
A Multiagent Treatment of Agenthood�

Michael N. Huhns

Department of Electrical & Computer Engineering

University of South Carolina

Columbia, SC 29208, USA

huhns@sc.edu

Munindar P. Singh

Department of Computer Science

North Carolina State University

Raleigh, NC 27695-7534, USA

singh@ncsu.edu

Abstract

There have been numerous attempts to provide a standardized definition of a computational

agent, but little consensus has emerged. We propose a simple test for agenthood that can be

applied to a putative computational agent. Roughly, this test seeks to capture the intuition that

an agent is an entity that can function as part of a multiagent system. The test depends on the

observed behavior of the supposed agent, and not on the internals of it. We apply the test to

some well-known kinds of systems (supposed) agents, and discuss the results. We present a

formulation of the test and some variants with a semantics based on sociability. Our treatment

of agenthood can thus serve as a basis for a methodology for evaluating putative agents and

agent toolkits.

�A previous version of some of the ideas developed herein appears as an instance of the column Agents on the Web in IEEE

Internet Computing, volume 1, number 5, pages 78–79, September-October 1997.



1 Introduction

For reasons that are well-known, computational agents are drawing a lot of attention from researchers and

practitioners [Jennings & Wooldridge, 1997; Huhns & Singh, 1997]. Each project or result inevitably

includes—implicitly or explicitly—a definition of an agent. Definitions are important, because they en-

able people to communicate and understand each other. Precise definitions are even better, because they

enable researchers to compare systems and evaluate developments and advancements. This is especially

important for a young field, such as multiagent systems, where there is active research underway at many

research centers around the world. Unfortunately, definitions of agents abound, and almost every research

group has its own. Several properties and definitions of computational agents have been studied in the

literature [Petrie, 1996; Franklin & Graesser, 1997].

Definitions Good definitions are not mere stipulations. They seek to capture some intuitive, pretheoretic

notions. In the broad sense, definitions represent unstated consensus. There is at times a lot of interest in

such definitions, but it usually dissipates in inconclusive results. For example, the definition of physics and

chemistry were debated in the 19th and early 20th century, but are not any more. Fortunately, the resolution

of the broader concepts is rarely practically important unless we are in the midst of a paradigm shift. For

example, there are no good definitions of “life” and “disease,” but the fields of biology and medicine continue

to flourish.

Closer to the present topic, computation was formalized through Turing machines, but this definition

is being questioned by those who consider interaction a key aspect of computation that is not handled by

the traditional definition [Wegner, 1997]. We support the intuition that interaction is crucial, and seek to

incorporate it below in our treatment of agenthood.

Tests It is widely recognized that definitions can never be perfect [Brachman, 1985]. This is because

definitions are meant to be necessary and sufficient conditions. The concept of agents in general appears not

to be crisp.

Consequently, and especially given the early stage of agents research, we propose not a definition but a

test for agenthood. A test would identify some key features of agents, but without any implicature that it is

necessary or sufficient. However, it can be used to contributed to determining membership in the class of

agents.

2 The Agent Test Conceptually

Informally, we propose the following test:

A system containing one or more reputed agents should change substantively if another of the

reputed agents is added to the system.

We believe our claims apply to agents in general. However, for simplicity, we draw our examples primarily

from software where the behavior of the systems modeled is expressible discretely. The above test requires

some elaboration:

1



� By substantively, we do not mean that the system will simply slow down because another software

process is running, but that the reputed agents will somehow be aware of each other and adjust their

behavior accordingly.

� The added agent must be of the same type as the reputed agents. That is, it should have the same

architecture and functionality, although it might have different goals, knowledge, or beliefs.

� The existing and added agents do not necessarily have to communicate. Nor do they have to be

autonomous, persistent, or intelligent, although these qualities would help.

Here is how to apply the test. Suppose the agenthood of a piece of software, X, is in question. According

to the above test, we would perform the following (mental) experiment. Imagine that there are two instances

of X. The test states that if X is an agent type, each instance should behave differently in the presence of the

other instance than when it is alone. If it doesn’t behave any differently, then X is not an agent.

The agent test would pass the Distributed Vehicle Monitoring Testbed (DVMT) [Lesser & Corkill, 1983]

and distributed sensor net agents, pass the agents in WARREN [Sycara, 1997], fail mail daemons, fail

spreadsheets (and other software programs that just act on behalf of a user, which is a common definition

for an agent), and fail simple Java applets. The test is independent of the mobility of the agents.

For example, the distributed Vehicle Monitoring Testbed (DVMT) [Lesser & Corkill, 1983] is a system

of agents that sense their environment for the presence of moving vehicles. After detecting the possible

presence of a vehicle, the agents communicate with each other to resolve ambiguities, refine their estimates

of vehicle locations, and eliminate “ghost” vehicles. When a suspected vehicle enters a region where the

coverage of two or more agents overlaps, the agents cooperate in confirming detection of the vehicle. Where

the coverage is adjoining, the agents cooperate in determining the extended path of the agent. The agents

communicate possible vehicle locations, partial paths, and raw sensory data.

