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Abstract. This paper describes our solution to the problem of inducing ontological information from metadata provided infor-
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and hence available for inferencing.
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1. Introduction

We have been investigating the problem of inducing information from metadata provided informally
via a set of tags describing objects — both physical and conceptual — and mapping the induced information
to an ontology. An ontology is a computational model of some portion of the world. It is often captured
in some form of a semantic network — a graph whose nodes are concepts or individual objects and
whose arcs represent relationships or associations among the concepts (Huhns & Singh, 1997). The
goal is to support deductive reasoning over the data, which receives much attention since the Semantic
Web (Berners-Lee et al., 2001) was proposed. Sheth and Stephens (2007) introduced basic concepts for
the Semantic Web and summarized real world applications of Semantic Web technologies. As a result
of our investigations, we have established the core requirements for a suite of tools that could enable
users, such as intelligence analysts and military strategists, to derive significantly improved utility from
unstructured information in a wide range of domains.
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We have surveyed current technologies in the areas of tagging, tags, folksonomies, semantic analysis,
integration of heterogeneous information systems, and ontology matching and reconciliation. Section 2
presents an overview of the findings from the technologies surveyed, and how this prior work supports
our investigations.

In order to identify salient features common to many tagged data repositories and to manage the
complexity of this typically socially-driven information domain, we have articulated the concepts for
describing and analyzing Folksonomy Space: a framework that supports knowledge extraction from a
folksonomy. This framework includes the strategy and methods to combine statistical induction (bottom-
up) techniques with lexical and semantic mapping (top-down) techniques, to achieve robust extraction
of semantics from unstructured information spaces. The dimensions of the Folksonomy Space help de-
lineate salient features of tag sets, tags, taggers, and referenced objects. Section 3 presents this analytic
framework.

We have identified and developed several analytic methods and software techniques needed to com-
bine the top-down and bottom-up techniques to maximize the information that can be extracted from
unstructured domains and make any implicit structure explicit. Section 4 provides an overview of these
methods and how they can be applied to a variety of tagged data sources.

We applied these methods to existing folksonomies, including tagged data from amazon.com and
flickr.com. We consider these tagged data sources as representative of free-form, socially-driven, unre-
stricted, heuristic tagging. Through several experiments we were able to demonstrate both induction of
ontological information from these folksonomies as well as mapping these induced structures to existing
ontologies. Section 5 presents these results, while Section 6 summarizes this research and development
effort and recommends promising directions to pursue.

2. Related work in tagging and folksonomies

The concept of tagging emerged to answer a need for flexible access to objects and information, and
the concept of a folksonomy emerged from the growth of collections of tags. We review the origins and
evolution of these terms in the following sections.

2.1. Tags and tagging

A tag is defined as a non-hierarchical linguistic keyword or term assigned to a piece of information,
such as an Internet bookmark, digital image, or computer file. This kind of metadata helps describe an
item and allows it to be found again by browsing or searching. Missier et al. (2007) addressed general
requirements of metadata management.

The history of tags on the World-Wide Web begins in 2003 when Joshua Schachter, the founder of
the first widely used social bookmarking site http://delicious.com, pioneered the use of tags for a user’s
bookmarks. In 2004, Flickr included the same concept and allowed users to tag pictures and videos
(numbering more than 6 billion in 2011), making them easier to be searched. With the success of Flickr
and del.icio.us, collaborative tagging gained popularity and, consequently, many other websites, such as
YouTube, Picasa and Technocrati, began implementing tagging.

There are at least two general kinds of tagging, typically with rather different characteristics. The
original (conventional) tagging model embedded the tags within a document; such intrinsic tags were
typically keywords added by persons knowledgeable about the content of the document. Tagging on the
Web was originally in this form: tags were added to Web pages by website developers, and generally
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only visible when viewing the page’s HTML source. This sort of embedded keyword tagging is still the
most widely used approach, and the keywords are used to build search indices for the Web and other
mechanisms for users to find information (and for businesses to market website content).

One problem encountered by Web users is that it is often difficult for them to add the metadata accu-
rately, much less precisely and formally, because they are often not sufficiently knowledgeable about the
content (or the domain in which the content is relevant) as to be able to assign meaningful or accurate
tags.

As a partial solution, some websites in Web 2.0 environments have achieved success by enabling users
to add metadata in the form of natural language tags. The result is that increasing amounts of on-line
information are being categorized by associating with each piece of information tags created by the users
themselves in ways that are comfortable and natural for them. In this social tagging model, users classify
the content according to their liking or needs, with no restrictions regarding their choice of terms. The
users are not given any guidance or restrictions about the form or structure of the tags they may use,
keeping the tagging process intuitive, easy, and straightforward for them.

Some examples of websites where users commonly tag content are:

http://delicious.com/ — for bookmarks,

http://www.flickr.com/ — for photographs and videos,
http://www.amazon.com/ — for a variety of products offered for sale,
http://www.librarything.com/ — for books,

http://www.gmail.com/ — for e-mails,

http://www.odeo.com/ — for podcasts.

These sites generally place no limit on the number of tags an item can have. Associating a larger
number of tags with an item facilitates the finding of more relevant information (i.e., greater recall). As
is known from information retrieval, as recall increases, precision typically decreases, because retrieving
additional relevant information also retrieves additional irrelevant information, and it can be difficult to
separate the two.

Tags have been used to study the growth of social networks (Wu, 2011). Accelerating growth patterns
appear in the virtual world. The phenomenon confirms that assigning user-chosen keywords to a piece of
information to facilitate searches does not correlate in a linear way to the number of social media users
using Internet tagging. Wu (2011) used the tagging behavior on the Flickr and del.icio.us social media
sites to study the growing activity of online communities. Although the number of tags and the popula-
tion fluctuates, communities have heterogeneity in individual tagging activity that remains constant over
time, but differs across systems. The average individual activity will grow as the system expands and
lead to the accelerating growth of overall activity. Such modeling of online activity growth could be used
to predict the server capacity needs of social media sites on the basis of historical data. It is believed that
use of the links on the Internet and related tags would greatly help the categorization system (Shirky,
2005). Uren et al. (2006) identified seven requirements of annotation/tagging including ontology support
and automation, reviewed existing annotation systems, and concluded that challenges remained after all
the requirements were integrated in these annotation systems. Automatic annotation systems have also
been studied (e.g., Kiryakov et al., 2004).

Though very useful, tags have quite a few disadvantages. First, since tags are freely chosen, synonym:s,
homonyms, and polysemy are very likely to arise, thereby degrading the efficiency of searching. For
example, a user could tag an item as Sport or Sports, and searches for items having one of these
tags separately would yield different results.
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Second, tags are used only as keywords, which do not convey information about their semantics.
Consequently, when an item is tagged with a word that can have more than one meaning, the search
results are bound to display some results that might be irrelevant to the user. For example, a user can tag
an item as Orange, which can refer either to the color orange or the fruit orange.

Third, items in an application domain or at a website might be tagged by many different people, and
often idiosyncratically. As a result, searches might have to be repeated a number of times with different
search terms before appropriate information is returned.

Last, tags are not related by any explicit structure, so any tag-based search returns only the content
containing exactly the same keyword. For example, consider three pictures where the first is tagged as
(Sports, Soccer), the second is tagged as Sports, and the third is tagged as Soccer. A search
for the tag Sports fetches the first and second pictures as its result, but not the third picture, even
though Soccer is a kind of Sports. Without knowing this semantic relationship, we are left with just
the first two pictures (i.e., low recall). Therefore, many researchers try to measure the relationship be-
tween tags effectively and doing semantic analysis according to these measures. Cattuto et al. (2008a)
analyzed three measures of tag relatedness: tag co-occurrence, cosine similarity (Salton, 1989) of co-
occurrence distributions, and FolkRank (Hotho et al., 2006) using data from the social bookmarking
system del.icio.us and based on a semantic grounding derived from WordNet (Fellbaum, 1998). They
determined the measures that were most appropriate for a given semantic application. For example, co-
sine similarity is best for synonym discovery among the three measures. A systematic methodology was
developed to characterize these measures by Cattuto et al. (2008b), which explored more measures of tag
relatedness. Korner et al. (2010a, 2010b) classified users as Categorizers and Describers and presented
findings about evaluations of semantically grounded tag relatedness measures.

Although tags can be assigned easily, because they are unstructured, there might be an implicit struc-
ture within a set of tags that emerges bottom-up as tags are added to a collection of items. The term
folksonomy (Wal, 2007) refers to this implicit structure. In the following section, we trace the evolution
of this term and provide a more precise definition that is used in the remainder of this paper.

2.2. Folksonomies

Aggregating the tags of many users creates a folksonomy. Folksonomies began gaining popularity in
2004 as a part of social software applications on the Web (Peters & Becker, 2009; Gruber, 2007). The
term “folksonomy” was coined by Wal (2007) as a combination of the words “folks” and “taxonomy”,
although it is only loosely related to a taxonomy. A taxonomy refers to a categorization of data in an ex-
plicitly hierarchical structure — a kind of informal and under-specified ontology — whereas a folksonomy
categorizes content with tags, which do not have any explicit hierarchy defined and are all treated as
being at the same level, i.e., they are theoretically “equal” to each other. Using these tags, a folksonomy
is intended to make information retrieval extremely easy and fast. It can also be used, as demonstrated
with the tags from http://delicious.com (Yeung et al., 2008), to customize searches. Halevy et al. (2009)
provides many challenges and possibilities by learning on unlabeled data.

