
Analysis of coincident failing ensembles in multi-version systems

Laura Zavala and Michael N. Huhns
University of South Carolina,

Computer Science and Engineering Department
Columbia, SC, 29208

{zavalagu, huhns}@engr.sc.edu

Abstract

Multi-version programming is a well-known method
to increase the reliability of critical software. It relies
on the use multiple functionally equivalent programs
or versions to provide, hopefully, a better result than
that of any single version. The analysis and use of this
type of system has been based on the individual
reliabilities of the versions and the assumption of
independence between them. However, versions might
fail simultaneously and the gain from the use of
diversity completely depends on the degree of
dependence between the failure processes of the
versions, not only on their individual reliabilities. In
this paper, we present an empirical study of the
correlation of code complexity measures of the
versions and their coincident failures.

1. Introduction

Along with the increase in pervasiveness of
computer systems, there is also an increase in their
complexity and the need for dependable software in
both critical and everyday applications. Software fault
tolerance as a strategy for achieving dependability in
software is as pertinent today as it has ever been. Fault
tolerance is based on the fact that it is practically
impossible to produce error-free software and aims at
enabling a system to continue operation even in the
presence of failures or unexpected situations (e.g.,
erroneous inputs).

Multi-version programming, a well-known
technique to achieve software fault tolerance, involves
the use of multiple, independently developed and
functionally equivalent, software implementations of a
program (called versions). The hope is to provide, on
average, a more robust behavior than that of any of the
versions alone. To achieve this goal, the strengths of
each version must be exploited and the weaknesses of
each compensated or covered.

Some experiments have shown that common
failures among the programs compromise the benefits
that can be obtained with a multi-version programming
approach [1], [2]. Many other experiments have
reported at least some degree of improvement [13] –
[17]. However, most of the experiments have been
done without serious consideration of the fact that they
may fail together providing identical erroneous
outputs. This fact is underestimated by the use of ad
hoc techniques (e.g., majority voting and weighted
majority voting) for integrating contributions based on
the individual reliabilities of the versions and the
assumption of independence among them. These
approaches do not allow for the establishment of clear
design methodologies to quantify diversity and obtain
the greatest possible benefit.

The gain from the use of diversity will depend on
the degree of dependence between the failure
processes of the versions, not just on their individual
reliabilities. It has been shown theoretically [4] that
“better than independence” can actually be attained.
This has also been observed by experiments on diverse
software fault-finding procedures [5]. Therefore,
failure independence itself is clearly not the optimum
result. The best effect of diversity would be a situation
in which all the circumstances in which each version
fails are ones where other(s) succeed, so that there is
complete coverage of the space of correct solutions at
any time. Consider, for example, a diverse system
composed of 3 modules with reliabilities of 0.9 each. If
these close-to-perfect modules exhibit high coincident
failures rate (they tend to fail under the same
scenarios), we might not obtain a significant increase
in reliability regardless of their high individual
reliabilities. Now consider the case of a diverse system
composed of 3 less accurate modules with reliabilities
of 0.8, 0.6, and 0.65. Suppose that every time the first
one fails, the other two are correct (no matter their
mediocrity). Then there is the case of perfect coverage
and, if exploited adequately, the system could achieve
100% correctness.

Most of the work on coincident failures has been
focused on their prevention and usually consists of
qualitative guidance on how to enforce diversity
deliberatively during the design and development
phases (different programming languages, different
programmers’ backgrounds, etc.). Some empirical
models have also been developed to detect common
faults in programs, which can lead to coincident
failures. All these approaches are intended to be used
prior to release and operation of a system.

We are interested in the problem of how to
configure a redundant system during operation, so that
the design space is optimally explored and the highest
failure coverage possible, as allowed by the diversity
of the modules, is attained. This should be
complementary and not alternative to techniques for
enforcing diversity during design and development. Of
course, when significant independence in the variants'
failure processes can be achieved, a simple adjudicator
can be used, and multi-version programming provides
effective error recovery from design faults. It is likely,
however, that completely independent development
cannot be achieved in practice [18].

