to get their share. Obviously, if the agents were able to
apportion in two dimensions, the efficiency of the overall solution could be higher.
Clearly there is a need for a two-dimensional allocation procedure.

In the next section we review the literature to see how the two-dimensional cake-
cutting problem has been approached in the past. The third section describes our
allocation procedure in detail. Finally, we present our conclusions and show what scope
exists for future work.

Fig. 4a. Resources with negative utilities. Fig. 4b. Allocating using modified moving knife.

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 7

2.3. Solving the one-dimensional resource allocation problem

We briefly mention the salient points of the solving the one-dimensional resource
allocation based on the topology of overlaps 6. Consider n agents which desire to
distribute a linear resource (say slices of rectangular cake) among themselves. They are
required to make n-1 marks of the property that delimit n intervals. To the agent making
these marks, each of these intervals should be worth 1/n of the whole piece and is equally
desirable. The procedure guarantees that given such a set of marks, each agent will be
guaranteed one of the intervals it has marked. The protocol is fair because each agent will
be given one of the intervals it marked.

Theorem 2.3.1 If there are n agents and each agent makes n-1 marks, creating n portions
of a linear cake, then the procedure guarantees that each agent will be allotted a piece of
the cake, such that the piece was one of the n portions created by the agent itself.

Proof: This proof assumes that the left and right portions of the cake have been allotted
to the agents whose marks came first on the left side and right side respectively. We
concentrate on allotting pieces of the cake to the agents still remaining after this
procedure. Note that after the first 2 agents have received their share, the marks of the
remaining agents need not start at the same point. Now we will have n-2 agents with each
agent having at least n-1 marks creating at least n-2 pieces of the cake. Without losing
generality, we can add 2 to the above numbers and re-state the problem as:

There are n agents with each agent having at least n+1 marks creating at least n
pieces or intervals of the cake. It is proved that each agent will be guaranteed a piece of
the cake such that the piece was marked by the agent himself. When agents create marks
(that represent their cuts), the following possibilities exist for a particular chosen interval.
1. Pure interval, i.e., no other agent’s interval intersects this interval
2. Mixed interval.

2.1. The current interval intersects another interval. It does not completely contain
any other interval.

2.2. The current interval contains at least one interval made by at least one agent. In
addition, there will definitely be an interval that partially intersects the current
interval.

Base Case (n=2). Each agent will create 2 intervals, each using 3 marks. Find the first
mark. Say this mark belongs to agent A. The next mark may or may not be made by A.
1. If the next mark is made by A, this is a pure interval, so allocate the current interval

to A. Remove all marks to the left of this interval. Remove all marks made by agent
A. We will be left with marks made by agent B to the right of the current interval.
Repeat the above procedure. None of B’s marks have been deleted yet. Hence the
procedure is guaranteed to find an interval to allocate to B, as no other agents are
left.

8 K. Iyer and M. Huhns

2. If the next mark is made by B, A’s interval is mixed. Either case 2.1 or 2.2 will
occur.
2.1. A’s interval intersects partially with B. In this case allocate the interval to A.

Remove all marks to the left of interval. Remove all of A’s marks. Since A’s
interval intersected with B’s interval, the previous step will reduce B’s marks to
2. Since B has two marks left demarcating an interval and no other agent is
remaining, the procedure is guaranteed to find an interval for B.

2.2. A contains at least one interval of B. Since there are no more agents, such an
interval of B is guaranteed to be a pure interval and is allocated to B. Remove
all marks to the left of the interval. Remove all of B’s marks. Since A contained
B, the previous step will reduce A’s marks to 2. Since A has two marks left
demarcating an interval and no other agent is remaining, the procedure is
guaranteed to find an interval for A.

This proves that A and B can be allocated fair shares, no matter how the marks are
arranged.

For any n (n>2). Let us assume that the allocation procedure works for up to k agents.
We will show that the procedure works for k+1 agents. Each agent will create k+1
intervals, each, using k+2 marks. Find the first mark. Say this mark belongs to agent i.
The next mark might or might not be made by i.
1. If the next mark is made by i, this is a pure interval, allocate current interval to i.

Remove all marks to the left of this interval. Remove all marks made by agent i.
None of the marks made by other agents will be removed as this was a pure interval
for agent i. Hence we will be left with the k+2 marks and k+1 intervals made by
each of the k agents to the right of the current interval. Delete the leftmost mark of
each of the k agents. Thus each agent is left with k+1 marks and k intervals. This
transforms into the allocation procedure for k agents, which we know works. Hence
proved.

2. If the next mark is not made by i, suppose the mark belongs to agent j. Add i to the
list of agents whose mark has already been seen. Repeat the allocation procedure
with j’s mark as the first mark. At some point we will encounter a mark made by one
of the agents already in the list. Say the first such agent is l. The interval demarcated
by l will not contain any other agent’s interval. It may or may not partially intersect
with other agent’s intervals.
2.1. If l’s interval does not intersect with any other interval, then allocate interval to

l. Remove all marks to the left of this interval. Remove all marks made by
agent l. The previous step will remove at most one mark of the agents. Other
agents will have k+2 marks and k+1 intervals. Start from the beginning of the
list and as each mark is encountered, check if the mark belongs to an agent
already in the agent list. If so, ignore the mark; otherwise add the agent to the
list and delete the mark. This step guarantees that we will have k agents, each

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 9

with k intervals and k+1 marks. This transforms into the allocation procedure
for k agents, which we know works. Hence proved.

2.2. If l’s interval partially intersects with some other interval, then allocate the
interval to l. Remove all marks to the left of this interval. Remove all marks
made by agent l. The previous step will remove at most one mark of the agents.
Other agents will have k+2 marks and k+1 intervals. Start from the beginning
of the list and as each mark is encountered, check if the mark belongs to an
agent already in the agent list. If so, ignore the mark; otherwise, add the agent
to the list and delete the mark. This step guarantees that we will have k agents
each with k intervals and k+1 marks. This transforms into the allocation
procedure for k agents, which we know works. Hence proved.

This proves that the allocation procedure works for n agents, for any n≥2. □

The procedure / proof for allocating a linear resource in the manner described above is
fair and unbiased. It does not require the presence of a mediator. This procedure will
serve as the starting point for the solution of two-dimensional resource allocation
problem discussed in this paper.

3. Related Work

The existing literature on resource allocation can be roughly classified into three
categories: resource allocation in multiagent systems, the one-dimensional cake-cutting
problem and the two-dimensional land-division problem. We discuss them individually in
the following sections.

3.1. Multiagent resource allocation

The resource allocation problem has been a domain of interest in the MAS community.
Agents acting in a common environment may find the need to share resources due to their
limited availability. Examples of resource allocation problems in MAS include, robots on
Mars belonging to autonomous agencies (NASA and ESA) which negotiate to share
precious equipment time 9, agents which require satellite imaging resources 8, 10 ,
multiagent sensor networks which cooperate to track a common target and coordinate
usage of scarce resources such as radio frequency spectrum 11.

The solutions proposed for these problem domains are distinguished by the scope, nature,
framework and theory used to solve them. The treatment of the ‘Robots on Mars’
problem by Sarit Kraus has the following characteristics:

(i) The negotiation protocol is bilateral. Only two agents are assumed to be part of
the negotiation.

10 K. Iyer and M. Huhns

(ii) Agents are assumed to have utility functions which reflect the constraints of time,
resource value, agreement cost, opt out cost etc. This limits the kind of utility
functions that can be used by the agents.
(iii) Agents have complete information about each other’s utility functions and
beliefs.
(iv) The negotiation protocol is iterative (although Sarit Kraus has proven to finish
it in two steps for the given set of conditions).
(v) A solution is guaranteed, provided agents adhere to the constraints on beliefs and
utility functions that can be used.

The ‘Robots on Mars’ problem domain put forth by Sarit Karus can be adapted to use the
solutions proposed in this paper. Suppose NASA and ESA are negotiating over the use of
the common communications line between Earth and Mars. While Kraus defines time of
usage as one dimension, we can add frequency bandwidth as another dimension where
resource usage can be shared. This transforms the original example into a two
dimensional problem making it amenable to our solution approach. The problem can be
visualized by the radio frequency example shown in Fig. 3. Our proposed solution to
solving two-dimensional resource allocation problems has the following features in
contrast to the approach taken in by Sarit Kraus:

(i) The negotiation protocol is multilateral. If ISRO [Indian space research
organization], decides to request common resources, our protocol will scale to add
new agents.
(ii) The solution is agnostic of the kinds of utility functions that agents will use.
Hence agents are not required to adhere to specific types of utility functions in order
to participate in the negotiation.
(iii) Agents need not have any information on the other agents’ utility functions
and beliefs. Thus agents can compete for resources without revealing their true utility
functions or beliefs. Privacy is afforded.
(iv) The negotiation protocol is one-shot. Our protocol is more akin to the sealed
bid type auctions than the open cry type iterative auctions.
(v) Given the set of agent ‘bids’ [in the form of rectangles on the two-dimensional
resource], there is no guarantee of a solution. Unlike the approach taken by Sarit
Kraus, it cannot be guaranteed that a solution exists for every combination of overlap
among agent rectangles. See Section 5. for a more detailed analysis.