The Semantic Web offers great potential to facilitate human activities (Berners-Lee et al., 2001) and
the task of discovering semantic relations between concepts (e.g., subsumption, disjointness, or named
relations) is core to productive use of the Semantic Web. As such, Scarlet (Sabou et al., 2008) harvests
the Semantic Web by automatically finding and exploring multiple and heterogeneous online knowledge
sources. The result is discovered relations, which can be used for tasks such as ontology matching,
ontology learning, word sense disambiguation, and ontology enrichment. The sources for this effort are
not tag sets, but partial ontologies of a domain.
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Because of their demonstrated utility, there have been several attempts to improve upon the semantics
of the tags to increase their utility. In one of these, a domain was seeded with a taxonomy and user-
generated tags were then added to it, so that the resultant set of tags would have a structure (Hayman,
2007). Jaschke et al. (2007) developed algorithms based on FolkRank and PageRank for tag recommen-
dation and compared these two algorithms. Another research effort tried to disambiguate tags (Yeung
et al., 2007) and another utilized it for better information retrieval (Zhou et al., 2008). In contrast, our
approach is to induce a structure from an existing unstructured set of tags.

In a similar vein, Angeletou et al. (2007) and Angeletou (2008) developed FLOR, a tool that per-
forms semantic enrichment of folksonomy tag collections by exploiting online ontologies, thesauri, and
other knowledge sources. The result is improved semantics for tags, but not relationships among tags.
Helic et al. (2011) proposed a pragmatic framework that used hierarchical structures learned by different
folksonomy algorithms as background knowledge for decentralized search to evaluate the usefulness of
folksonomies for navigating social tagging systems. It compared the results of four folksonomy algo-
rithms on five different social tagging datasets and found that folksonomies produced by tag similarity
graph algorithms performed better than hierarchical clustering algorithms for navigation.

Several researchers have developed frameworks and algorithms for learning ontologies, taxonomies,
or folksonomies from tags. Mika (2005) presented a methodology to generate lightweight ontologies
from a tripartite model that integrated a social dimension into a traditional bipartite model of ontologies.
Schmitz (2006) used a subsumption-based model to induce an ontology. Heymann and Garcia-Molina
(2006) developed an algorithm to acquire a hierarchical taxonomy from tagging systems. The approach
aggregated tags into tag vectors, calculated the similarity between tags, and discovered the latent hier-
archical taxonomy from the similarity graph. Cattuto et al. (2007) studied network characteristics by
considering folksonomies as tri-partite hypergraphs. Solskinnsbakk and Gulla (2010) used tag vectors
and built a semantic hierarchical structure based on folksonomies using association rule mining. Other
folksonomy learning methodologies from social tagging systems include Benz et al. (2010) and Li et al.
(2007).

Learning folksonomies from smaller structures has also been studied. Plangprasopchok and Lerman
(2009) introduced statistical frameworks that use user-specified relations and aggregate individual hier-
archies. Later they (Plangprasopchok et al., 2011) described an unsupervised probabilistic approach that
integrated smaller, noisy structures into a few complex structures. Plangprasopchok et al. (2010) learned
folksonomies from social metadata on Flickr by using relational clustering.

Ontology matching or reconciliation, which integrates heterogeneous databases and tagging systems,
plays an important role in studying ontologies. Mahalingam and Huhns (1997) developed a GUI tool
called JOE to create and edit ontologies, which was used later for semantic reconciliation (Mahalingam
and Huhns, 2000). Doan et al. (2003) introduced an ontology matching system GLUE that uses machine
learning strategies, while Dou et al. (2003) developed OnfoMerge for ontology merging with web lan-
guages as its input. Ontologies have been reconciled on an enterprise level (Huang et al., 2006; Huhns
& Stephens, 2002; Stephens & Huhns, 2001) also. Other ontology matching and resource integration
works include (Castano et al., 2003; Huang & Huhns, 2006; Stephens et al., 2003; Giunchiglia et al.,
2005; Doan & Halevy, 2005; Collet et al., 1991; Huang et al., 2005a, 2005b, 2005¢). Stephens and
Huhns (2001) worked towards reconciling semantics from different sources without a global ontology
and determining the efficacy of doing so. Noy and Musen (2000) proposed a semi-automatic approach
for ontology merging and alignment.

Schema matching, which differs from ontology matching by usually not providing explicit semantics
for the data, has been studied for enterprise applications. Madhavan et al. (2001) proposed a new algo-
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rithm called Cupid, which integrated the use of linguistic, structural matching, and so on to do generic
schema matching. Melnik et al. (2002) presented a schema matching algorithm taking graphs as inputs.
Pastor et al. (1992) found that little research has been done on mapping data structures to a database
without a semantic schema. They proposed a View-Concept model which used the knowledge repre-
sentation language LOOM (Macgregor & Bates, 1987) to define the semantic schema of a database and
implemented a prototype system.

The paper by Van Damme et al. (2007) provides a thorough analysis of tags and the tagging process. It
identifies and analyzes all of the information that is relevant to the interpretation of a folksonomy from an
ontological viewpoint. The information includes a statistical analysis of tags, lexical resources, existing
ontologies, and existing ontology alignments and mappings. We also advocate such a comprehensive
approach. The authors describe the approach and its facets, but have not yet applied it to a folksonomy,
as we have done and report on in this paper.

In the work most relevant to our own, Eda et al. (2009) produced an organization of the tags in a
domain by using probabilistic latent semantic indexing and a measure based on entropy. Each tag was
represented by a vector whose elements are the number of times each tag was applied to an item by a
group of taggers. The entropy of each tag determined its place in a directed acyclic graph, as well as
whether the tag was subjective or objective. It is most appropriate for domains having a relatively small
number of items that are tagged by a large number of taggers, which are different than the domains
considered herein.

Henceforth in this paper, when we refer to a folksonomy we intend it to connote the implicit hierar-
chical structure that emerges from a collection of tags, and the intent of our research has been to make
this implicit structure explicit and available to applications interested in the objects that are referenced
and described by the tags. As we explain in detail in subsequent sections, we consider all of these to be
in scope for our investigation:

o the folksonomy itself (i.e., the collection of all tags in a particular repository),

e the rags themselves,

o the referenced objects (whether tangible or intangible, concrete or abstract) to which they are ap-
plied, and

e the population of taggers from which a given tag collection arises.

Our hypothesis is that all of these can be used to help elucidate the relationships among tags, and hence
to induce the structure implicit in the tags.

We emphasize the breadth of our definition of “object”, because we intend it to apply very broadly to
anything that can be accumulated and tagged. We also note that tags, as we define them, subsume any
sort of metadata that has been applied to objects, whether or not it is structured or constrained in any
way: objects tagged with terms from a controlled vocabulary are a specialized form of ad hoc tagging, so
any results we obtain from analyzing the tags at amazon.com and flickr.com will be equally applicable
to more organized domains, such as military situation representations (SITREPs) containing tactical
information or scientific papers categorized using the ACM classification hierarchy.

3. Exposing latent information in folksonomies for reasoning

While the integration of structured data sources into reasoning systems has received a great deal of
study and many successful systems have been implemented, integration of unstructured information has
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remained difficult. The principal reason for this is that most practical reasoning systems are deductive:
reasoning proceeds according to well-defined rules of inference that assume a declarative model rep-
resenting knowledge in a particular logical form that encodes the semantics of the domain. Deductive
logic cannot easily be applied to information that is not encoded in this form.

There are other forms of reasoning, however, that lack the formal rigor of deductive reasoning, but are
nonetheless valuable in that they can discover structure where none obviously exists. In particular, induc-
tive reasoning looks for patterns in data, and uses statistical and other techniques to discover similarities
that are often strongly analogous to the kind encoded in ontologies as classes.

We believe that success in integration of unstructured data and structured data into a unified reasoning
system will require both techniques.

3.1. Problem analysis

Whereas structured sources typically have semantics encoded in their structures, specifying the seman-
tics of unstructured data has required humans to perform a semantic analysis and encode the meaning
of the data in an ontology. This is labor-intensive and impractical given the massive volumes of unstruc-
tured data available.

We presume a collection of objects (entities), as depicted in Fig. 1. The objects might be physical (e.g.,
products on amazon.com) or informational (e.g., intelligence data). A formal ontology (e.g., Cyc), which
at least partially covers the objects of interest, is also assumed to be available. The objects are described
informally by a collection of tags produced by a population of individuals (faggers). The tagging of
objects (see Fig. 2) usually takes place without the taggers being constrained by any guidelines. The
taggers are in many cases unorganized and unknown to each other, so the process of tagging is ad hoc
and the resultant collection of tags typically does not have any formal structure, although it often has an
implicit structure Lalwani and Huhns (2009), as described in Section 2.2.

Ontology

O

Domain .
Modeling

..

Fig. 1. The ontology is presumed to already exist and to have at least partial coverage of the domain based on models of the
objects in the domain. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/A0-130124.)
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Ontology

O
O O

Domain
Modeling

Fig. 2. A population of Taggers has now applied Tags to the Objects, introducing an ad hoc mapping from the objects to the
tags. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/A0-130124.)