If another sensing agent is added to DVMT, the new agent would help in confirming or eliminating

vehicle tracks proposed by the other agents, thus affecting their behavior, and most likely improving their

performance. These are agents according to the Agent Test.

The blackboard-based distributed HEARSAY-II [Erman et al., 1980] is a system of agents for speech

understanding. The agents are specialized, with some performing signal processing, while others are per-

forming syntactic, semantic, or prosodic analyses. The agents concurrently process selected portions of an

utterance, and then exchange hypotheses and results via a blackboard. If another lexical or signal-processing

agent is added to the system, it changes what gets put on or taken off the blackboard, and the other agents

are affected. These also are agents.

As a third example, utility-based agents for domains involving the delivery of goods [Rosenschein &

Zlotkin, 1994] rely on negotiation mechanisms to determine their behavior. The negotiation mechanisms

require direct interactions among the agents in a domain. Any additional agent of this kind would affect the

negotiations. Hence, these agents would pass the Agent Test.

By contrast, some information-retrieval “agents” that find web documents for a user, if you add another

one, it would do exactly the same thing as the first “agent” and the user would end up with two copies of

each document. This is because the two agents would be completely unaware of each other, and could not

take advantage of each other’s activities. According to our test, these are not agents.

2



3 The Agent Test Specified

Fundamentally, the proposed test is based on the sociability of agents as manifested in changes in their

behavior. How can we specify this property well enough that the test could be meaningfully applied by

any developer or analyzer of agents. Although the test is not a simple mathematical result, the following

discussion introduces the key ideas necessary to applying it in a uniform manner. The main components

of the specification are the environment in which the agents exist, and a formulation of sociability. These

are combined to yield a statement of the test, which can then be applied. Some properties and additional

concepts follow from this statement.

3.1 The Environment

Consider the state of an environment. This evolves as agents act and spontaneous events occur in the

environment.

� The state of an information environment consists of resources, connections and paths among the

resources, and which of the resources are accessible, locked, opened, closed, enabled, deleted, visited,

and so on. An agent’s actions include locking files, reading or writing to a database or index, and

creating resources.

� A history is a sequence of environment states. This corresponds to the history of what has transpired—

what the state was at a designated initial time, and how it has evolved through agent actions and

environmental events.

� A configuration is an environment along with some set of programs executing in the environment.

� The generated set of a configuration is the set of histories that may result from that configuration. It

tells us all that can happen in a configuration.

Our test is based on comparisons of the generated sets of suitably related configurations.

Assumptions The following assumptions are crucial. The first two are a form of realism.

� The environment can make spontaneous changes, which are usually negative. That is, there are no

Maxwellian demons. For example, in an information environment, spontaneous events include occur-

rences such as a file being locked or a CPU being overloaded because of some underlying tasks. An

environment that spontaneously reduces disorder would be desirable but rather unrealistic!

� The environment cannot fake the existence of other agents. That is, there are no Cartesian demons.

� The supposed agent must be sufficiently delineated from the environment.

� Enough of the environment and the software—states of resources, and actions of putative agents—

must be observable.

3



3.2 Sociability Semantics of the Test

Assume we are given an environment and some purported agent—an executing program—that exists and

functions in that environment. What would happen if more programs of the same type were introduced into

the environment? Obviously there would be some change in the behavior of the program already there,

regardless of whether the new program was an agent. For the program to pass our agent test, however, the

changes must be appropriate, or agent-like, in the following way.

An appropriate change relates to agents themselves, not to the infrastructure. For example, as the number

of agents inhabiting an environment increases, so do the chances that there will be resource conflicts among

them. If the programs share a CPU or network, they may run slower; they may livelock or deadlock in trying

to access the underlying files. These are not in themselves agent-specific interactions; they can also occur

solely as a result of the environment. To be agents, they should behave as if they recognize when other

agents are being introduced.

If the program design in question has anything to do with agency, its instances will be smart enough to

recognize and interact with each other. If they are not, they can still have some interference, of course. But

interference is inherently a kind of interaction that goes through the infrastructure, and can occur readily in

the environment without intervention by an agent.

A distinguished resource is a resource that has been selected for some special reason. Intuitively, these

resources have some bearing upon the problem itself. The other resources could essentially be functioning

as communication channels among the computations and thus would have different trajectories even if the

changes are irrelevant from the social perspective.

Thus a more careful formulation of the test for agenthood could rely on the key characteristic that adding

more of the purported agents causes some change in the possible sequences. To make sure that the changes

are not gratuitous, we must check that the changes could not be caused solely by adjusting the environment.

When we add this refinement, the test becomes more robust.

The basic idea in the test is to define two configurations that are identical except for the presence of

an additional supposed agent instance in one of them. If we observe a difference in the trajectory of any

distinguished resource, we can declare that the supposed agent type passes. Examples of this are given in

section 2.