In summary, it can be stated that while our approach allows for a negotiation that is more
scalable and flexible, it cannot offer the guarantee of a solution for all possible scenarios
of agent interaction.
In the background section, we mentioned the example of sharing resources on an earth
observing satellite. This example is attributable to 8 who discuss the issue of allocating
imaging resources in a multiagent system. The authors mention of two main approaches
to the allocation problem:

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 11

 Decentralized negotiation, “where the agents together agree with game or negotiation
rules, and then act freely for their own interest, respecting the common rules.”, and

 Centralized arbitration procedures, “where an arbitrator, which is assumed to be fair
and to act according to principles that have been accepted by all the agents, decides
about the equitable allocation”

Lemaître et al prefer the centralized over the decentralized approach for the following
reasons:

(i) Privacy: Agents do not have to reveal their true preferences to each other. They
only need to communicate with the central arbitrator.
(ii) Scalablity: Negotiation may be difficult to manage if the number of requests [for
the imaging resource] is high.
(iii) Time: If time to conduct the allocation process is short, decentralized
negotiation may be too time consuming.
(iv) Efficiency: The efficiency of the allocation may be poor in a decentralized
approach.

The authors propose solutions that balance the dual criteria of equity and efficiency.
Below, we describe how this contrasts to the approach taken in this paper:

(i) Unlike Lemaitre et al, this paper does not use the utilitarianism framework to
model agent preferences. Rather our solution exploits the topology of overlaps to
arrive at solution
(ii) Privacy: Our approach does away with the necessity of an ‘independent’
arbitrator/mediator. This ensures private agent information is not communicated to
third parties.
(iii) Scalabity: Like Lemaitre et al., our procedure is centralized. However we
believe decentralized procedures and protocols that are well designed tend to scale
better than ones that involve communication and computation with / by a single
entity.
(iv) Time: A well designed decentralized protocol / procedure may actually
perform better than a centralized solution. Our approach requires that agents submit
their portions to one mediator - which is a parallel process – will be constant with
respect to the number of agents. However, the allocation procedure itself is
centralized and time to arrive at a solution is of the order of O(n2).
(v) Efficiency: Decentralized procedures can be efficient in the pareto optimal sense.
However, they may be sub-optimal in the social welfare sense. Lemaitre et al propose
solutions that maximize social welfare.

The solutions do not allow for rational agents and free behavior, which could be a
drawback in open platforms like the Web, where it is difficult to enforce socially optimal
(though not individually rational) solutions.

Combinatorial auctions (CAs) have been extensively studied as a solution to the
multiagent resource allocation problem. The problem consists of auctioning multiple

12 K. Iyer and M. Huhns

(possibly heterogeneous) items to competing bidders (or agents representing them). The
bidders have different preferences over bundles (representing a combination) of goods.
There has been a lot of focus on issues relating to:
1. Design of a bidding language that balances a need for expressiveness, succinctness,

and computational complexity
2. Design of a winner determination mechanism that achieves a satisfactory trade-off

between computational complexity and fitness to a desired social function.

CAs have been built up on the extensive base of auction theory available in economics. It
also involves critical inputs from operations research (for optimization over alternative
bundles) and computer science. CAs exploit the complementary property of bundles of
goods. For example, an agent will have greater utility for a pair of gloves sold as a bundle
than each glove sold independently. A traditional single-unit auction does not take into
account the inter-dependency of goods in the bundle and is less efficient in extracting the
best possible value for the auctioneers. A well known example of a CA is the Vickery-
Clarke-Groves (VCG) mechanism12. VCG is used as a benchmark to compare alternative
proposals for CA mechanisms since it manages to achieve efficiency and truthful
bidding. This is achieved by charging each agent the social opportunity cost of its
winnings, i.e. each agent compensates for the loss caused to other agents due its addition
into the system. Surprisingly, despite such good criteria VCG has rarely been adopted in
the real world 12, 13. The following issues have formed critical stumbling blocks towards
adoption of VCG:
 Agents / Bidders do not want their private valuation to be known publicly due to the

incentive compatible property of the mechanism.
 The exponential growth of effort related to bid preparation and communication.
 The winner determination problem is NP-complete.
 The mechanism may bring in low revenues to the seller.
One major implicit requirement of CAs is that agents express their preferences over
bundles in terms of utility functions. This is not a requirement in our case. In contrast to
CAs, we assume the resource to be homogenous and infinitely divisible. We do not
account for complementarities between various portions of the resource. On the other
hand CA mechanisms do not account for the dimensionality of the resource as has been
done in this paper.

3.2. One-dimensional resource sharing

The cake-cutting problem is a well known example of resource sharing among rational
agents. Most of the literature that exists on the one-dimensional cake-cutting problem has
been contributed by mathematicians. The classical solution for the two-person case,
divide-and-choose, was first proposed by Steinhaus14. This solution, where one person
divides a cake into two pieces and the other gets first choice of a piece, is both fair and
envy free. However, it has been difficult to scale the solution to n agents. One of the
solutions7 for dividing the cake among n agents fairly has been to use a moving knife

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 13

parallel to one of the edges of the cake. The knife cuts when one of the agents yells
“Cut!” and the portion traversed by the knife so far is allotted to the agent. This is an
elegant and clean n-agent solution for creating n portions fairly in n-1 cuts.

But the moving knife solution has its own set of drawbacks. First, it is not envy-free,
because an agent might evaluate all of the pieces—distributed after it was allocated a
piece—and decide that one or more were larger than the piece it got. Second, it requires
the presence of an unbiased external mediator who holds the knife and moves it along the
cake at a constant rate. Despite this safeguard, it is difficult to verify the cutting of the
cake. For example, if one of the agents alleges that the mediator cut the cake an inch
shorter than it had expected, it would be difficult to find out who is telling the truth. In a
distributed system, synchronization problems may also occur. An agent with a slower
connection to the mediating authority will find its bid to cut may arrive later than that of
an agent with a faster connection and may consequently lose the bid (the moving knife is
similar to the open-cry descending-bid Dutch auction). Third, the moving-knife protocol
is also not Pareto optimal. A scheme15 to improve efficiency in the Pareto optimal sense
has been proposed with the use of two moving knives. However, the solution works only
for division of the resource between two agents, and the agent that moves the knives must
be able to estimate the utility function of the other agent well.

Other solutions to n-person division attempt to create a protocol that does not require
assistance from an outsider. One way is to scale up from the two-person solution and
iteratively add new agents until all have allocations. For n=2, the classic divide-and-
choose is used. When agent 3 is added, agents 1 and 2 each divide their portions into
three parts. Agent 3 then picks one part from each of the other agents. This continues as
each agent is added. The drawback for this protocol is that the earlier agents will be faced
with the chore of repeatedly dividing their portion into many pieces. The agent that is
added last will get its share by doing the least amount of work.

Another solution16 converts the n-agent division problem into many n-1 agent
problems and then recurses. The recursive calls return when the many two-agent
problems are resolved and the answers back up to the top-level call. The drawback is that
an agent whose shares remain unallocated till the end has to continuously re-bid for
scattered pieces until the iterations end.

A divide-and-conquer procedure17 instructs the agents to cut the cake into half
according to their measure. Then the cuts are ordered and the first n/2 cuts are allotted the
left half of the cake. The rest are allotted the right half. This procedure continues until
two agents have to cut the cake where the well known divide-and-choose algorithm can
be implemented. An obvious drawback of this procedure is that the number of agents
needs to be a power of two, which is an unrealistic requirement.

Stewart18 and Huhns and Malhotra19 discuss how to divide a strip of property along a
coastline. However this is a specific solution applicable to only three agents. The result
was further extended by the authors to be applicable to n agents6. The negotiation
protocol described by these papers has useful features like: absence of synchronization
problems, a mediator is not required and utility functions are not needed for the allocation

14 K. Iyer and M. Huhns

procedure. However all of them assume the resource to be one-dimensional. In this paper
we extend some of the ideas to allocate a two-dimensional resource among agents.

3.3. Two-dimensional resource sharing

The two-dimensional resource allocation problem has been tackled by researchers from
diverse fields who have encountered it in various forms. Our literature survey describes
researchers using the examples of dividing pizzas, cakes, or land to discuss the existence
of fair solutions. Generally, however, the problems tend to have characteristics distinct
from the one we are trying to solve. We have not come across any constructive
(algorithmic) solutions so far to the generic land-division problem. All the papers have
offered existential solutions to qualified versions of the problem.

Hill20 was one of the first to tackle fairness issues in land division. The problem
domain was qualified, because it attempted to allocate portions of land to countries that
shared a border with it such that each country received a portion connected with itself. He
extends a non-constructive result proposed by Dubins and Spanier21.

The problem with21 was that although it could create fair shares for all agents, the
pieces of land might not be in the neighborhood of the country to whom the portion is
allocated. Hill’s solution is to create thin strips of land that connect the isolated portions
to the country it is allotted. The strips created in this manner do not intersect, because any
pair of points in the set is assumed to be path-connected. There are some drawbacks to
this approach. It can happen in reality that the strips that get created may be exceedingly
thin so as to render the solution useless. For example, consider two countries that contest
the land bordering them. It may be unacceptable for one country to have a single road
connected to its allocated portion surrounded by the enemy portions. Besides, this result
does not explicitly provide a procedure for enabling such an allocation.