The purpose of our effort is to develop tools that can explicate any implicit structure from a collection
of tags and induce from it an informal ontology. This can be further mapped to a formal ontology, and
thus can support deductive reasoning. This is depicted in Fig. 3.

We believe that the process of inducing the implicit structure of the tags and making it explicit can
be improved if information about the objects, the domain, the population of taggers, etc., is considered.
For example, if the taggers are electrical engineers, then the tag “conductor” is more likely to be about a
wire and not the leader of an orchestra.

Although there have been other attempts to reveal the structure explicit in a collection of tags, none
has fully related the tags to ontological and lexical knowledge that is available, and none has made use
of information about the characteristics of the domain, the folksonomy itself, the tags, the objects, and
the population. The basis of our research is our confidence that applying multiple techniques synergis-
tically will permit explication of far more of this implicit knowledge, and permit far more accurate and
comprehensive mappings to formal structures — ontologies — so as to permit previously inaccessible data
to be used in automated reasoning systems.

Our approach consists of three general categories of techniques for exposing and formalizing the latent
semantics in existing (large) data sets of tags (illustrated in Figs 1-3):

(1) Using inductive and machine learning techniques to derive a set of probabilistic clusters from the
tags. This is shown in Fig. 3 as the curved arrow on the right leading from the tags to the induced
structure.
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Ontology Induced Structure

@
O

Semantic
Mapping |

Mapping

Domain
Modeling

Fig. 3. Using inductive techniques, such as clustering, a structure can be induced over the tags, introducing induced mappings
from the tags to a new structure that is similar to an ontology. Using techniques from database matching and ontology alignment,
preliminary semantic mappings can be introduced. The nodes shaded in gold correspond to new classes derived from the induced
structure. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/A0-130124.)

(2) Using intermediate structures, such as lexicons, to map — largely via conventional deductive tech-
niques — from both the tags themselves and the informal structures identified by induction, to a
formal ontology. This is illustrated in Fig. 4.

(3) Using a conceptual structure that we call Folksonomy Space (cf. Section 3.2) to inform both the
inductive and deductive processes by tailoring them to the context. This is shown in Fig. 5.

In the literature, the first two of these have been called, respectively, bottom-up and top-down ap-
proaches. We do not believe that either of these general approaches can succeed on its own: bottom-up
techniques lack the ability to produce formal structures that can be used in reasoning, and top-down
techniques cannot derive novel information except by deduction from existing information.

Inductive techniques generally attempt to discover patterns and structures in data by statistical clus-
tering mechanisms. The clusters might be composed from individual terms (to discover classes), pairs
of terms (to discover binary relations), or the co-occurrences of sets of terms (to discover nth-order
relations).

Lexicon-based approaches to the general problem of mapping text to ontologies have existed for years,
but we believe that they have been under-exploited, because they have typically operated on terms that
are either unstructured, or structured as parse trees and similar linguistic artifacts. Our integration of this
approach is depicted in Fig. 5.

Extant mappings from intermediate structures, such as lexicons (e.g., WordNet) or thesauri, are used
to map from individual tags and the clusters identified by inductive techniques. These intermediate
structures are used not only to identify induced categories with classes in the ontology, but also to
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Ontology/ﬂ

Domain |
Modeling

Semantic

Mapping

Induced Structure

ema
Mapping 11

Inductive
Mapping

Lexical
Mapping

Fig. 4. A lexicon (e.g., WordNet) or other lexical structure is introduced, and both the raw tags and the terms in the induced
structure are mapped to the ontology via lexical and semantic mappings. These mappings may augment, confirm, and otherwise
improve the semantics of the mappings and any new classes in the ontology that have been derived from the inductive processes.
(Colors are visible in the online version of the article; http://dx.doi.org/10.3233/A0-130124.)

provide empirical support for existing class structures in the ontology. In other words, in addition to
compensating for weaknesses in the individual top-down and bottom-up approaches, our approach uses
the strengths of one technique to augment the other.

We believe that the third element of our approach — Folksonomy Space — is unique to our effort and can
be compared to a “tag cloud”, that is, a clustering of tags with no inherent structure or formal properties

Knautz et al. (2010).

Three of its axes are illustrated in Fig. 5:

e Tagger population (in this case, the level of heterogeneity of the population).
e Folksonomy structure (in this case, the degree of organization among the tags).
e Object type (in this case, the level of abstraction of the objects).

For the examples in this paper,

e The tagger population is situated well toward the “heterogeneous” end of the Tagger axis.
e The tags are situated well toward the “tags” (unstructured) end of the Structure axis.
e The objects are on the concrete end of the Object Type axis.

In the section that follows, we elaborate on the concept of Folksonomy Space.

3.2. Folksonomy Space

The concept of an N-dimensional organizing framework, which we call Folksonomy Space, guides
our selection of data sets and is useful in understanding their differences. As described below, we have
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OntologyA
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Folksonomy
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TaggerPopulation

homogeneous heterogeneous
FolksonomyStructure
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taxonomy tags

ObjectType

abstract concrete
ETC...

Fig. 5. An N-dimensional space — Folksonomy Space — has been introduced to the system; the Objects, Tags, Taggers, and a
number of other features of a particular context are all situated at specific locations on the axes of Folksonomy Space. These
locations yield an N-tuple that can be interpreted as a coordinate in Folksonomy Space; we intend to use this coordinate to
guide the selection of tools, the strategy adopted, and the techniques applied in our processing. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/A0-130124.)

identified 18 dimensions of this space, but have not yet established those that are most salient in predict-
ing which techniques and which structural artifacts (e.g., lexicons and ontologies) will be most effective
in processing a data set that maps to a particular locus in Folksonomy Space.

We view this 18-dimensional space as comprising four clusters of axes, where the clusters are nei-
ther correlated nor orthogonal, but are grouped only according to the entity (Folksonomy, Tag, Tagger,
Object) to which they apply.

3.2.1. Folksonomy dimensions
One axis in Folksonomy Space corresponds to characteristics of the folksonomy itself and is depicted
in Fig. 6.

(1) Structure refers to whether or not there is an explicit structure to the tag data. For example, the
Amazon tag data has no structure of any kind, while ACM and IEEE tags within computer science
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Structure ¢ >
taxonomy free-form (tags)

Domain
narrow broad

(specificareas)  (general knowledge)

Structural

Stability < >

static volatile

Fig. 6. The dimensions of Folksonomy Space relating to the space as-a-whole. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/A0-130124.)

Type < >
concrete abstract

Medium P >
text speech audio
imagery video

Structure ¢ B
structured semi- unstructured

structured

Fig. 7. The dimensions of Folksonomy Space relating to the objects being tagged. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/A0-130124.)

papers use a vocabulary that is predetermined. We believe that ad hoc tag collections will present
much greater challenges to our approach.

(2) Domain refers to the breadth of coverage of the tags.

(3) Structural stability refers to the degree to which whatever structures exist in the data persist over
time; for example, in an unconstrained tag set like that at amazon.com, the structure of the tag
collection changes constantly, while in a more constrained collection it might persist.

3.2.2. Folksonomy object dimensions

Our description of objects is not based on an analysis of the objects themselves: techniques for pro-
cessing and analyzing objects are moot for folksonomic structures, except for establishing ground truth,
and are outside the scope of our inquiry. However, our approach can incorporate components such
as a Google-like indexing engine that can preprocess the untagged objects. Our system operates on
(meta)data associated with objects, not the objects themselves.

For the objects themselves, as depicted in Fig. 7, the dimensions are

(1) Type relates to the entities that are the objects of the categorization: are they concrete objects or
abstract entities?

(2) Medium is primarily relevant for abstract objects; they may have physical manifestations, but the
medium is not the message, and it is the content rather than the container that is typically of interest.
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(3) Structure is primarily, although not exclusively, related to textual objects, where the meanings of

the various points on the scale are fairly well understood.

3.2.3. Tag dimensions
The dimensions in Folksonomy Space related to the tags (data), as shown in Fig. 8, are:

(D

2

3)

4

&)

(6)

Range refers to limits on the number of tags in the space; a finite (and relatively limited) set of tags
permits full exploration and analysis of the space. For Amazon.com, the tag space is limited only
by the imagination of the tagging population.

Accessibility refers to the level of protection placed on the data by its owner. This is the only
dimension on which Amazon data is not worst case, but inaccessible data (like intelligence data)
cannot be analyzed.

Explicitness describes how difficult the data is to extract from its milieu; Amazon data is, despite
being freely available, not structured to facilitate analysis, but rather to support browser function-
ality.

Location describes where the tag data exists — intrinsic, or within the tagged object (e.g., keywords
in a technical paper), or extrinsic, i.e., external to the document. Both aspects are widely used on
the Internet. The folksonomy data examined in this study were all comprised of extrinsic tags.

Tag structure refers to the actual lexical, typographic, orthographic structure — spelling, punctua-
tion, capitalization, character set, presence or absence of whitespace, etc. The term “tag” suggests
a single word, composed of contiguous non-blank characters; this is not the case for Amazon data
and, we expect, most data sets.

Vocabulary derivation refers to the origin of the terms in the vocabulary: Are they imposed exter-
nally or evolved internally? Again, the Amazon vocabulary is entirely evolved, as would likely not
be the case for intelligence analysts.