3.3 Some Properties and Extensions

The above test requires an agent’s behavior to change when encountering other agents of the same type.

Thus this is a test for autosocial agents.

We can generalize the idea to heterosocial agents, i.e., agents who can socialize with agents of different

types. The extension is not straightforward, because we must ensure that the second agent is not the cause

of whatever modifications we observe. To ensure the proper scope, we require that if X appears to behave

differently because of Y, then Y should also behave differently because of X. Thus, we must consider three

configurations that are identical except for the fact that one has just X, the other just Y, and the third both X

and Y. If the joint configuration differs from each of the others, then we can declare that both X and Y pass.

We think of this as an important property of social interactions and term it the symmetry thesis: if we

claim that A is an agent because it socially interacts with B, then B is also social because it interacts with A.

4



We can consider some properties of the autosocial and heterosocial versions of the test. Each is sym-

metric, although the autosocial test is trivially so. However, the heterosocial version is not transitive over

agent types.

How an agent achieves its change in behavior, such as whether or not it communicates with the new

agent, is not important. This is a useful property, because the internal details of an agent may be unknown or

extremely complex. The proposed test tries to identify a property that can be verified or disproved without

knowing the details of the agents’ construction.

4 Discussion

A test is not a prescription so much as a filter. And whereas definitions in the classical Socratic sense are

expected to be necessary and sufficient conditions, a test may be one or the other or even neither. Also, a def-

inition would typically identify the essence of its subject, whereas a test—such as the one we propose—has

only to identify properties that can be observed and tested. In some sense, this test represents a performance

criterion, which is more powerful than a definition and a lot easier to manage.

The agent test is like the Turing test for intelligence in that it can be used as a sufficiency test. However,

it is not like the Turing test in that it is not up to a human being to make a subjective assessment. If we said

an agent is sociable if it appears so to a human, that would be a closer analogy to the Turing test.

It is like the Church Hypothesis in attempting to relate an informal concept (in this case, agenthood) to a

formal structure or entity—passing our formal test. Such claims can never be proved formally, because one

key part is informal. However, they can be supported by anecdotal evidence. In Church’s case, since every

“reasonable” notion of computing (prior to interaction [Wegner, 1997]) was shown equivalent to Turing

machines, that was evidence in favor of Turing machines being a good canonical view of computing. In our

case, the anecdotal evidence is provided by relating concepts of agenthood—as realized in systems such as

DVMT and others—to our formal definition.

There are some important benefits from engaging in the present exercise. A formal notion can be used as

the object of further study—its merits and demerits can be analyzed and debated leading to a clearer picture

of the concepts one is trying to explicate. The proposed test is an important step in the present stage of the

science of agents, because by attempting to make our intuitive notions precise, it promises to guide us closer

to our goal as a research community. More practically, a good test can serve as a basis for a methodology

for evaluating putative agent-based systems as well as the toolkits with which they are built.

References

[Brachman, 1985] Brachman, Ronald J.; 1985. I lied about the trees. AI Magazine 6(3).

[Erman et al., 1980] Erman, Lee; Hayes-Roth, Frederick; Lesser, Victor R.; and Reddy, Raj; 1980. The

Hearsay-II speech-understanding system: Integrating knowledge to resolve uncertainty. Computing Sur-

veys 12(2):213–253.

5



[Franklin & Graesser, 1997] Franklin, Stan and Graesser, Art; 1997. Is it an agent or just a program?: A tax-

onomy for autonomous agents. In Intelligent Agents III: Agent Theories, Architectures, and Languages.

Springer-Verlag. 21–35.

[Huhns & Singh, 1997] Huhns, Michael N. and Singh, Munindar P., editors; 1997. Readings in Agents.

Morgan Kaufmann, San Francisco.

[Jennings & Wooldridge, 1997] Jennings, Nicholas R. and Wooldridge, Michael J., editors; 1997. Agent

Technology: Foundations, Applications, Markets. Springer-Verlag, Berlin.

[Lesser & Corkill, 1983] Lesser, Victor R. and Corkill, Daniel D.; 1983. The distributed vehicle monitoring

testbed: A tool for investigating distributed problem solving networks. AI Magazine 4(3):15–33.

[Petrie, 1996] Petrie, Charles J. Jr.; 1996. Agent-based engineering, the web, and intelligence. IEEE Expert

11(6).

[Rosenschein & Zlotkin, 1994] Rosenschein, Jeffrey S. and Zlotkin, Gilad; 1994. Rules of Encounter. MIT

Press, Cambridge, MA.

[Sycara, 1997] Sycara, Katia; 1997. Warren: Intelligent agents for financial portfolio management.

http://www.cs.cmu.edu/˜softagents/warren/.

[Wegner, 1997] Wegner, Peter; 1997. Why interaction is more powerful than algorithms. Communications

of the ACM 40(5):80–91.

6