Beck22 proposes a semi-constructive result that improves upon Hill’s paper. In order
to do this he constructs a unit disc |z|<1 that is a homeomorphic map of D, the disputed
territory. It is also assumed that individual circles and radial lines in the disc have zero
measure. Next, various agents place “bids” in an “auction” by submitting the smallest
radius that will enclose a disc, which is valued at 1/n for that particular agent. The
smallest such radius among the various bids is picked and the disc is awarded to that
agent. In order that the portion may be connected to the agent’s territory, a small wedge
from the unit disc is also allotted. Then successive agents keep trimming the wedge so
that the total piece allocated is less than 1/n for each of the remaining agents. In order that
allotted pieces do not end up having strips that break up other agents’ allotments, a
complicated procedure of secondary auctions involving rebidding of the same piece along
with guidelines for trimming and growing the pieces make it difficult to implement any
such scheme. Besides, the solution is still hobbled by the issues affecting Hill’s
proposition. In fact, there may be additional implementation issues, like getting the
appropriate functions for the conformal maps, which make it just as impractical as Hill’s
procedure. These functions depend on the shape of the land and hence have to be tailor

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 15

made for each problem individually. Beck only proves the existence of such functions
and does not specify how they can be found.

Webb23 provides a combinatorial algorithm for the fair-border problem based on
Hill’s existence results. The algorithm is recursive in nature and works as follows: a
region R is bordered on all sides by n countries, C1, C2,…, Cn. Each country has its own
evaluation of the piece of land and draws a region Ri adjacent to itself, such that it is

valued at 1/n by its own measure. Then each country in turn (that values Ri greater than
1/n) trims off a piece of Ri so as to disconnect it from Ci. The country that trims it last
gets to keep the modified Ri. This region is attached to the allocated country by a strip of
land small enough to be negligible to the others. The remaining land is then redistributed
among the remaining agents similarly. The flexibility given by this algorithm in allowing
agents to shape the region of interest as they like is also its drawback. If the shape of the
land an agent gets is included in the fairness criterion, then earlier agents get a better deal
than do later ones. This is because the later agents will have to “draw around” the regions
allocated to earlier agents and the effective shape of the land they get might make it
worthless for any use. In Fig. 5, consider a square-shaped region that is surrounded on
four sides by four countries. Suppose agent A got the first chance to draw its region and it
does so in the manner shown in Fig. 5. It can be easily seen how the other agents’
allotments are placed at a disadvantage.

Hill’s paper provides the basis for another result24 that proves fair-border solutions
exist, even if the utilities are concave. Utilities tend to be concave rather than additive in

A

B

C

D

Fig. 5: Agent A’s demarcation of its share of the region. The thick line represents the land allocated to A

16 K. Iyer and M. Huhns

the real world. They take into account the fact that the marginal utility of a good
decreases as more of it is consumed, due to satiation. Classic cake-cutting algorithms
have always assumed that utilities were some sort of probability measure25. Consider a
measurable space Σ as the resource being allocated. If A and B are two portions of the
resource and v is the utility function of the agent, then we have the following property:

 )()(BvAvBAv  for all disjoint A,B ∑

On the other hand, a concave capacity has the property:

 )()(BvAvBAv  for all disjoint A,B ∑

Concave utility measures can be generated by wrapping a probability measure with a
strictly increasing “utility” function u:

 )()(AuAv 

The authors were able to prove that the Dubins and Spanier solution holds in the
concave domain too. Similarly they also showed that Hill’s fair border solution is true for
concave utilities. The authors do not, however, mention some benefits of the concave
domain. Concave functions are useful because they connect efficiency and fairness. If the
valuation function is additive, one of the efficient allocations is to give the whole cake to
one agent. Thus efficiency need not induce fairness. If the valuation function is concave,
however, it is more efficient to give pieces of the cake to different agents, since the whole
cake allocated to one agent is less valuable (in terms of social welfare) than the sum of
the values that each agent attributes to the piece allocated to them. Thus an efficient
algorithm will also tend to be fairer to all agents. The authors were not able to determine
if the same results would hold if the domain was subadditive rather than concave,
however. (Concave domains are a subset of subadditive domains.) Finally, the biggest
drawback of the paper is that there is no constructive algorithm offered to actually
apportion resources.

A novel approach26 to resource allocation is to model the preference relations over the
set of arcs on a circular cake geometrically. The paper considers the resource to be an
infinitely divisible, non-homogeneous and atomless one-dimensional continuum whose
end-points are topologically identified. It then proceeds to partition the resource into
intervals. It is assumed that the recipients are equipped with preferences over intervals
that are additive, continuous, and monotonic with respect to interval inclusion. The
assumptions about the domain as well as the preference relations are quite similar to the
ones in our earlier paper. There are, however, a number of restrictions on the preferences:
 The preferences should be smooth, i.e., they should have continuously differentiable

numerical representations. While this is a simple requirement, it is not trivial to have
a preference that is “kink-free” due to the circular shape of the cake.

 Preferences should be convex. Again this is a non-trivial condition as convexity
depends on the choice of origins.

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 17

The paper places emphasis on egalitarian-equivalence solutions rather than envy-free
solutions, as the former tend to have more Pareto-efficient solutions than the latter.
Egalitarian-equivalence is a distributional requirement that states that there exists a
reference consumption that each agent finds indifferent to its own consumption.
Egalitarian-equivalence is, however, a weaker condition than envy-freeness. Thus all
envy-free solutions are egalitarian-equivalent, while the converse is not true. Since in
many domains the set of efficient solutions are not envy free, egalitarian-equivalence is
used as a “compromise” fairness requirement. Other limitations in this paper are that the
analysis of preference relations over the union of two or more intervals becomes quite
complex. Trying to model preference relations over the union of at most two intervals
requires four-dimensional space. This paper is limited to the domain of one-dimensional
resource allocation and does not offer a constructive algorithm for allocating intervals.
One of the salient points is that explicit utility functions are not required. Finally, the
paper also discusses strategy-proofness of their solutions. A rule is strategy-proof if no
agent ever has an incentive to misrepresent its preferences. Unfortunately, for the case of
n=2 agents, it turns out that any Pareto optimal solution that is strategy-proof is also
dictatorial, i.e., any one agent will always be able to get its most preferred choice of
interval irrespective of other agents’ choices.

Chambers27 discusses the various normative properties that land division rules should
have based on the principle of utilitarianism. Utilitarianism2821 is a principle in the theory
of ethics that prescribes the quantitative maximization of beneficial consequences for a
population. The paper studies the circumstances in which rules can satisfy the division
independence property. If the union of the portions allocated to an agent from various
subparcels of a parcel is identical to the portion allocated from the initial parcel, then the
rule based on which the allocation is made is said to be division independent. This
property may be attractive in case a large piece of resource needs to be broken down into
smaller pieces in order to make the allocation problem more tractable. Alternatively, if
the quantity of a resource keeps increasing over time and the allocation needs to be done
over each additional portion incrementally, a rule that is division independent is
desirable. The paper goes on to show that any rule that satisfies the above property, along
with a few other normative properties like independence of infeasible land and efficiency,
is a subrule of the weighted utilitarian rule. This is useful, since utilitarian social welfare
functions have been well studied in the literature and can be used to get information
about the system. However, the division independence requirement is too constraining
and invalidates many other useful properties. For example, division independence is
mutually exclusive with the “Strong positive treatment of equals” property. This is
discouraging, because the above property is a necessary condition for fair solutions to
exist. This is a feature of weighted utilitarian rules in general, and if the rules are required
to be scale invariant as well (i.e., the portions allocated by the rule are independent of the
scale of the utility function), then only dictatorial rules are possible. Thus, ironically, the
social welfare approach ends up empowering one individual at the expense of the rest.
The other issues are:

18 K. Iyer and M. Huhns

 Division independence is meaningful only in the context of additive functions. If the
utilities are concave, then utility of the union of subparcels will be less than the sum
of the utilities of the individual subparcels and, hence, there is no notion of division
independence.

 The weighted utilitarian rules require the cardinal comparison of utilities to work.
This assumption is not tenable in real world situations.

 The definition of utilitarianism is too vague and cannot be fixed by an objective
function.

It is thus clear that division independence is too tight of a constraint to be of any
significant use in evaluating competing allocation algorithms.

The literature survey shows the multi-faceted nature of the land-division problem.
Researchers have focused on various aspects of the problem to get a better handle on how
it can be resolved. However, each of their approaches also has limitations, either due to
the approach taken (measure-theoretic vs. combinatorial) or due to the nature of the
domain. This shows that the problem is complex and newer approaches might help. In the
next section, we begin a description of the details of our approach and how it stands up in
comparison to ideas in the existing literature.

4. Dividing a two-dimensional resource among n agents

In this section, we present the protocol that the agents must follow in order to get a fair
share of a two-dimensional resource. We propose two different resource allocation
procedures that are applicable if agent preferences fulfill some conditions. If condition A
is true, then we map the problem into a one-dimensional resource allocation problem and
use results from the one-dimensional resource allocation procedure to allocate portions to
the agents. The one-dimensional resource allocation procedure is presented in our earlier
paper5. Since condition A can be restrictive in how agents mark their preferences, a more
flexible condition B is proposed. If condition B is true, then we propose a novel
procedure that allocates resources based on the topology of the overlaps of agent
preferences. An example showing resource allocation among three competing agents
illuminates the salient points of the procedure. Then a proof is presented for this
procedure guaranteeing a solution for any n number of agents. The assumptions required
for this procedure, as well its features, are discussed in greater detail in Sec. 4.