Range <« 2
finite infinite

Accessibility ¢ >
open restricted

Explicitness ¢ P
explicit implicit

Tag Structure < >
simple complex

Vocabulary

Derivation 4_ >
imposed evolved

Vocabulary

Stability < ] . >
static dynamic

Fig. 8. The dimensions of Folksonomy Space relating to the tags. (Colors are visible in the online version of the article; http://dx.
doi.org/10.3233/A0-130124.)



108  J. Tyler et al. / Exposing, formalizing and reasoning over the latent semantics of tags in multimodal data sources

Expertise < -
specialist general
Uniformity < -
homogeneous heterogeneous
Vocabulary < >
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Fig. 9. The dimensions of Folksonomy Space relating to the population of taggers. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/A0-130124.)

(7) Vocabulary stability refers to change in the composition of the tag set over time, which may or may
not be directly related to the tagger population; again, Amazon vocabulary changes constantly and
rapidly as new products and technologies enter the market (e.g., 1080p would not have been in
the Amazon tag space until the advent of high-definition televisions).

3.2.4. Tagger dimensions
The dimensions in Folksonomy Space related to the tagging population (taggers), as shown in Fig. 9,
are:

(1) Expertise is correlated with the scope of the terminology that the tagger population can be expected
to use.

(2) Uniformity refers to whether the tagger population is similar or dissimilar in terms of relevant
background, experience, and knowledge.

(3) Relation to objects refers to whether the author of the tags is also the author/creator of the tagged
object, or the tagger is an outside agent.

(4) Vocabulary range refers to whether or not there are explicit constraints on the vocabulary.

(5) Population stability refers to change in the composition of the population over time. For Amazon
taggers, we presume this to be highly dynamic, as would not be the case with, e.g., intelligence
analysts.

4. Methods for extracting knowledge from folksonomies

Our process for extracting knowledge from folksonomies has the following five phases:

Domain identification: the choice of a domain determines virtually every subsequent operation.

Extraction: gaining access to the raw data, and extracting it from the original source.

Preprocessing: filtering and other preprocessing to increase the signal-to-noise ratio and generally im-
prove the quality of the raw data.
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Induction: applying inductive and statistical methods to the filtered data set to construct candidate on-
tology fragments.

Mapping: using lexical, statistical, and other mapping techniques to integrate and align induced ontology
fragments with formal ontologies.

We discuss each of these steps in the following sections.
4.1. Identification of the domain

We considered and evaluated many alternative data sets for our evaluation effort, and this process
helped to shape our views of a typical space of tag data. Among the early candidates were military and
intelligence data sets, but both of these presented problems with accessibility (one of the dimensions of
Folksonomy Space related to tags).

Another class of candidates — scientific papers (e.g., in computer science) — were accessible, but we
felt that the range of tags within the papers was relatively narrow (the Range dimension for tags), im-
posed (the Vocabulary Derivation dimension for tags), and intrinsic (the Location dimension for tags). In
addition, along the tagger dimensions, all of the points on the Expertise, Uniformity, Relation to Objects,
and Vocabulary Range dimensions would be at or near the midpoints of the ranges.

In order for our results to have maximum generality and coverage, we felt that a data set at or near
the extreme ends of most of the dimensions of Folksonomy Space would be more suitable, if more chal-
lenging. Hence, we chose to adopt the Flickr and Amazon tag data sets — the former for preliminary
experiments using hand-culled data, and the latter for more sophisticated experiments using larger vol-
umes of automatically-culled data. We expect that any results derived from the Amazon data set will be
applicable to any less ad hoc data set.

4.2. Extraction

Locating and extracting the raw data for processing depends to a large degree on the characteristics of
the folksonomy, e.g.,

(1) Is it accessible to external processes?
(2) Is it in the form of a taxonomy or free-form tags?
(3) Is it static or volatile?

Each of these can present significant challenges to processing. In the case of the Amazon data, the tags
are embedded in undocumented, proprietary formats that are intended only for the purpose of support-
ing the amazon.com website: extraction required analysis of the HTML source code, identifications of
“landmarks” in the HTML that indicate the existence of different components of the raw data, and the
use of fairly complex pattern-matching and assembly to produce usable data.

In the case of more structured tags, and particularly those intended for external use, the extraction
process would not be quite as tedious. Embedded (internal) tag data — such as internal tags in a relatively
standardized location and format — will typically be relatively straightforward to extract and interpret,
although it may require identification of the type of resource and parsing of the content.
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4.3. Preprocessing

The amount of preprocessing required to make the raw data usable is to some extent a function of
the nature of the tags and the tagger population. For example, tags from an unconstrained vocabulary,
applied by a heterogeneous population of taggers, will tend to show far more variation and less objective
accuracy (in terms of fidelity to ground truth) than those from a constrained vocabulary applied by
specialists in the domain from which the tagged entities are drawn.

With ad hoc tag and tagger populations, accepting every tag proposed for a given entity can lead to
lowered precision, due to high proportions of inappropriate or idiosyncratic tags. In such situations, it
is necessary to apply some sort of filtering to eliminate as much noise as possible, preferably without
eliminating valid data. We have investigated a few statistical techniques to perform this filtering, but we
regard this as a fruitful area for further research.

Other sorts of preprocessing may be necessary for both the induction phase and the mapping phase.
For example, even among single-term tags, it may be useful to apply stemming and other conventional
text-processing techniques; in addition, compound tags may require more sophisticated techniques to
disambiguate among different interpretations of the tag (baby oil is oil for use on babies; 1inseed
o011 is oil made from linen seeds). These too are areas in which we recommend additional research.

4.4. Induction

In order to expose the structure implicit in a set of tags, so that we can take advantage of the structure
to improve user queries, we employ the following procedure:

(1) We begin with graphs of tags, taggers, and objects being tagged, with our primary data source
being graphs of co-occurrences of tags.

(2) Based on what we know of the tag domain (e.g., Amazon products, intelligence community ev-
idence, or Flickr photos) and the taggers (e.g., intelligence analysts or Amazon customers) sup-
plying the tags, we form hypotheses about the structure. Each hypothesis concerns an ontological
component of the tag space.

(3) We test the hypotheses using statistical techniques, primarily the cardinalities of various features
of the tag set, and ensure that they are statistically significant.

(4) We evaluate the results in terms of the standard metrics for information retrieval: precision and
recall.

(5) For validated hypotheses, we apply the conditions of the hypotheses to all of the data and generate
ontology fragments. These resulting fragments are then passed to the mapping stage.

4.5. Mapping

The final stage in processing is mapping of induced ontology fragments to ontologies, either directly
or via lexicons and other intermediate structures. Direct mapping between ontology fragments and on-
tologies has been successful, but mapping via lexicons provides additional flexibility, since terms from
the ontology fragment can be matched against any member of a synset, and thence from the synset to
the ontology via mappings provided by the authors of at least three of the major upper ontologies (Cyc,
SUMO/MILO and DOLCE). This means that it is not necessary to match a single term in the ontology
fragment to a term in the ontology: if the former is a synonym of the latter, it will map to the ontology
as long as the synset to which it belongs is mapped.
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There are many techniques that can be used to implement this mapping. During our initial experiments,
we have used syntactic and lexical matching — without any conventional text-extraction preprocessing,
as described in Section 3.2 — but a better approach would be to use techniques that have been developed
for ontology alignment (cf. http://www.ontologymatching.org/publications.html for a representative bib-
liography), as well as additional information derived from lexicons and ontologies.

Examples of the additional information available to us from lexicons and ontologies include inter-
nal relationships among synsets within WordNet (e.g., hypernym and hyponym) and tagging of the
SUMO/MILO-WordNet mappings that identifies the relationship (e.g., subclassof, instanceof) between
the synset and the corresponding SUMO/MILO term.

One limitation of the system we have developed is that it does not take into account the fact that
the mappings we identify are intrinsically probabilistic. As we develop improved mapping techniques,
particularly as we begin to apply statistical techniques to our matching processes, we expect to move to
a probabilistic model of the mappings that will allow reasoning to proceed without making unwarranted
assumptions about the accuracy of the mappings.

4.6. Using tags and folksonomies to enhance search

The tags that are linked to Web content can be used for keyword-based searches. The tags ideally are
used to filter out the enormous amount of data present on the Web and display only the data of interest.
When a user runs a tag-based search on the Web, only the information that has been tagged by other
users using the same tags is displayed in the search results. The user must then select from among these
results the most appropriate, desired content.

Superficially, tagging of data and subsequent searching for that and other data by specifying tags
of interest seems to be simple and effective. However, tag-based search filters out only some of the
irrelevant data, because of the idiosyncratic and uncontrolled nature of tagging. More importantly, it
also filters out a large amount of relevant information that is marked with similar, but not identical, tags
as used in the search. This is because in tag-based search — absent an organizing ontology — there is
no information about the semantics of a tag, and therefore no practical way to find related tags. For
example, a search for “utensils” on a cooking website would return only the items that have been tagged
with that exact keyword, ignoring all the other items that may be related to it. The user performing
this search would almost certainly be interested in seeing all utensils, whether they have been tagged as
utensils, or as spoons, forks or knives.

The simple process illustrated above — expanding the search to include terms that are related, but not
identical, to the provided keyword — is actually a simple form of deductive reasoning, and could be
supported by an ontology, if the implicit structure among the tags could be made explicit and related to
the ontology. Furthermore, when the implicit structure of the tags in the folksonomy is made explicit, the
ontology that emerges can be integrated with an existing ontology, and even used to extend, elaborate,
and validate it.

By mapping tags into an ontology — and thus, enabling semantic search — enhanced search results and
other advantages accrue over strictly keyword-based search.

e Semantic search can retrieve more of the available relevant information, resulting in better scores for
the information retrieval metric ‘recall’ (the total number of items retrieved divided by the number
of relevant items in the source data set).
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e Semantic search can correctly ignore more of the available irrelevant information, resulting in bet-
ter scores for the information retrieval metric ‘precision’ (the number of relevant items retrieved
divided by the number of relevant items in the source data set).

This brings a range of previously inaccessible data to play in systems using tag data.

5. Deriving ontological structure from a folksonomy

The structure of the Web has changed substantially via transitions from Akamai to BitTorrent, Bri-
tannica Online to Wikipedia, personal websites to personal blogs, publishing to participation, content
management systems to Wikis, stickiness to syndication feeds, and directories to folksonomies are some
of the indicators of the changes underway. The resultant Web now consists of Internet communities, so-
cial networking sites, data sharing sites, wikis, blogs, and tagging systems. Consequently, huge amounts
of information of different types and organizing principles are now accessible to users.

One aspect of the Semantic Web vision is that Web pages will have metadata that helps to specify
the semantics of the contents of the pages. The metadata will be machine-understandable and machine-
processable, which are needed for computers to be able to assist humans with use and management of
the massive amounts of data.

5.1. Induction of ontological information from folksonomies

To make tagging systems more efficient, a methodology needs to be devised so that all the data related
to keywords of interest gets displayed, rather than just the data containing those keywords. The objective
of our research is to make the structure and semantics of folksonomies explicit, and to integrate it with
ontologies so that reasoning can be performed over the entire body of knowledge. Our approach is to
formulate plausible hypotheses based on our previous work in the construction of ontologies Huang
et al. (2007); Huhns and Stephens (1999); Singh and Huhns (2005); Stephens et al. (2004), and then
evaluate the hypotheses using data from existing on-line systems of tagged items. Hence, in this paper,
we outline several hypotheses to derive additional utility from the tags that people are associating with
items that are on the Web or, more precisely, we are investigating how to derive ontological structure
from a folksonomy.

Specifically, we have formulated the following four initial hypotheses that we believe might describe
the implicit structure in a folksonomy.

Hypothesis 1. For a group of items, if the number of occurrences of Tagl is less than the number of
occurrences of Tag?2; and if there are items where Tagl co-occurs with Tag2, then Tag?2 is a subclass
of Tagl. The general heuristic rule we hypothesize is that the more a tag is used, the higher the level
(closer to a root) it will be in an ontology, because it will cover more instances.

Hypothesis 2. Two tags can be claimed to be related if and only if the ratio of their co-occurrences to
the subclass is greater than some threshold value, with confidence based on cardinality.

Hypothesis 3. For a group of items, if Tagl co-occurs with Tag2 and Tag1l also co-occurs with Tag3,
but Tag?2 does not co-occur with Tag3, then Tag2 and Tag3 are subclasses of Tagl, and Tag?2 is
disjoint with Tag3 with a confidence based on the respective cardinalities.
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Hypothesis 4. For a group of items, if Tagl co-occurs with Tag2 more than a large fraction of the
average cardinalities of Tagl and Tag2 (heuristically meaning that Tagl and Tag?2 almost always
occur together), then Tagl and Tag?2 are synonyms.

To evaluate the veracity of these hypotheses, we have conducted a number of searches on Flickr.
Our first set of searches concentrated on evaluating the first hypothesis. Each search contained three
parameters: Tagl — displaying the number of items tagged with Tagl, Tag2 — displaying the number
of items tagged with Tag2, and (Tagl, Tag2) — displaying the number of items tagged with both
Tagl and Tag2. The evaluation was based on the number of occurrences.

For the second hypothesis, each search contained two parameters (Tagl, Tag2) and Tag2, and
then a mathematical analysis was done to calculate the threshold ratio along with allowable variance.

For the third hypothesis, the numbers of co-occurrences were compared to the threshold value and then
analyzed to identify whether some relationship exists or the tags are disjoint. This hypothesis inherently
considers Hypothesis 2 to be true.

The fourth hypothesis relies on tags frequently occurring together. The analysis is done two tags at-a-
time.

5.2. Statistical induction from flickr.com tags

To understand the ontological knowledge among tags used by people in different domains, we have
performed a mathematical analysis based on the results obtained from the experimental searches done on
http://www.flickr.com (only on pictures that were available publicly). Specifically, this analysis provides
the additional knowledge implicit in the tags that can be used to derive a hierarchical structure (along
with a few non-statistically significant exceptions). The obvious cause of these exceptions is the use of
tags freely chosen by users.

The Folksonomy Space used for the preliminary bottom-up experiments consisted of a set of tags
T = t;, with the nth-order relation R (read as “occurs together”), where

R:TyxT)x---xTn— N.

For example, the tags Sports and Basketball occurred together more than N = 100 times. N is
the set of positive integers (in this case the cardinality of the relation tuple).

For the experiments, we only considered pairs of terms (such as Sports and Basketball), so the
relation was

R:Ty xT, — N.

By sampling R, we were able to induce an ontology.
The dimensions of the Folksonomy Space for our experiments, using the dimensions specified above
in Section 3.2, are:

Object type: abstract (photographs in Flickr),
Object structure: unstructured,

Medium: image (photographs in Flickr),
Population: general,

Vocabulary: free,
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o Folksonomy structure: free-form (tags),
e Domain: broad.

Other features not captured in the space: the identity of the taggers was not known and the taggers
generally did not know each other, so the tagging was done independently.

5.2.1. Hypothesis 1

For a group of items, if Tagl occurs less frequently than TagZ2 and if we have a reasonable count
for items where Tagl co-occurs with Tag2; then the class Tag2 can be termed a subclass of the class
Tagl.

Note, we consider here the co-occurrences of tags only if their number is at least 5% of the number
of less occurring tags, to cover the margin for errors that can occur due to the use of an uncontrolled
vocabulary. This assumption is based purely on observation.

This hypothesis was an intuitive guess taken initially while investigating how users have tagged con-
tent on Flickr. The first thing we observed was that for any given hierarchy of classes, users tend to use
the leaf nodes as tags more often than they use superclass terms for tags. For example, the tag for the
class Spoon is used more frequently than the tag for its superclass, Utensil. The results returned from
the experimental searches were evaluated by counting the occurrences of Tagl and Tag?2 individually
and then counting the occurrences of both tags together. The cardinality ratio of Tag2/Tag1l for all the
individual observations was calculated and then its arithmetic mean was taken. The average of the car-
dinality ratio was calculated to be 3.86, which might seem to conclude that most of these experimental
searches abide by this hypothesis. But the reality is just the opposite. The average came out to be on the
higher end, because a few search results gave a high ratio of up to 32. A large number of these searches
defied the hypothesis, which is clearly shown in the histogram in Fig. 10.

According to the hypothesis, the frequency for subclass /superclass ratio > 1 should have been more
than the frequency for subclass/superclass ratio < 1, but the histogram reveals the opposite. The main
cause of this inconsistency is the use of an uncontrolled vocabulary by the users, which inhibits deter-
mining the actual count of the tag and consequently the failure of this hypothesis. For instance, consider
a picture of a “human being”. Different users can tag this picture with Human, Humans, Homo
sapiens, Man, Woman, etc., which, although they mean the same thing, are different when count-
ing tags.

Another reason observed here is that users tag content differently for different domains. For some
categories, users tend to use the superclass rather than the leaf nodes, but vice versa for other categories.
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Fig. 10. A histogram of the experimentally found rations for (subclass cardinality)/(superclass cardinality). (Colors are visible
in the online version of the article; http://dx.doi.org/10.3233/A0-130124.)
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For example, the cardinality ratio for pictures tagged as Fork vs. the pictures tagged as Utensil is
32, causing the hypothesis to appear true, whereas the cardinality ratio for pictures tagged as Eagle vs.
the pictures tagged as Bird is 0.1, causing the hypothesis to be considered false.

There are many similar examples and hence no certain conclusions can be drawn about the subclass—
superclass relationships of tags based on this hypothesis. Hence, it is not verified.

5.2.2. Hypothesis 2

Two tags can be declared to be co-related if and only if the ratio of their co-occurrences to the subclass
is greater than some threshold value, with confidence based on cardinality.

In the first hypothesis, we made a vague assumption about tags being co-related. So, in this hypothesis,
we claim that for two tags to be co-related, the ratio of the cardinality of their co-occurrence to the
cardinality of the individual tags must be greater than a plausible value, determined experimentally. In
order to calculate this value, three consecutive searches were done — first having both the tags and then
a search for obtaining each individual tag. The result of the first search is then divided by the result of
both the other searches separately to calculate two ratios for cardinality. Here, two ratios of cardinality
have been calculated separately because, currently, we do not know whether any relationship between
the tags exists and, therefore, we need to consider both cases. Similar calculations have been made for
approximately two-hundred search results on Flickr. The mean of the ratios calculated, thus, gives us a
good estimate of the final cardinality ratio to decide whether a subclass/superclass relationship exists or
not; or more precisely, it gives us the threshold value.