4.1. Protocol

The protocol proposed here is a one-shot form of negotiation. At the end of the
negotiation either the procedure is able to find a solution and every agent gets a fair share
of the resource, or the procedure is unable to find a solution and a conflict deal is
reached, i.e., no agent gets any part of the resource. We describe the simple protocol
below:
If there are n agents,
1. Then each agent will create n portions of the resource, all of which will be equal by

its valuation.

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 19

2. The allocations will be in the form of rectangles. Other polygons are not allowed.
3. The portions created by a particular agent should not overlap.
If all agents have followed the protocol, then a solution is guaranteed if one of condition
A or B is fulfilled:
Condition A
1. For every agent, the rectangles marked out by a particular agent do not overlap on at

least one axis.
2. The above condition is fulfilled by all agents on the same axis.

We present the procedure for allocating the resource by a motivating example.
Consider three agents, labeled i, j, and k, each marking three rectangles of equal value (by
their own evaluation). Without losing generality, we assume that the coordinates do not
overlap on the Y-axis (Condition A2). See Fig. 6.

4.2. Procedure given condition A

We show how the procedure works for the Y-axis; however, it is applicable on any axis.

i(2)

i(3)

j(1)

j(2)

j(3)

k(1)

k(2)

k(3)

 i(1)

Fig. 6: Agents i, j, and k mark portions that fulfill conditions A1 and A2. The labels of the
rectangles denote their respective owners.

20 K. Iyer and M. Huhns

1. Project the rectangles onto the Y-axis. These will now look like closed intervals on
the Y-axis. Refer to Fig. 7

2. Now moving from bottom to top, extend the start point of the interval of each agent
to the end point of the previous interval (belonging to the same agent).

3. The first and last mark (when moving from bottom to top) of every agent is extended
to the boundary of the resource. Refer to Fig. 8a and Fig. 8b.

4. We have thus transformed this problem into the one-dimensional resource allocation
problem. The procedure for allocating resources in a one-dimensional case was
presented in our previous paper. This procedure can be applied to obtain a fair
allocation for all agents. Proceeding bottom-to-top (an arbitrary choice) and moving
along the Y-axis, it is now possible to guarantee each agent will get a rectangle that
belongs to itself.

The two-dimensional resource allocation problem has now been converted to a one-

dimensional resource allocation problem. It can be solved by the procedure described in
section 2.3.

Fig. 7: Projections of the agents’ portions onto the Y-axis.

i(1)

i(2)

i(3)

j(1)

j(2)

j(3)

k(1)

k(2)

k(3)

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 21

4.3. Features of procedure for condition A

The above procedure extends intervals. This is done in order to map the two-dimensional
problem into the one-dimensional cake cutting problem. We make use of the property
that if the Y-coordinates of the rectangles made by a particular agent do not overlap, then
the rectangles do not overlap at all (even if the coordinates on the other axis overlap). By
extending the intervals we make sure that the whole Y-axis has been exhaustively used
up. Now the problem is equivalent to the one-dimensional case, which has been tackled
in our earlier paper. Extending the intervals of the agents does not reduce the value of the

portions allocated to them, as this is effectively like padding zero utility regions to the
agents’ rectangles.

Who executes the procedure? As we mentioned earlier, any one of the participating
agents can volunteer to perform the role of a mediator and execute the procedure. If an
agent (which was not the mediator) is concerned about the solution being unbiased, it can
simply take the record of agent rectangles and run the procedure against them itself. The
procedure is deterministic and will deliver the same results every time it is run. This is
the main benefit of our allocation procedure as compared to existing ones, such as the
moving-knife method. The apportioning of resources can be verified by any agent who
wishes to do so. Thus the role of mediation does not require external entities with special
characteristics, such as impartiality. Due to this, the agents can resolve the allocation
issue among themselves, which in turn protects the private information of the
participants. A real example that illustrates such a scenario well is a spy satellite whose
imaging services need to be allocated to different intelligence agencies. The agencies

Fig. 8: Transforming the two-dimensional problem into the one-dimensional case. The start
mark of i(3), j(3) and k(3) are extended to the lower boundary of the resource. The end mark of
i(1), j(1) and k(1) are extended to the upper boundary of resource. The direction of movement is
from bottom to top.

i(1)

i(2)

i(3)

j(1)

j(2)

j(3)

k(3)

k(2)

k(1)

(a) (b)

i(1)

i(2)

j(1)

j(2) k(2)

k(1)

i(3)
j(3)

k(3)

22 K. Iyer and M. Huhns

competing for the resources need not employ an external arbitrator, thereby mitigating
the risk of leaking sensitive information, while simultaneously arriving at a solution that
is fair to all. Condition A2 is restrictive. In order to give more flexibility to agents to
mark out their rectangles, we can modify the condition and restate it as follows:

Condition B
Each rectangle must have a degree of partial overlap at most equal to one.

Condition B allows the agents more flexibility than Condition A. The agents can mark
rectangles anywhere. Note that any two intervals belonging to a particular agent may
overlap either on the X-axis or the Y-axis, but not both (If this happens, then rectangles
belonging to the same agent will overlap, which violates condition 3 of the protocol).
Once all the agent preferences (i.e., rectangles) are submitted to the mediator (who could
be one of the participating agents), then the mediator checks that condition B is true. If
the condition is fulfilled, then the mediator can guarantee that a solution will be found.

4.4. Degree of partial overlap

Fig. 9: The different types of overlap between two rectangles.

What is the degree of partial overlap? We explain a few concepts before attempting to
define degree of partial overlap. There are a total of 9 possible ways in which overlap
between two rectangles can occur. The types of overlap that occur along the X-axis are:

(i) Separate(S): No overlap.
(ii) Partial(P): A partial overlap of the intervals.

1> S,S 2> S,P 3> S,Sp

4> P,S 5> P,P 6> P,Sp

7> Sp,S 8> Sp,P 9> Sp,Sp

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 23

(iii) Superset/Subset(Sp): One interval is completely enclosed in another.
The same 3 cases occur along the Y-axis, thus making a total of 3 x 3 = 9 cases. The
combinations are (S,S), (S,P), (S,Sp), (P,S), (P,P), (P,Sp), (Sp,S), (Sp,P), (Sp,Sp), as
shown in Fig. 9. Cases 5 (P,P), 6 (S,P), and 8 (Sp, P) show the types of partial overlap
that can occur. The definitions below elaborate the concept of degree of partial overlap.

Definition 1: Any two rectangles that overlap with each other are neighbors of each
other.

Definition 2: Neighbors that overlap each other only partially are partial neighbors.
Case 9 in Fig. 9 is an example of two rectangles that are neighbors of each other but not
partial neighbors, whereas cases 5, 6, and 8 show examples of partial neighbors.

Definition 3: The degree of partial overlap of a rectangle is the largest number of partial
neighbors it has, such that all these neighbors belong to the same agent.

Thus by verifying that the degree of partial overlap is not more than one, we ensure
that not more than one rectangle of each agent overlaps partially with the rectangle under
consideration. If this condition is fulfilled, then the procedure described below is
guaranteed to allocate a rectangle to each agent, such that the rectangle was marked by
the agent itself.

4.5. Procedure given condition B

(i) The rectangles are submitted to a mediator that collects them in a list.
(ii) The X-coordinates of the intervals are read into the Xlist. The procedure sorts the

X-coordinates of the intervals in the order of their occurrence from left to right.
The Xlist stores them in this sorted order. Similarly the procedure sorts the Y-
coordinates of the intervals in the order of their occurrence from bottom to top.
The sorted Y-coordinates are stored in the Ylist. Note that we will determine
which rectangle needs to be allotted to an agent based on the orderings of the
intervals. The actual values of the X-coordinate (or Y-coordinate) of the intervals
is not used for computation. Since there is no cardinal comparisons between
agent rectangles (i.e., “areas” of rectangles are not computed), we obviate the
need for the resource to be measurable.

(iii) We determine the relation of the X intervals to each other. The following
possibilities exist between any two intervals:
(a) The intervals do not overlap (S).
(b) The intervals partially overlap (P).
(c) One interval is completely contained in another (Sp).
Each rectangle has a set of X relations (a relation being one of S, P, Sp or Sb)
with its neighbors after we parse through the Xlist. The procedure processes the
Ylist in the same way creating a set of Y relations for each rectangle and its
neighbors.

24 K. Iyer and M. Huhns

(iv) We create a scoring matrix. Refer to Fig. 10. Note that the matrix has 16 values,
although we discussed nine scenarios earlier. This is because topology-wise, if
interval A is the superset (Sp) of interval B, then it is the same as saying interval
B is the subset (Sb) of interval A. However, the scoring matrix belongs to a
particular rectangle and is from the “point of view” of a particular rectangle.
Thus a given rectangle being a subset of a larger rectangle is a distinct case
compared to the rectangle being a superset of a smaller rectangle. Note that the
sufficient condition for any two rectangles not to overlap is that their respective
intervals do not overlap in at least one of the axes. Since such rectangles are not
neighbors of each other, they are not assigned a score.

 S P Sp Sb

S -- -- -- --

P -- 0 0 0

Sp -- 0 -1 0

Sb -- 0 0 1

Fig. 10: The scoring matrix for a rectangle. The types of interval overlaps are Separate(S), Partial(P),
Superset(Sp), Subset(Sb).