For example, the cardinality of items with tag (Animal, Dog) is divided both by the cardinality of
items with tag Animal and the tag Dog. The cardinality ratios are calculated to be 0.12 and 0.06. So,
the final cardinality is the mean of these two, which is 0.09.

The histogram in Fig. 11 shows the results of our experiment. The tags for this histogram are deliber-
ately chosen to have an inherent subclass—superclass relationship, which will then help us in determining
the threshold value.

The mean of the cardinality ratio of the tags used for the above histogram is 0.09 and the variance
is 0.005. But as can be seen from the histogram, the frequency is highest between cardinality ratios of
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Fig. 11. A histogram of the cardinality ratios used to determine a threshold for deciding whether two tags are related or not.
(Colors are visible in the online version of the article; http://dx.doi.org/10.3233/A0-130124.)
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Fig. 12. A histogram of the cardinality ratio among tags that are unrelated to each other, to provide a contrast with the histogram
in Fig. 11. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/A0-130124.)

0.04 and 0.08, so it can be concluded that the threshold value for two tags to be in a subclass—superclass
relationship is 0.06, based on our statistical analysis.

To verify the above finding, we constructed another histogram (shown in Fig. 12) for tags that are not
related to each other in any way. The mean of the cardinality ratios for these tags was calculated to be
0.0008 and the variance was 1.5E—06. Hence, our experiment clearly shows that the threshold value of
the cardinality ratio works well indeed and Hypothesis 2 holds.

There are certain cases where this hypothesis does not hold. For example, consider the tags Grass,
Green. Obviously, Green is just the color of the grass and does not have any superclass—subclass rela-
tionship with Grass, but if this hypothesis were true, then it would result in Green being declared to be
a superclass of Grass. (However, if Green is interpreted as the set of all things that have color green, then
the superclass relationship is reasonable.) This again shows that inconsistency in tagging content from
the user’s end can introduce inconsistencies in the behavior of any such ontological structure-finding
technique, and so errors are expected to occur. For the number of searches made, this hypothesis gave a
success rate of more than 85%. Hence, this hypothesis is considered to be verified.

5.2.3. Hypothesis 3

For a group of items, if Tagl co-occurs with Tag2 and Tagl also co-occurs with Tag3, but Tag2
does not co-occur with Tag3, then Tag2 and Tag3 are subclasses of Tagl, and Tag?2 is disjoint with
Tag3 with confidence based on the measured cardinalities.

This hypothesis is a direct consequence of Hypothesis 2, where we were able to derive a conclusion
that some relation exists between two tags, but could not define the exact relation. So, in this Hypoth-
esis, we add one more tag to the observations and record the results as explained: the co-occurrence
of (Tagl, Tag2) isrecorded, then of (Tagl, Tag3) and finally of (Tag2, Tag3). All these
co-occurrences are then analyzed separately and cardinality ratios for each of them are calculated. The
cardinality ratios for the first two searches are greater than the threshold and, hence, from Hypothesis 2
it can be concluded that there exists a relationship between them. No such relationship exists between
Tag?2 and Tag3, as their cardinality ratio is far below the threshold. So, it can again be concluded that
Tag?2 and Tag3 are disjoint classes. Now, since Tagl co-occurs both with Tag2 and Tag3 with a high
cardinality ratio, it becomes obvious that it is one level higher than the other two tags and hence becomes
the superclass for the other two tags. The combined results, shown in the histograms of Figs 11 and 12,
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describe the statistical analysis of Hypothesis 3. The following example provides intuitive justification
for the hypothesis.

Example. For pictures having tags (Soccer, Sports), the cardinality ratio was calculated to be
0.065 (greater than the threshold value, 0.06). For (Basketball, Sports) the cardinality ratio
was 0.10 (>0.06) and, finally, for (Soccer, Basketball), the cardinality ratio was 0.005 (<0.06).
Indeed the hypothesis holds true, as Basketball and Soccer are subclasses of Sports.

Again, there are certain exceptions where this hypothesis fails. But considering the behavior of folk-
sonomies and the reasons specified, exceptions of about 15% are assumed to be tolerable. Since the
analysis for this hypothesis is dependent on Hypothesis 2, it primarily fails in cases when Hypothesis 2
fails. Hence, this hypothesis is considered to be verified.

5.3. Statistical induction from amazon.com tags

The goals of the statistical induction effort are to (1) determine the correct classification of an item, so
that it can be found precisely by a user’s query, and (2) find the classification of all items, so that a user’s
query can be answered completely. The Folksonomy Space being used for the preliminary bottom-up

experiments is assumed to consist of a set of tags T' = I3, having three nth-order relations. The first is
R, (read as “occurs together”), where R, is:

R]IT] XT2X"'XTn—)N.
N is the set of positive integers (in this case the cardinality of the relation tuple). For example, the tags
Sports and Basketball occur together in Flickr more than N = 100 times.

For the first experiments, we only considered pairs of terms (such as Sports and Basketball), so
the relation simplifies to:

Rl IT[ X T2 — N.
The second relation R, (read as “has same tag”) is:
Ry: I} x I, x ---x I, > M,

where I; is an item and M is a positive integer.
The third relation R; (read as “tagged the same item”) is:

Ry:PixPyx---xP,— L,

where P is a tagger and L is a positive integer.
By sampling R;, R, and R; we were able to induce fragments of an ontology. For example, we were
able to induce that Basketball is a subclass of Sports.
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Fig. 13. Example of Graph #1 of tags and their co-occurrences. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/A0-130124.)

5.3.1. Graphs constructed from Amazon product tags

Our basic objective is to find one or more relationships among the tags in a tag space for some domain,
and then use those to find relationships among the domain objects that the tag space describes. The latter
relationships can then be used to assist users in navigating the domain.

To investigate this, we derived three graph structures from the website amazon.com, as follows:

(1) Graph (non-directed) of Amazon tags (see Fig. 13):

e Each node is a tag.

Each node has a cardinality indicating the number of items (products) for which the tag was
used. For example, the tag Apache was associated with 180 items at amazon.com.

Each link between two tags represents a co-occurrence of those tags for an item.

Each link is nondirectional.

Each link has a cardinality indicating how many instances of the co-occurrence there are.

The graph can be captured by choosing one or more “seed” tags as starting points for product
searches and then performing a search on the tags for each of the returned products recursively
in a breadth-first or depth-first order.

(2) Graph (non-directed) of Amazon items:

e Each node is an item type (class).

e Each node has a National Stock Number (NSN), UNSPSC, UPC, or equivalent product code in
some namespace/registry.

e There is a link between two items if they share at least one common tag.

e Each link has a cardinality indicating the number of tags shared by the two nodes.

(3) Graph (non-directed) of taggers, i.e., people who provide tags for items:

e Each node is a tagger.
e Each node has a unique identifier (the person’s Amazon name).
e Each link between two taggers represents that the taggers have tagged the same item.

For Graph #1, the resultant space of tags might be very large (on the order of ten times the number of
products at Amazon), so we reduce the space by merging the nodes whose tags are first from the same
stem, second that have been deemed to be synonyms based on Hypothesis 4 (described below), and third
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from the same synset in WordNet. Alternatively, we split a node if its elements are linked to disjoint sets
of words in WordNet.

From the resultant co-occurrence graph, we can induce disjoint subclass and disjoint partOf relation-
ships (with an associated likelihood or probability). One procedure for this is to apply and then test the
following hypothesis.

Hypothesis 3a. For a group of items, if Tagl co-occurs with Tag2 and Tagl also co-occurs with
Tag3, but Tag2 does not co-occur with Tag3, then Tag2 and Tag3 are subclasses of Tagl, and Tag?2 is
disjoint with Tag3 with a confidence based on the respective cardinalities.

A problem with this hypothesis is that it can reveal not only disjoint subclasses in a taxonomy, but
also disjoint superPart classes in a meronymy, and these cannot be distinguished except by appealing
to another source of knowledge, such as a thesaurus (e.g., WordNet) or an ontology (e.g., Cyc). For
discovering meronymic information, we formulate the following hypothesis:

Hypothesis 3b. For a group of items, if Tagl co-occurs with Tag2 and Tagl also co-occurs with
Tag3, but Tag2 does not co-occur with Tag3, then Tag2 and Tag3 are superparts of Tagl, and Tag2 is
disjoint with Tag3 with a confidence based on the respective cardinalities.

For example, if Tagl is Bolt, Tag?2 is Engine, and Tag3 is File Cabinet, then these tags
would satisfy both Hypotheses 3a and 3b and there would be no way to distinguish subpart from sub-
class. However, if the tags could be mapped to equivalent terms in WordNet or concepts in Cyc, then the
relationships might be distinguished.

Similarly, we can form hypotheses involving the relationships owns and causedBy, as indicated in
Fig. 14, and these are similarly conflated.

5.3.2. Precision and recall

Out of 25,000 tags extracted from the amazon.com website, the total number of triples that have the
structure (tagl, tag3), (tagl, tag2) and (tag2, tag3) is 173,097. Out of these, the total
number of triples that are declared to satisfy Hypothesis 3 is = 9064. We analyzed manually 100 of
these and 100 of the (173,097 — 9064) = 164,033 that do not satisfy Hypothesis 3. We determined that
the number of triples that satisfy Hypothesis 3 and have the disjoint subclass relationship is 26 out of
100. So, precision is 0.26.

subclass

(many) subclass superpal uperpart
N YA N
| Tag2 I(—)I Tag3 | | Soccer ](—){ Hockey | ] Engine |< File Cabinet
disjoint disjoint disjoint
(few)
| BuildingCollapse ] | Exxon Mobil |
causedBy causedBy owns owns
SN SN
| Explosion |¢<——>{ Faulty Construction | Oil Field Drilling Equipment
disjoint disjoint

Fig. 14. Examples of the relationships derivable, but not separable, via our statistical induction techniques.
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Of the triples that do NOT satisfy Hypothesis 3, but are determined to have the disjoint subclass
relationship, there are 6 out of 100. So, recall is 26/(26 + 6) = 0.81. Changing the thresholds changes
the balance between precision and recall, and this can be adjusted in practice based on a particular
application of folksonomy-aided information retrieval.

We have done some initial data analysis using F-measure, which is the harmonic mean of precision
and recall, i.e.,

Fy = 2 x Precision * Recall /(Precision + Recall).

The thresholds we use for deciding whether or not a particular triple of tags satisfies Hypothesis 3 can
be chosen to maximize this F'-measure.
Examples:

o Tag pairs that are declared to be disjoint subclasses according to Hypothesis 3 and actually are:

— nfl and college football are disjoint subclasses of football,
— cambodia and vietnam are disjoint subclasses of southeast asia,
— bustiers and shapewear are disjoint subclasses of slenderizers.

e Tag pairs that are declared to be subclasses according to Hypothesis 3 and actually are NOT:
— confederacy and abraham 1lincoln are not subclasses of civil war.

5.3.3. Hypotheses 1,2 and 4

For a tag space, such as exists at Amazon or Flickr, we evaluate Hypotheses 1, 2 and 4 as follows. For
each pair of distinct tags, t; and ¢;, where @ # j, and ¢;; represents the co-occurrence between ¢; and ¢;.

If ||lcij]| < o||ti|| + ||£]))/2, then there is no relationship between ¢; and ¢;. The constant v is deter-
mined experimentally with data from Flickr and Amazon to be 0.06.

If [cij|| > B(||ti]] + ||£;]])/2, then there is a synonym relationship between ¢; and ¢;. The constant 3
is determined experimentally to be 0.75.

Otherwise, if ou(||t; || +t1))/2 < |leij || < B(|til]+]1¢51)/2, then there is a disjoint subclass—superclass
relationship between ¢; and t;, where t; C ¢, if ||¢;]| < ||¢;]| and t; D t;, if ||t;]] > [|¢;]]-

We can also link each node to a synset in WordNet and from there to a concept in an ontology (in the
current system, Cyc or SUMO/MILO). A user query based on a given tag can be broadened or narrowed,
as needed, by using either more general or more specific concepts from Cyc or WordNet.

The construction of Graph #3 is difficult, because the needed data is not publicly available from
Amazon. It is not yet clear what folksonomic structure, and thus utility, can be derived from Graphs #2
and #3. We expect that continuing research will reveal this.

The possibilities for graphs over tags, taggers, and items that can be analyzed to reveal implicit struc-
ture are:

Co-occurrences of tags based on items (Graph #1).
Relationship on tags based on taggers.
Relationship on items based on tags (Graph #2).
Relationship on items based on taggers.
Relationship on taggers based on items.
Relationship on taggers based on tags (Graph #3).
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Besides the inability to distinguish among several different kinds of semantic relationships, as described
above, our statistical induction techniques cannot distinguish between classes and objects (class in-
stances). For example, it cannot distinguish between the class OilCompany and the instance Exxon-
Mobil. We anticipate that mappings to ontologies will facilitate making distinctions like this, and we
suggest investigating this in future research.

5.3.4. Additional results from amazon.com

Our Hypothesis 4 concerns the detection of synonymy. We present here the results for the amazon.com
data. Each pair of tags has three numbers associated with it: two counts for the individual tags and the
count of co-occurrences. We first compute the means of the three numbers. If all three lie within 0.75
(more about this value below) times the standard deviation (for these three numbers), then the two tags
are said to be synonymes.

If we choose the threshold value to be 0.75 times the standard deviation, then about 3212 pairs are
said to be related and 22,493 are not said to be related of the total 25,000 data items extracted from
the amazon.com website (i.e., pairs that have cardinalities). If the threshold is 0.70 times the standard
deviation, then NONE of the tag pairs is deemed to be related. At the other extreme, if the threshold
is 0.85 times the standard deviation, then ALL of the tag pairs are found to be related. Just as for
Hypothesis 3, we plan to choose the threshold based on maximizing the F'-measure.

5.3.5. Precision and recall

According to Hypothesis 4, of the 100 tag pairs that are said to be synonymous, 35 are actually
synonyms. So, precision is 0.35.

According to Hypothesis 4, of the 100 tag pairs that are said to be NOT synonymous, 3 are actually
synonyms. So, recall is 35/38 = 0.92.

Examples:

e Tag pairs that are declared to be synonymous according to Hypothesis 4 and actually are:

christian music, christian rock
slimmer, shapewear

forum, forums

james bond, 007

e Tag pairs that are declared to be synonymous according to Hypothesis 4 and actually are NOT:

homesensors, smokedetectors
door chimes, bells
civil war, abraham lincoln

o Tag pairs that are NOT declared to be synonymous according to Hypothesis 4 and actually are NOT:

super reader, horror
scented pitcher, glassware

e Tag pairs that are NOT declared to be synonymous according to Hypothesis 4 and actually are:

home safety, home security
seatpost, bicycle seat post
lead test, lead check
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5.4. Discussion of induction results

In this section, we have examined tagging and folksonomies: their emergence, importance, and future
use. Tagging began with one website pioneering this idea and now many developers are trying to use
some variation of a tagging system for their websites. Considering the future of tagging systems and the
way users are tagging items on the Web, it is going to become more difficult to find things using tags.
Therefore, our research has proposed and investigated a few hypotheses that can facilitate tag-based
search. The idea is to identify the network of related tags for a given tag and, for searches, retrieve
all items within a short “tag distance”. Based on the results of the experiments already completed, we
can conclude that it is feasible to derive an ontological structure from a given folksonomy and use it to
retrieve additional relevant information.

Although our first hypothesis was not verified, a number of important inferences can be drawn from
the results that we obtained. That is, users tend to tag data with different keywords that may or may not
be the leaf nodes in a hierarchy depending on the domain to which the data belongs. For some domains,
this hypothesis yields good results, whereas for other domains it fails. Consequently, work can be done
to categorize data in different domains and hence a more domain-specific hypothesis can be made that
might yield more accurate results.

Our second hypothesis was a direct consequence of the first. The second hypothesis does not tell us
clearly what relationship exists between two tags, but it does reveal whether a relationship exists or
not. This hypothesis extracts a vague relationship, which is then used along with our third hypothesis to
determine a more accurate relationship. Our third hypothesis is an extension of the second one.

Our continuing work will be based on expanding this research to either more specific domains or
trying the same approach with different on-line tagging systems. Experiments on Flickr and Amazon
have produced surprisingly consistent results, but they are insufficient to be generalized for other tagging
systems. The primary reason is that the method and hypothesis given for tags used on Flickr and Amazon
may or may not be applicable to other systems, such as del.icio.us, since these are two very different
tagging systems. For instance, a superclass—subclass relationship derived in Flickr may turn out to be
a subclass—superclass relationship in del.icio.us or the tags may not be related at all. The results of our
experiments convey the same message.

5.5. Semantic/lexical mapping

A general discussion of the process of mapping tags to structured artifacts, such as lexicons and tax-
onomies, was presented in Section 3.1. In the following sections, we review the processing we performed
on the Amazon tag dataset.

5.5.1. Extraction

As noted previously, the Amazon tag dataset was deliberately chosen as a “worst-case” example. It
is relatively inaccessible, buried in voluminous raw HTML in undocumented formats. Our extraction
technique utilized regular-expression patterns to find the tag co-occurrence data.

The tag data was obtained by issuing an initial HTTP request to amazon.com with a “seed” tag; seed
tags were deliberately chosen to be ambiguous — to have multiple senses and meanings. Once the co-
occurrence data was extracted from the initial page, the co-occurring tags were queued and submitted
via HTTP request to amazon.com one at a time, and the page returned for each tag was subjected to the
same processing as the seed tag’s page. The extraction process is illustrated in Fig. 15.
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Fig. 15. Tag extraction process for amazon.com. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
AO-130124.)

The order in which tags were processed was based on normalized tag co-occurrence values with the
tag for which they first co-occurred; this was a heuristic, and we are interested in examining other such
heuristics to determine whether the order of processing affects the results in any significant way.

Tag co-occurrences were stored as a graph with tags as nodes and co-occurrence frequency as weighted
links, while the tag extraction subsystem used a graph database.

Since Amazon tag data can be presumed to be variable and we wished to perform experiments on a
stable data set, we experimented on snapshots of the tag set at particular points in time; we note that an
operational system would need to allow for growth and change of the tag set and this is a features that
warrants further experimentation.

In our experiments, 101,372 distinct tags were extracted from Amazon’s total tag set. Without direct
access to the full tag set, we cannot determine what percentage of the total this extracted subset repre-
sents, nor do we know of any way of determining this other than by exhaustive enumeration.