(v) Based on the types of overlap each rectangle has with its neighbors, we can create a
directed graph that represents these connections. The directed graph is created based on
rules described below. For any two rectangles:

(a) Each rectangle is represented as a node.
(b) If there is no overlap between the two rectangles, there is no edge between the

corresponding nodes.
(c) If there is a partial overlap between two rectangles, then each node will have a

directed edge connecting the other node with an edge weight of 0.
(d) If rectangle A is a subset of rectangle B, the edge going from Node B to Node A will

have a weight of 1, whereas the edge going from Node A to Node B will have a
weight of -1.

(vi) Once we have the topology of the connections in graph form, the procedure will
arbitrarily start at some rectangle(or Node) and allot the particular rectangle based on the
following conditions:

(a) If there is no outgoing edge with edge weight of 1, then allocate this particular Node.
(b) If there is such an edge, then travel along this edge and move to the Node connected

to it. Now let this be the new Node under consideration. Repeat the procedure using
this node as the starting point.

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 25

Once a particular Node (or the rectangle corresponding to it) has been allocated, then we
remove the following Nodes from the graph, for future consideration:

(c) The node just allocated.
(d) All the neighbors of the current node
(e) All the nodes belonging to the agent that was the owner of the current node

The procedure is more clearly spelled out by the following pseudocode:

//create a new empty graph of nodes representing the
rectangles
graph = createNewGraph()
// populate the Xlist and Ylist
while (agentList.hasMoreAgents())
 currentAgent=agent.getNextAgent()
 while (currentAgent.hasMoreRectangles())
 //process each rectangle
 rectangle=currentAgent.getNextRectangle()
 node = createNewNode()
 node.setRectangle(rectangle)
 graph.addNode(node)
 rectangleList.add(rectangle)
 xInterval=rectangle.getXInterval()
 xIntervalList.add(xInterval)
 addCoords(xList, xInterval)
 // Do the same for y intervals here
 …
 …
 …
 end while hasMoreRectangles
end while hasMoreAgents

//sorting can be done by using a suitable sorting algorithm

sort(xList)
sort(yList)

//Create relationship matrix for X and Y coordinates

xRelations=formRelations(xIntervalList)
yRelations=formRelations(yIntervalList)

26 K. Iyer and M. Huhns

// implement scoring matrix rules here [Fig.10]
rectangleArray=rectangleList.listToArray()
arraySize = rectangleArray.getSize()
for i = 1 to arraySize do
 for j = 1 to arraySize do
 if xRelations[i][j]==’P’ and yRelations[i][j]==’P’ then
 // Create connections between nodes in the graph
 node1 = graph.getNodeForRectangle(i)
 node2 = graph.getNodeForRectangle(j)
 edge1 = node1.getEdgeWith(node2)
 edge1.setEdgeWeight(0)
 edge2 = node2.getEdgeWith(node1)
 edge2.setEdgeWeight(0)
 // Set up the remaining scoring matrix rules here
 …
 …
 …

// allocate the rectangles using hill-climbing algorithm
while (graph.hasMoreNodes())
 currentNode=graph.getNewNode()
 while (currentNode.hasMoreEdges())
 currentEdge=currentNode.getNewEdge()
 if (currentEdge.getEdgeWeight()==1)
 currentNode=currentEdge.getOtherNode(currentNode)
 end if
 end while hasMoreEdges
 currentNode.setAllocated(true)
 graph.remove(currentNode)
 graph.remove(currentNode.getNeighbors())
 graph.remove(currentNode.getOwner().getOwnedRectangles())
end while hasMoreNodes

//Various procedures used in pseudo-code

addCoords(coordsList, Interval)
 start=Interval.getIntervalStart()
 end=Interval.getIntervalEnd()
 coordslist.add(start)
 coordslist.add(end)

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 27

STOP

formRelations(intervalList)
intervalArray=intervalList.listToArray()
arraySize=IntervalArray.getSize()
for i = 1 to arraySize do
 interval1=intervalArray[i]
 start1=interval1.getIntervalStart()
 end1=interval1.getIntervalEnd()

 for j = 1 to arraySize do
 interval2=intervalArray[j]
 start2=interval2.getIntervalStart()
 end2=interval2.getIntervalEnd()

 if interval1.getOwner() == interval2.getOwner()
 relations[i][j]=’--’
 else
 if start1<start2 then
 if end1<start2 then
 relations[i][j]=’S’
 else if end1<end2
 relations[i][j]=’P’
 else
 relations[i][j]=’Sp’

//test for other start, end conditions as shown in Fig.9

 …
 …
 …

 end for j
end for i
RETURN with relations

Note that based on the rules of graph creation mentioned above, it is impossible that
two nodes belonging to the same agent will ever share a common edge. This is because
edges are created only between nodes whose rectangles overlap and our protocol ensures
that no two rectangles belonging to the same agent overlap.

Another point is that the mediator who runs the procedure will be required to keep a
list of all the Nodes traversed during procedure execution. This list will be public
information accessible to all participating agents. In case an agent (which was not the

28 K. Iyer and M. Huhns

mediator) needs to verify that the allocation was fair, all that it needs to do is to make
sure that the path traversed by the mediator during process execution was a valid one by
creating the graph of agent rectangles and executing the procedure. Note that the
allocation may change if the mediator chose a different Node as a starting point.
However, as long as the list of Nodes traveled is made public, the procedure is verifiable.
This procedure will allocate to each agent a rectangle that was marked by the agent itself
and, hence, is a fair division procedure. We clarify the allocation procedure mentioned
above with the following example.

4.6. An example allocation problem

We take again the running example of three agents, i, j, and k, to whom a resource has to
be allocated. The agents are expected to follow the protocol as laid out above. Each agent
therefore marks out three rectangles on the resource, each of which it considers to be of

value one-third of the total value of the resource. Based on how the rectangles are
marked, we compute that the degree of partial overlap is at most one. Hence, condsition

i(1)

j(1)

k(1)

j(2)

k(2)

i(2)

i(3)

k(3)

j(3)

Fig. 11: Agents i, j, and k mark portions that fulfill condition B. The labels of the rectangles
denote their respective owners.

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 29

B is fulfilled. Therefore the procedure presented above should be able to find a suitable
allocation. Fig. 11 shows how the agents might have marked out their rectangles.

As described in the procedure, we first create a sorted Xlist and Ylist (step 2) based
on the X and Y coordinates of the rectangles. Then we determine how each interval
overlaps with the others (step 3). Based on the scoring matrix (step 4), we create a graph
(step 5) representing the overlaps of the rectangles with each other. Refer to Fig. 12 for
the corresponding graph. Next, we choose any node arbitrarily (step 6), say i(1). Observe
that there are no outgoing edges from i(1) that have an edge weight of 1. So we can allot
i(1) to agent i. Remove the following nodes from the graph:
 i(1): This has been allocated and hence should be removed from the graph.
 j(1) and k(2): These are neighbors of i(1) and in the process of allocating node

(rectangle) i(1), nodes (rectangles) j(1) and k(2) are destroyed, hence they should be
removed from the graph

 i(2) and i(3): Agent i has already been allocated i(1) and hence all of agent i’s nodes
(rectangles) should be removed from the graph.

Fig. 12: The directed graph based on the topology of overlapping rectangles.

We still have the following nodes left to be allocated: k(1), j(2), j(3) and k(3). We
select one of the nodes arbitrarily, say j(3) and apply the allocation procedure to this node
(rectangle). Note that there is no outgoing edge in j(3) with edge weight 1 (i(3) has
already been eliminated) . So we allocate this node to j. The following nodes are removed
from the graph in this process: j(3), k(3) and j(2). Now only one node left is k(1), which is
then allocated to agent k. This completes the allocation procedure. If we had chosen a
different node as the starting point, it is quite possible that a different set of rectangles

i(1)

j(1)

k(2)

k(1)

j(2)

i(2)

j(3)

i(3)

k(3)

0

0

0
0

0

0

1

-1

0

0

1-1

0

0

0

0

30 K. Iyer and M. Huhns

might have been allocated to the agents. However, no matter which node we select a
feasible allocation can be attained. The mediator will keep track of the nodes visited and
display the information publicly in case any agents want to verify if the allocation was
fair. Is there a guarantee that there exists a feasible allocation no matter how the agents
lay out their rectangles? Yes, if condition B is true. In Sec. 3.7 we provide proof that the
procedure is guaranteed to come up with a fair allocation provided condition B is
fulfilled.

4.7. Proof given condition B

Theorem 4.7.1: If there are n agents, and each agent makes n rectangles, creating n
portions of a rectangular cake, and if the rectangles are so marked that the degree of
partial overlap is not greater than 1, then our protocol guarantees that each agent will be
allotted a piece, such that the piece was one of the n portions created by the agent itself.

Proof.
Base Case (n=2). Each agent makes two rectangles. Arbitrarily start with one rectangle.
Say this rectangle belongs to agent i. Due to condition A1, it is clear that none of the
neighbors will belong to agent i. The following cases arise with respect to this rectangle,
which we label as i(1):
1. i(1) has no neighbors. In this case we allocate i(1) and remove all other rectangles

made by i. None of agent j’s rectangles are destroyed in this process. The procedure
is guaranteed to allocate a rectangle to j, as no other agents are left.

2. i(1) has neighbors. Note that i(1) cannot have more than one partial neighbor,
because at most one of j’s rectangles is allowed to intersect partially with i(1) (by
condition B). The following cases arise:
2.1. i(1) contains at least one of j’s rectangles completely. In this case, j’s rectangle

is a subset and the procedure allocates this rectangle to j. This will destroy
exactly one of i’s rectangles. Remove all rectangles made by j. This leaves one
of i’s rectangles intact, which can now be allocated to i.