5.5.2. Filtering

Not all co-occurring tags were added to the queue: only those exceeding a threshold value were added.
This filtering was inserted into the preprocessing based on initial examination of the Amazon tag data,
which exhibited a large amount of noise in the form of highly idiosyncratic, subjective, and even in-
scrutable tags. This was not unexpected, given that Amazon tag data is at the extreme end of many axes
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Fig. 16. The process for filtering the extracted tags. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/A0-130124.)

in Folksonomy Space: totally unconstrained vocabulary, maximally heterogeneous tagger population,
etc.

Figure 16 illustrates the filtering process. For the tag Barrel we find more than 50 co-occurring tags,
many (if not most) of which do not appear to be relevant to any of the senses of Barrel (or are perhaps
meaningful only to the tagger — an example of highly idiosyncratic tagging). Determining which of these
are truly relevant is not straightforward, because setting too high a threshold may eliminate viable tags
(low precision), while setting one too low helps very little (too high recall). After some experimentation,
we determined that by normalizing the co-occurrence count by dividing each count by the total co-
occurrence count for the “source” tag, and eliminating any tag with a normalized value below 1%, we
achieved a reasonable tradeoff between effective filtering and eliminating viable tags: as can be seen
above, had we chosen 2%, several viable tags (e.g., Rain Barrels and Water Barrel would
have been eliminated).

We conjecture that the threshold value may be strongly related to the values of dimensions measuring
the coherence of the tag set, e.g., homogeneity and level of expertise of taggers, scope of domain, etc.
This is another area in which we recommend pursuing additional research.

5.5.3. Mapping

A complication involves the format and consistency of the available mappings between WordNet
and the two upper ontologies: SUMO/MILO, in particular, presented a significant challenge given the
resources available, since the mappings are implemented by extending the native, idiosyncratic, WordNet
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data tables with additional fields and notations. While there is software to support manipulating these
data tables, expediency dictated a simple text conversion to a form that was more manageable.

A final complication relates to the internal formats of the various lexical and ontology resources with
regard to capitalization, spelling, use of delimiters and connectors, e.g., ‘—’ and ‘_’ vs. embedded spaces.
Some normalization was done via simple text manipulation, but this — while not a significant challenge —
will nonetheless have to be addressed in subsequent research.

All lexicon and ontology data was therefore normalized and formatted as text and imported into a
DBMS as separate tables, and the matching of terms was via SQL queries. The initial mappings were
therefore based on simple case-insensitive string matching without the use of stemming or other text
extraction techniques, and no attempt was made to deconstruct compound tags, which occur frequently
in the Amazon data.

We also note that we are aware of mappings between WordNet and DOLCE, a third upper ontology.
We omitted DOLCE from our experiments because the mappings are to a previous version of WordNet,
thereby requiring a translation between WordNet versions.

5.5.4. Experimental results: WordNet < Cyc

As noted above, experiments were conducted with 101,372 distinct tags extracted from Amazon’s tag
data. Tags were matched (case-insensitive string match) against WordNet terms in Cyc < WordNet 2.0
mappings; no stemming or other typical text preprocessing was performed. Multiword (compound) tags
were not deconstructed; none of the WordNet terms in the Cyc < WordNet 2.0 mappings contains any
white space, so compound tags would not be matched.

Despite the lack of sophistication in preprocessing and matching, 6863 matches were identified —
a 6.77% hit rate. Multiple word senses were identified (e.g., conductor = ConductingMedium and
conductor = MusicalConductor), as were multiple parts of speech (e.g., combat = Battle (v)
and combat = Fight-Physical (n)).

Given the relatively large amount of noise in the data, even after filtering, a success rate of 6.77%
for simple string matching exceeded our expectations. Prior experience with information extraction and
text processing leads us to believe that increases are very likely when both conventional text-processing
techniques and more sophisticated techniques based on statistical matching and ontology alignment are
employed, and when compound terms that consist of, e.g., modifier/noun pairs are deconstructed.

5.5.5. Experimental results: WordNet < SUMO/MILO

Experiments with SUMO/MILO were performed with the same set of 101,372 Amazon tags as for Cyc.
Tags were matched (case-insensitive string match) against WordNet terms in SUMO/MILO < Word-
Net 2.0 mappings. As with Cyc, no stemming or other typical text preprocessing was performed, and
multiword (compound) tags were not deconstructed; none of the WordNet terms in the SUMO/MILO <
WordNet 2.0 mappings contains any white space, so compound tags would not be matched.

Despite the lack of sophistication in preprocessing and matching, 18,208 matches were identified —
a 17.96% hit rate and, as with Cyc, multiple word senses and multiple parts of speech were identified.

We note here that there is a significant difference between the Cyc and SUMO/MILO mappings to
WordNet, and that once the formatting issues have been resolved there is additional information in the
SUMO/MILO mappings that will almost certainly provide additional leverage to our matching. Whereas
Cyc-to-WordNet mappings are implicitly all equivalences, the SUMO/MILO mappings contain one of
a number of relationship tags, including equivalence, subsumption, and type. This information can be
used to further refine the mappings.
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5.5.6. Significance of results

With relatively simple and straightforward data extraction and preprocessing techniques, we achieved
reasonable success with tag = lexicon = ontology mappings, and we are confident that application of
conventional text-extraction techniques, as well as deconstruction of compound tags, will dramatically
improve the rate of success.

We note that our mapping experiments were performed independent of the induction experiments, but
since by definition induced classes will be drawn from the same tag population, mapping from induced
class structures should be at least as good as from raw tags, and statistical and ontology alignment
techniques should improve mappings even further.

6. Summary and suggested research

Although our first hypothesis was not verified, a number of important inferences can be drawn from
the results that we obtained. That is, users tend to tag data with different keywords that may or may not
be the leaf nodes in a hierarchy depending on the domain to which the data belongs. For some domains,
this hypothesis yields good results, whereas for other domains it fails. Consequently, work can be done
to categorize data in different domains and hence a more domain specific hypothesis can be made that
will yield more accurate results.

Our second hypothesis was a direct consequence of the first hypothesis. This hypothesis does not tell
us clearly what relationship exists between two tags, but it does reveal whether a relationship exists or
not. This hypothesis extracts a vague relationship, which is then used along with our third hypothesis to
get the exact relationship. Our third hypothesis is an extension to the second one.

A problem with Hypothesis 3 is that it can reveal not only disjoint subclasses, but also disjoint super-
Part classes in a meronymy, and these cannot be distinguished except by appealing to another source
of knowledge, such as a thesaurus (e.g., WordNet) or an ontology (e.g., Cyc). For example, if Tagl is
Bolt, Tag2 is Engine, and Tag3 is File Cabinet, then these tags would satisfy Hypothesis 3, but
subpart would be the preferred relation, which might be discernable with the use of WordNet or Cyc.
Similarly, we can form hypotheses involving the relationships owns and causedBy, and these are also
conflated with subclass.

Experiments on Flickr and Amazon data have produced surprisingly consistent results, but they are
insufficient to be generalized for other tagging systems. The primary reason is that the method and
hypothesis given for tags used on Flickr and Amazon may or may not be applicable to other systems,
such as del.icio.us, which cover very different domains.

Besides the inability to distinguish among several different kinds of semantic relationships, as de-
scribed above, our statistical induction techniques cannot distinguish between classes and objects
(class instances). For example, they cannot distinguish between the class OilCompany and the instance
ExxonMobil. We anticipate that mappings to ontologies will facilitate making such distinctions.

One limitation of our approach is that it does not take into account the fact the mappings we identify
are intrinsically probabilistic. As we develop more sophisticated mapping techniques, particularly as we
begin to apply statistical techniques to our matching processes, we expect to move to a probabilistic
model of the mappings that will allow reasoning to proceed without making unwarranted assumptions
about the accuracy of the mappings.

Finally, to exploit the hypotheses we have formulated and verified, the discovered explicit structure
can be captured in a formalism such as OWL. It can then be mapped to an existing ontology expressed
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in the same formalism. A reasoner for that formalism (such as Pellet for OWL) could then reason over
the combination.

We see ample opportunity to improve all aspects of our tag mining strategies and preprocessing tech-
niques. A significant extension of our data extraction and processing system will be to expand the “en-
tity” population to include taggers and the objects being tagged, in addition to the tags themselves. This
was extremely difficult to do with the Amazon data.

Because tags are usually assigned informally and heuristically, tag collections are ad hoc and “noisy”
in an information theoretic sense. There is implicit structure in a collection, but it is obscured by the
noise and tagging imprecision, as well as by the differing semantics of the taggers. To minimize the
noise and derive the maximum amount of structure from a tag collection and make it explicit, all possible
knowledge must be utilized. The available knowledge includes information about the tagging population,
expressed statistically, as well as cross-correlations among the tags, objects being tagged, and taggers.
The data analysis can be guided by relevant high-level ontologies (Cyc and SUMO/MILO) or domain-
specific ontologies.

We recommend that our inductive techniques be extended by incorporating the cross-correlations
above, as well as by a higher-dimensional analysis involving multiple degrees of co-occurrence. We also
recommend that the techniques be enabled to work incrementally, so that they can be applied in an active
domain. That is, if new objects (such as items of evidence in an intelligence domain) are added along
with new tags, it would be necessary to calculate new and better ontology fragments as the additions are
made, rather than completely recalculating ontology fragments.
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