2.2. i(1) does not contain any of j’s rectangles completely. In this case there is
exactly one partial neighbor of i(1). The procedure allocates i(1). In this
process, one of j’s rectangles is destroyed. Remove all rectangles made by i.
One of j’s rectangles remains, which is now allocated to j.

2.3. i(1) is contained in one of j’s rectangles. This is the same as case 2.1, (by
swapping the labels on the rectangles) where it has already been shown that
both agents are guaranteed an allocation of one of their rectangles.

This proves that i and j can be allocated their fair shares no matter how the rectangles are
arranged.
For any n (n>2). Let us assume that the allocation procedure works for up to k agents.
We next show that the procedure works for k+1 agents. Arbitrarily choose a rectangle.
Say this rectangle belongs to agent i. The following cases arise with respect to this
rectangle, which we label as i(j) (read as the jth rectangle of the ith agent):

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 31

1. i(j) has no neighbors. In this case we allocate i(j). Remove all other rectangles made
by agent i. No other agents’ rectangles are destroyed in this process. Thus we have k
agents, each with k+1 rectangles. We arbitrarily remove one rectangle of each of the
remaining agents. Thus we have k agents, each with k rectangles that we know can
be allocated. Hence proved.

2. i(j) has neighbors. Note that i(j) cannot have more than one partial neighbor for each
of the other agents (by condition B). The following cases arise:
2.1. i(j) completely contains one (or more) of the rectangles belonging to one (or

more) of the other agents. The procedure will make the interior rectangle the
currently considered rectangle and reapply all steps beginning with case 1. In
any case, one of the rectangles belonging to, say, agent h will be allotted.
Allocating this rectangle to h will destroy at most one of other agents’
rectangles who may be its partial neighbors (by condition B). All agents whose
rectangles formed the superset of this rectangle will lose exactly one rectangle.
Next the procedure will remove the other rectangles belonging to h. Thus each
of the other agents (including i) would have lost at most one rectangle. Other
agents will have k+1 rectangles left. Arbitrarily remove one of the rectangles
for each of the agents which have k+1 rectangles. Thus we have k agents, each
with k rectangles that we know can be allocated. Hence this is proved.

2.2. i(j) does not contain any other agents’ rectangles completely. Thus i(j) can have
at most one partial neighbor of each of the other agents. The procedure
allocates i(j). In this process, at most one rectangle of each of the other agents is
destroyed. Remove all other rectangles of i. Arbitrarily remove one rectangle of
each of the agents that has k+1 rectangles. Thus we have k agents, each with k
rectangles that we know can be allocated. Hence this is proved.

2.3. i(j) is contained in some other agents’ (say one of them is agent h) rectangles.
This is the same as case 2.1 (by swapping labels on the rectangles) where it has
already been shown that all agents are guaranteed allocation of one of their
rectangles.

This proves that the allocation procedure works for n agents for any n≥2, if the degree of
partial overlap is not more than one. □

In the next section we discuss the various assumptions we have made in proposing
this procedure. We also discuss what parts of the solution space are covered by this
procedure and the properties of such solutions.

4.8. Features of procedure for condition B

The procedure proposed in this paper is novel in its approach and requires further
clarification about the assumptions made and a discussion of the various aspects of the
algorithm. Let us begin with a discussion of the various issues involved with the
proposed allocation procedure when condition B is true (Section 3.3).

The motivation for the procedure is the hill-climbing algorithm. The procedure tries
to find the “highest point” among various nodes. If another node is on the “same level,”
then moving to it does not improve our situation; hence we do not move to nodes on the

32 K. Iyer and M. Huhns

same level. We also do not move to nodes on a “lower level.” If a node is on a “higher
level” than the node we are currently occupying, then we have found the highest point
relative to the node we started with and we allot this node (or the rectangle corresponding
to this node).

The above procedure places less restriction on the way agents mark rectangles.
However, the mediator will have to verify that the degree of partial overlap is not more
than one, so it can guarantee a solution. Will the procedure work if the degree of overlap
is greater than one? It is certainly possible that the procedure may find a solution, but the
theorem cannot guarantee a solution anymore and it becomes a matter of trial and error to
find the solution. If the degree of overlap is more than one, the procedure may fail for the
following reasons:
(i) A solution exists, but the procedure did not find them. A solution might have been

found had we chosen a different starting node. In such a situation, we can try each
node as the first node and run the procedure to find out if an allocation exists.
However, the running times may increase by an order of magnitude compared to the
normal case.

(ii) A solution does not exist. This is due to the high degree of overlap among the
rectangles. In this case, the procedure will not find the solution even if we run it
repeatedly, with a different node as the starting node each time.
The analysis shows that the degree of overlap property is a sufficient condition for the

existence of a solution, but not a necessary one. In the next section, we discuss various
features of the conditions A and B and the quality of the allocation results that they
generate.

5. Discussion

j(3)
1

j(2)

k(1)

i(2)

i(3)

k(3)
k(2)

i(1)

Fig. 13. Conditions A and B are true

j(1)

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 33

What does the solution space look like with respect to condition A and condition B? In
general, conditions A and B can be true or false independent of each other. The examples
below show all the possible scenarios that can occur and give us a picture of how the sets
are related to each other. We continue with the running example of this paper and denote
the agents as i, j, and k.

(i) Conditions A and B are true (Fig. 13)
 A: The X coordinates of the rectangles of each agent do not overlap each other.
 B: The degree of partial overlap of each rectangle is at most 1

(ii) Condition A is true, but condition B is false (Fig. 14)
 A: The Y coordinates of the rectangles of each agent do not overlap each other.
 B: The degree of partial overlap of i(1) is 3 (more than 1)

(iii) Condition A is false, but condition B is true (Fig. 15)
 A: For agent j, j(1) and j(2) overlap on the X-axis, but j(2) and j(3) overlap on the Y-

axis
 B: The degree of partial overlap of each rectangle is at most 1

j(3)
1

j(1)

j(2)

k(1)

i(2)

i(3)

k(3)

k(2)

i(1)

Fig. 14: Condition A is true and condition B is false.

34 K. Iyer and M. Huhns

 Fig. 15: Condition A is false and condition B is true.

From the examples shown, we can conclude that the solution spaces for conditions:
 A and B are not subsets of each other.
 A and B are not mutually exclusive.
Thus while condition B can be taken as more flexible, it is not necessarily a weaker
condition. We can look upon condition B as a way to expand the space of solutions
available to us. The solution space looks as shown in Fig. 16.

Fig. 16. The solution space for conditions A and B

j(3)
1

j(1)

j(2)

k(1)

i(2)

i(3)

k(3)
k(2)

i(1)

Condition A Condition B

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 35

Either of these conditions tests for the presence of a solution, but their absence cannot
be taken as a guarantee that a solution does not exist. Is it possible for any algorithm to
guarantee an allocation if both conditions A and B are false, even though the agents
follow the protocol? We show that there exists no algorithm that can guarantee a solution,
if just the protocol is followed. Specifically we focus on step 3 of the protocol, which
requires that the agents’ own portions do not overlap.

Fig. 17: Agent 1 divides the land into two vertical strips, while agent 2 divides them into two horizontal strips.

Theorem 5.1: If all agents follow only the protocol, then there exists no algorithm that
can guarantee an allotment of rectangles, such that each agent will get a rectangle marked
by itself.

Proof: We prove the above statement by showing a contradictory example. Consider two
agents who want a plot of land divided between them. The agents create rectangles as
shown in Fig. 17. In such a case, no matter what interval is allocated to agent 1, it will
conflict with an interval of agent 2 and vice versa.
 □

What the theorem tries to formalize is the idea that in addition to the protocol, some
condition is required that will guarantee a feasible allocation exists. We have put forth
two such conditions in this paper. It is quite possible that one can come up with other
conditions that may further extend the solution space. The ideal case would be if one
could find the perfect condition X that, if fulfilled, will include all the feasible
allocations, i.e., it would be the largest superset of conditions A and B that covers the
entire solution space. This is quite unlike the one-dimensional case, where just following
the protocol guaranteed that the solution could be found. We discover that if the resource
is two-dimensional it is impossible to guarantee a solution for every possible permutation

1

2 2’

1’

36 K. Iyer and M. Huhns

of agent rectangles. Ensuring that the agents follow the protocol alone is not a sufficient
condition for a solution to exist. As future work, we are looking into the possibility of
discovering conditions that may be able to exhaustively cover the solution space.

In the two-agent case shown above, there exists a procedure that tends to fairness, if
we allow multiple iterations of the procedure to run. In the example shown, suppose the
allocation procedure allocates the left column to agent 1 and the top row to agent 2 based
on their markings, then we get the shaded region as the disputed area. Now the agents
will again be required to repeat the procedure of markings, but this time only with the
smaller disputed area. After a finite number of iterations the procedure stops, once agents
can feel satisfied that they have a piece at least as large as the other agent’s piece within
the limit of tolerance. If the resource being divided is not recombinable (like land),
successive applications of the procedure may create allotted portions that are not
contiguous with previously allotted portions. Thus there may be isolated portions of land
belonging to agent 1 surrounded by land belonging to agent 2. Hence the iterative
solution is applicable only in qualified situations.

Next, let us look at how the procedure stands up to the various criteria mentioned in
the literature survey.
 Fairness: The proposed protocol is fair. As mentioned earlier in the paper, an agent

will find the allocation fair, if it feels it got exactly 1/n of the value of the entire
resource. Since as per the protocol the agent divides the resource into n rectangles of
equal value and the procedure (given condition A and/or B is true) will allot one such
rectangle to that agent, the agent gets 1/nth (by its own valuation) of the entire
resource. Thus our procedure allocates resources in a fair manner.

 Envy-freeness: Envy-freeness means that every agent thinks that the portion
allocated to it is greater or equal in value than the portions other agents received.
Thus no agent envies another agent’s portion. It is strongly desirable for procedures
to be envy-free, but it is a tougher criterion to fulfill than just fairness. There exist
very few procedures that can guarantee envy-free division. Our procedure, while fair,
is not envy-free. It is quite possible that though an agent may consider the value of
the portion it received to be 1/n of the total (and hence fair), it may be envious of
another agent whose portion it thinks is of greater value than its own.

 Efficiency: Efficiency is also a criterion for judging procedures. It provides a
measure of how much of the resource is wasted in the process of allocation. We use
the term “efficient” in the Pareto optimal sense, i.e., is it possible that there exists an
alternative allocation in which at least one agent is better off while the others are no
worse than the current allocation? The answer in the case of our procedure is yes,
i.e., our procedure is inefficient at allocating resources. This is because all the
portions allocated to agents do not exhaustively use up the resource. The “leftovers”
can be redistributed among the agents by running the protocol again and letting
interested agents submit their preferences. This can be done repeatedly until finally
every agent thinks the remnants are negligible in value. Such an iterative version of
the protocol will certainly help improve the efficiency of resource distribution.
However, the effectiveness of such an approach depends on the type of resource
being distributed. If the resource is infinitely divisible and recombinable (like a cake)

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 37

then such an iterative procedure is appealing. But some resources, like scheduling
time on a supercomputer to users or land division might only be infinitely divisible
(though not recombinable) and in such cases the repeated divisions of the leftovers
will make the agents portions so small as to be basically worthless. Our protocol and
procedure is, however, more efficient than the traditional one-dimensional cake-
cutting, especially when agents value some portions of the resource negatively. This
is because we allow the agents to cut in two dimensions, thus completely eliminating
negative utility regions from being included in the allocation. While there is a clear
need to improve the efficiency of our single-shot protocol and procedure, it needs to
be matched against the concurrent increase in the complexity of the protocol as well
as the procedure.

 Complexity: What is the space and time complexity of this procedure? Let us
calculate the space complexity first. Each rectangle is fixed by four points, with each
point having two values (one each for the X and Y coordinates). Thus each rectangle
is described by eight values. Each agent marks n rectangles, creating a total of n2
rectangles (by n agents). Thus the space complexity of the procedure is 8n2. Now we
compute the time complexity. First the list of X and Y coordinates needs to be
sorted. An efficient sorting algorithm, such as insertion sort, will take nlog n time,
which translates to 2n2log n time (replacing n by n2) for each axis. Next X and Y
relations need to be created. Since condition B is true, each rectangle can have at
most n-1 partial neighbors. If one rectangle completely subsumes the other (i.e., they
are neighbors but not partial neighbors), then the inner rectangle can have at most n-
2 partial neighbors. Thus the rectangles will have an average of n-1 neighbors in the
worst case, and a total of n(n-1)= n2-n relations are possible on each axis.
Analogously, the graph created out of these relations will have vertices equal to n2
and the number of edges equal to n2-n (in the worst case). The running time of the
procedure to traverse these nodes is therefore O(n2).

 Strategy-proof: A protocol is said to be strategy-proof, if each agent declaring its
true evaluation is a dominant strategy. A typical example of a strategy-proof
mechanism is the Vickery auction, where agents submit sealed bids to the auctioneer
and the agent quoting the highest price wins, but is only required to pay the amount
of the second highest bid. Our protocol is strategy-proof. The dominant strategy for
any agent while drawing rectangles is to make sure that it values each of the
rectangles it draws as exactly 1/n. If an agent tries to draw a rectangle that is smaller
in value than any other agent’s rectangle in order to guarantee itself a specific piece
of the resource, it may end up getting the resource, but the value of that resource will
be smaller than 1/n, thus the agent ends up getting less than its fair share. On the
other hand, if an agent tries to get more than 1/n by drawing a rectangle as large as
possible, then it is quite likely that it will subset some other agents’ rectangle, which
will end up getting allocated to another agent. For clarification, consider the
following extreme example: Agent i is greedy and wants as much of the resource as
possible. So it draws one large rectangle that covers the entire resource, while other
agents follow the dominant strategy and draw n rectangles of equal value. What will
agent i receive? Agent i receives nothing, because the procedure that allots rectangles
takes as input one large rectangle (which agent i had drawn) and n-1 rectangles of
zero value and the procedure ends up allocating one as these zero-valued rectangles

38 K. Iyer and M. Huhns

as agent i’s allocation. Thus agent i gets zero utility by being greedy. Our protocol is
therefore not open to manipulation by greedy agents and any attempts to misreport
preferences will backfire. There is no incentive for the agents to lie and hence the
protocol is strategy-proof.

 Measurability: This is an important notion for mathematicians and economists. The
basic assumption is that any resource being allocated must be “measurable”, i.e.,
there must exist a function that can assign a number (like “length,” “area,” or
“volume”) to subsets of a given set (like land, for example). This notion paves the
way for a cardinal comparison of various subsets for enabling an allocation.
However our procedure does not need cardinal comparisons to make an allocation.
We allocate portions based on the topology of overlaps. If the one rectangle is
completely contained in another then the smaller rectangle is allocated. If two
rectangles only partially overlap each other, then the one that was encountered first
(by the procedure) is allocated first. We do away with the notion of comparison of
agent rectangles based on their “areas.” While agents may need the set to be
measurable in order to “measure” out equal portions of the resource, such a
restriction is not imposed by the protocol itself. Agents may use alternate means to
create equal portions, like creating n rectangles arbitrarily and adjusting their sizes
iteratively until it doesn’t prefer any one over the other. This is a way to ordinally
create n rectangles of equal value without using the notion of a “measure.” Unlike
earlier work in land division, we do not explicitly require that the resource to be
allocated be measurable.

 Constructive (Non-existential): The procedure proposed here is algorithmic. Most of
the early literature dealing with two-dimensional resources (primarily in the form of
land division) is dominated by economists and mathematicians. Their results are
primarily existential in nature viz. they analyze various features of the problem (like
types of utility functions, fairness and efficiency of the possible allocations, etc.) and
show whether or not allocations “exist” with given properties. They do not however
propose ways to find such solutions. Thus it is still unknown that even if feasible
solutions exist whether the problem of finding an allocation procedure is tractable.
Because of a lack of constructive solutions to allocation problems, it is not possible
to realize them in the real world where agents negotiate with one another and a
mediator is able to compute a feasible allocation in a reasonable amount of time. For
multiagent system designers, in addition to the knowledge that feasible allocations
exist, the following points need to be considered:
(a) Is there a procedure to find these allocations? (Yes)
(b) What is the communication cost of the procedure? (O(n2))
(c) What is the computational complexity of the procedure? (O(n2))
(d) Can the agent preferences be kept private? (Yes)
(e) Can the procedure be manipulated by agents’ lies? (No)
(f) What is the efficiency of the allocation procedure? (Inefficient)
(g) Are the procedure and the protocol iterative? (No)
(h) Are the agents restricted in using certain classes of utility functions? (No)

We answer some of the questions in this paper. Ours is the first result that can be
expressed as a computer algorithm. Not only does it test for the existence of a
solution, it is able to find one if it exists (given condition A and/or B is true).

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 39

 Nature of agent utility functions: Our literature survey shows a number of
restrictions placed on agent utility functions, none of which is applicable in our case.
The agents may draw rectangles based on their internal utility functions or
completely do away with the use of utility functions. As stated in the discussion
earlier about measurability, agents can also draw rectangles using ordinal rather than
cardinal comparisons. Briefly, we mention the typical restrictions on agent utility
functions historically mentioned in the literature, which are not applicable to our
case:
(a) Non-atomic: This requirement specifies that the agent utility functions smoothly

decrease to zero as the amount of the resource tends to zero, i.e., there should be
no “atoms” in the resource, where portions smaller than the “atom” are of zero
value to the agent.

(b) Additive: This is a common requirement for utility functions and helps simplify
much analysis. If A and B are two disjoint subsets, then simple additivity states
that:

 )()(BvAvBAv  for all disjoint A, B ∑

(c) Concave: Concave domains are a subset of subadditive domains and the utility
functions have the property:

  )()(BvAvBAv  for all disjoint A,B ∑

They are less commonly modeled than simple additivity, because it is difficult
to prove results in this domain. However they more realistically reflect the
utility of obtaining additional resources in the real world.

(d) Continuous: Utility functions are assumed to be continuous. This means that for
every amount x of the resource the agent has a unique value for that amount.
This simplifies analysis, but might not be necessarily true in the real world. In
addition, utility functions are said to be smooth if there are no “kinks” in the
function value anywhere, i.e., the function is differentiable at all points of the
curve.

6. Future Work

We have presented a constructive solution to the allocation of two-dimensional resources.
The protocol and procedure we present is an important first step that clarifies questions
about whether the solutions for agent negotiations can be implemented. There are,
however, several ways in which this work can be extended to increase relevance for real
world allocation problems. We mention the most pertinent issues that are useful for future
work:
 Increasing the space of feasible allocations: The protocol in its current form is a

single-shot protocol. Either the agents’ rectangles are laid out in a manner where
feasible allocations exist or no agent gets any part of the resource (a conflict deal is
reached). There is a need for creating an iterative version of the protocol whereby
agents can send proposals to one another by continuously changing the shape of their

40 K. Iyer and M. Huhns

rectangles and finding a solution that is feasible (and preferably optimal) to all the
agents. It is quite likely that there will be a concomitant increase in the complexity of
the protocol, communications, and the procedure. Thus while the space of solutions
will certainly increase, mechanism designers will have to balance this against
increased cost of computation both for the agents as well as the mediator.

 Search for condition X: As mentioned in Sec. 4, a more generic condition than the
two we have proposed will serve to increase the space of feasible allocations.
Conditions A and B serve as a benchmark against which future conditions can be
compared. Conditions A and B are sufficient but not necessary to guarantee the
existence of a solution. There can exist other conditions that behave similarly. The
ideal condition X would be one that is both sufficient and necessary. In such a case
condition X would exhaustively cover the solution space and would be the (largest)
superset of both solutions covered by conditions A and B.

 n-dimensional resources: In this paper we consider the case where a resource is two-
dimensional. We extended our earlier result of one-dimensional resource allocation
to two dimensions. But there were significant qualitative differences between the
problems. We presented a proof that if condition B is true then a feasible allocation
exists and the procedure would be able to find the allocation. One can fashion proofs
in an analogous manner for three (and higher) dimensional resources. But the
challenge is to prove that the proof for condition B holds for arbitrary n-dimensional
resources. Is it possible to create a (meta) proof to prove a feasible allocation exists
— if condition B is true — for an n-dimensional resource with arbitrary n?

 Efficiency: The current protocol, while being more efficient than one dimensional
resource allocation schemes (like moving knife), is inefficient because there will
always be leftovers from the allocation. As mentioned earlier, efficiency can be
improved by creating a simple iterative version of the single-shot protocol. But that
has limitations (refer Sec. 4, discussion on efficiency). Any work done to improve
the efficiency of allocation will greatly increase the appeal of this procedure but one
is likely to increase the complexity of the protocol as well the procedure in the
process.

 Allowing more general shapes: The protocol as it is presented currently allows
agents to mark regions of interest in the shape of rectangles only. This no doubt
simplifies the allocation procedure, but it is quite restrictive. If agents were allowed
to mark out regions of interest as more general polygons then it will improve the
efficiency of the system and increase the utility received by agents. It may also
increase the space of feasible allocations. This is a challenging problem. If a
procedure were found that is able to allocate general polygons, then it might be
possible to extrapolate those results to the case where agents can draw amoeba
shaped regions and the procedure can find a satisfactory solution.

 Allowing other topologies: We assume the resource to be a two-dimensional flat
plane. Would it be possible to extrapolate the procedure to other shapes like the
surfaces of cylinders, spheres or torii? Our procedures are not directly applicable to
such shapes because of their different topology. But one can easily visualize
resources having such topologies; for example: dividing underwater mineral
resources may require the agents to take into account that the earth has the topology
of a sphere rather than approximate it as a flat plane.

A Procedure for the Allocation of Two-dimensional Resources in a Multiagent System 41

 Creating a decentralized version of the procedure: The procedure in its current
form is centralized. Since the running time is O(n2),it is quite appealing to create a
distributed form of this procedure, so that the running time of the procedure is
reduced. While creating a distributed version of the procedure is a non-trivial task in
itself, the following issues need to be considered as well:
(a) Is a different set of agents needed to execute the distributed procedure? Or can

the participating agents themselves execute the procedure?
(b) How can the information about agent preferences be kept private?

7. Conclusion

This paper has presented a constructive solution to the classic land division problem. This
is the first result that is in the form of an algorithm suitable for computer implementation,
unlike earlier ones that are only existential in nature. It uses the notion of degree of
partial overlap to create a sufficiency condition for the existence of a solution, and
proposes a procedure to find one in such a case. The proposed solution is fair, strategy-
proof, constructive, and does not explicitly need the resource to be measurable. We
discovered that unlike the case for one-dimensional resource allocation, there may not
exist a feasible allocation for every permutation of agent rectangles in the two
dimensional case. This procedure should be taken as the first step in hyperdimensional
resource allocation. While our allocation procedure is unique in the sense that it does not
convert the two-dimensional resource allocation problem into a one-dimensional problem
(in case of procedure given condition B) before executing, there is nevertheless
considerable scope for tweaking many parts of the procedure. Creating a distributed
version of the procedure will reduce the workload on any one agent (which assumed the
role of the mediator) and reduce running times. It will be interesting to see the existence
and properties of procedures for higher-dimensional resources and resources with
topologies different from a plane.

References

1. Soh, L.-K.; Tsatsoulis, C., A Real-Time Negotiation Model and A Multi-Agent Sensor Network
Implementation. Autonomous Agents and Multi-Agent Systems Nov 2005, 11, (3), 215-271.

2. Rosenschein, J. S.; Zlotkin, G., Rules of Encounter: Designing Conventions for Automated
Negotiation among Computers. MIT Press: London, England, 1994.

3. Davis, R.; Smith, R. G., Negotiation Distributed as a Metaphor for Problem Solving. Artificial
Intelligence January 1983, 20, (1), 63-109.

4. Brams, S. J.; Taylor, A. D., Fair Division: From Cake-Cutting to Dispute Resolution. Cambridge
University Press: New York, 1996.

5. Iyer, K.; Huhns, M. N. Negotiation Criteria for Multiagent Resource Allocation.; Department of
Computer Science and Engineering, University of South Carolina: Feb 2007.

42 K. Iyer and M. Huhns

6. Iyer, K.; Huhns, M. In Multiagent Negotiation for Fair and Unbiased Resource Allocation, OTM
Confederated International Conferences, CoopIS, DOA, and ODBASE 2005, Oct 2005; Meersman,
R.; Tari, Z., Eds. Springer: Oct 2005; pp 453-465.

7. Austin, A. K., Sharing a cake. Mathematical Gazette Oct 1982, 66, 212-215.
8. Lemaître, M.; Verfaillie, G.; Fargier, H.; Lang, J.; Bataille, N.; Lachiver, J.-M. In Equitable

Allocation of Earth Observing Satellites Resources Proc. of 5th ONERA-DLR Aerospace
Symposium (ODAS'03), Toulouse, France, 2003; Toulouse, France, 2003.

9. Kraus, S., Strategic Negotiation in Multiagent Environments. MIT Press: 2001.
10. Chevaleyre, Y.; Dunne, P. E.; Endriss, U.; Lang, J.; Lemaitre, M.; Maudet, N.; Padget, J.; Phelps,

S.; Rodriguez-Aguilar, J. A.; Sousa, P., Issues in Multiagent Resource Allocation. Informatica
2006, 30, (1), 3-31.

11. Lesser, V.; Ortiz, C. L.; Tambe, M., Distributed Sensor Networks: A Multiagent Perspective. 2 ed.;
Springer: 2003.

12. Cramton, P. C.; Shoham, Y.; Steinberg, R., Combinatorial Auctions. MIT Press: 2006.
13. Rothkopf, M. H., Thirteen Reasons Why the Vickrey-Clarke-Groves Process Is Not Practical.

Operations research March–April 2007, 55, (2), 191-197.
14. Steinhaus, H., The problem of fair division. Econometrica 1948, 16, 101-104.
15. Sen, S.; Biswas, A. In More than Envy-Free, ICMAS'00, 2000; AAAI Press: 2000; p 0433.
16. Tasnádi, A., A new proportional procedure for the n-person cake-cutting problem. Economics

Bulletin 2003, 4, (33), 1-3.
17. Robertson, J.; Webb, W., Cake Cutting Algorithms. A K Peters Ltd: Nattick, MA, 1998.
18. Stewart, I., Your Half ’s Bigger Than My Half!. Scientific American December 1998, pp 112-114.
19. Huhns, M. N.; Malhotra, A. K., Negotiating for Goods and Services. IEEE Internet Computing

July 1999, 3, (4), 97-99.
20. Hill, T. P., Sharing a cake. Mathematical Gazette Oct 1982, 66, 212-215.
21. Dubins, L. E.; Spanier, E. H., How to cut a cake fairly. American Mathematical Monthly Jan 1961,

68, 1-17.
22. Beck, A., Constructing a Fair Border. American Mathematical Monthly Feb 1987, 94, 157-162.
23. Webb, W. A., A Combinatorial Algorithm to Establish a Fair Border. European Journal of

Combinatorics May 1990, 11, 301-304.
24. Maccheroni, F.; Marinacci, M., How to cut a pizza fairly: Fair division with decreasing marginal

evaluations. Social Choice and Welfare 2003, 20, (3), 457-465.
25. Bartle, R. G., The Elements of Integration and Lebesgue Measure. Wiley-Interscience: New York,

1995.
26. Thomson, W. Children crying at birthday parties. Why? Fairness and incentives for cake division

problems; 526; Oct 2005.
27. Chambers, C. P., Allocation rules for land division. Journal of Economic Theory 2005, 121, 236-

258.
28. Mill, J. S.; Sher, G., Utilitarianism. Hackett Publishing Company: 2002.