In this paper we present our empirical studies on the
correlation of code complexity measures for each
group and their coincident failures. At an abstract
level, this can be viewed as the correlation of structural
diversity and functional diversity. Our work should be
considered as a first step to study the use of code
complexity measures as an indirect way of

representing dependences among diverse versions and,
thus, provide estimates of proneness to coincident
failures. This in fact can be applied in both pre-
operation and during operation of a multi-version
system. In the first case, it can provide additional
information to the estimation of diversity among
programs. In the second case, it can provide heuristic
information to the adjudicator for deciding on a final
result.

2. Related work

A few works have provided models for the study of
coincident failures between diverse programs. Voas [3]
and Dai [6] have proposed testing of the 2N − 1
ensembles into which N versions can be decomposed.
Voas [3] presents an algorithm and a software analysis
prototype to observe common-mode failures produced
by combinations of simulated programmer faults. They
simulate faults (through fault injection techniques) for
every ensemble from the 2N-1 ensembles and keep
count of the coincident failures observed for each. The
goal is to be able to predict how the software will
behave if real faults exist in the multiple versions. Dai
[6] presents a model of correlated failures in logically
exclusive CCF (Common Cause Failures) events, with
which the reliability function of the dependent N-
version programming can be easily derived using fault-
tree analysis. They also decompose the failure space

Table 1. The software complexity metrics used in our analyses
Metric Description

Lines Total number of lines of code
Statements Total number of Statements
Percent Branch Statements Ratio of lines of a branch statement to the total number of lines
Method Call Statements Total number of statement that call another method
Percent Lines with Comments Ratio of lines with comments to # of Code Lines
Classes and Interfaces Total number of classes and interfaces
Methods per Class Average number of methods in the class
Average Statements per Method Average number of statements per method
Line Number of Most Complex Method The number of the line where the most complex method starts
Maximum Complexity Maximum Cyclomatic Complexity
Line Number of Deepest Block Total number of lines in the deepest block
Maximum Block Depth The maximum depth from all the nested blocks of code
Average Block Depth The average depth from all the nested blocks of code
Average Complexity Average Cyclomatic Complexity
Statements at Block Level 0 Total number of statements that have depth 0
Statements at Block Level 1 Total number of statements that have depth 1
Statements at Block Level 2 Total number of statements that have depth 2
Statements at Block Level 3 Total number of statements that have depth 3
Statements at Block Level 4 Total number of statements that have depth 4
Statements at Block Level 5 Total number of statements that have depth 5

into 2N-1 ensembles (which they refer to as
components).

Some approaches associate static code metrics with
defects, but only for individual programs. Basili [9]
presented an experiment with eight student teams
where they found that object oriented (OO) metrics
appeared to be useful for predicting defect density. A
survey on empirical studies showing that OO metrics
are significantly associated with defects can be found
in Subramanyam and Krishnan [10]. Hudepohl [11]
successfully predicted whether a module would be
defect prone or not by combining metrics and
historical data. Nagappan [8] presented an
experimental study of the correlation between software
complexity measures and post-release observed
failures in large scale systems. They built regression
models that accurately predict the likelihood of post-
release defects for new entities.

Finally, some have explored the use of software
metrics to detect program plagiarism. Several models
have been proposed to measure program similarity [7].
However the similarity measured for plagiarism is of
different nature that the similarity/diversity studied in
multi-version systems.
3. Design study

3.1. Some definitions
3.1.1. Faults and failures. Faults are flaws in a system
which can be caused by different reasons such as
incorrect specification or an incorrect implementation.
Failures are the consequences of encountering the
faults during operation or execution of the system.

Failures are observable errors in the program behavior.
In other words, every failure can be traced back to
some fault, but not every fault will result in a failure.

In a multi-version system, a coincident failure
occurs when two or more versions of a program are
identically incorrect. Coincident failures do not have to
be caused by identical faults in the versions; however,
that is the predominant cause, and such failures are
referred to in the literature as common mode failures
(CMF) or common cause failures (CCF).
3.1.2. Software metrics. A software metric is a
measure of some property of a piece of software or its
specifications. The software complexity metrics that
we used for our analyses are briefly explained in Table
1.
3.1.3. Ensembles of programs. In this paper we use
the term ensemble (of programs) to refer to one of the
possible groupings that can occur from a pool of N
programs. The total number of ensembles that can be
obtained from N programs is given by:

∑
=

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛N

j

N

j
N

1
12

3.1.4. Adjudicators. Adjudication is the process
where an output is computed based on the results
provided by the diverse versions in a multi-version
system. Simple majority voting has been the
predominant mechanism used for adjudication. Other
voting strategies that have also been explored include
consensus or plurality, maximum likelihood, and
weighted voting. The latter two make use of the
individual reliabilities of the versions. All of these

Table 2. The operations that each doubly linked list program in our experiment implements. An input
string specifies a sequence of operations to be applied to the list. Each character in the string

corresponds to one of the operations that can be performed on the list.
Operation Description Char

insert
(Object newElement)

Inserts newElement after the cursor. If the list is empty, then newElement is
inserted as the first (and only) element in the list. In either case, moves the
cursor to newElement. The element to insert is the character following the ‘+’
in the input string.

+

remove ()

Removes the element marked by the cursor from the list. Moves the cursor to
the next element in the list. Assumes that the first list element "follows" the
last list element.

-

replace
(Object newElement)

Replaces the element marked by the cursor with newElement and leaves the
cursor at newElement. The element to replace the current element is the
character following the ‘=’ in the input string.

=

clear () Removes all elements in the list. C

gotoBeginning () If the list is not empty, moves cursor to beginning of the list and returns true,
else returns fales. <

gotoEnd () If the list is not empty, moves cursor to end of the list and returns true, else
returns false. >

gotoNext () If cursor not at end of the list, moves cursor to next element in the list and
returns true else returns false. N

gotoPrior () If cursor not at beginning of the list, moves cursor to preceding element in the
list and returns true, else returns false. P

getCursor () Returns the element at the cursor. @

approaches rely heavily on an assumption of
independence among the versions. Of course, when
significant independence in the variants' failure
processes can be achieved, a simple adjudicator can be
used. However, the independence in the variants'
failure processes is usually assumed.

3.2 Contributions

Our work constitutes a first step towards combining
failure history of ensembles of versions that exhibit
coincident failures with other parameters, specifically,
code complexity measures. The hope is that we can
determine if the latest can be used as an estimator of
proneness of the ensembles to coincident failures (we
believe this must hold for at least some multi-version
systems). At an abstract level, this can be viewed as
the combination of observed structural diversity with
observed functional diversity.

For the moment, we only address the basic question
of whether software complexity metrics correlate with
observed coincident failures. Our work should be
considered an initial effort towards the establishment
of formal methodologies for the use of code
complexity measures as an indirect way of
representing dependences among diverse versions, and
thus, provide estimates of proneness to coincident
failures. Interesting related questions, which we cannot
generalize for the moment, are: do programs that
behave similarly contain the same kind of faults? Do
programs that behave similarly have similar static
metrics? Can software metrics help in determining
programs similarity, and thus, proneness to coincident
failures?

If we can determine, for particular instances of
multi-version software systems, that there is at least a
set of software metrics that provides useful information
(besides observed failures) about possible dependences
between the versions, then we can use that information
for several purposes. In a pre-operational phase, for
example, it can be used as an indicator to the
estimation of diversity among programs and thus help
in design decisions (e.g. the selection/exclusion of the
versions to include in the system). In an operational
phase, it can be used as heuristic information for
deciding the versions to use for a particular run, or as
heuristic information to the adjudicator for deciding on
a final result. The adjudicator could, for example,
Confidence levels could be assigned to the different
outputs given by coalitions of programs that coincide.
This would be different than the weights usually

assigned based on the individual reliabilities (past
performance) of the versions.

3.3 Experimental setup
3.3.1 The programs. We collected one set of 28 Java
implementations of an algorithm for performing series
of sequential operations on a doubly linked list.
Different people wrote each program. In this case, the
class structure (i.e., method signatures) was specified,
so the differences among the algorithms are in
performance and correctness.

Each algorithm maintains a doubly linked list and a
pointer to the current element on the list (cursor). The
functionality of each algorithm can be summarized as
follows: 1) Initialize the list to empty; 2) Read input
string; 3) Apply to the list the sequence of operations
specified on the input string; 4) Return the resulting
list. Each character in the input string corresponds to
one of the operations that can be performed on the list.
Therefore, the input string corresponds to a sequence
of operations to be applied to the list. The allowed
operations and their corresponding character are
presented in Table 2.
3.3.2 Failure data. For models that explore all the
possible ensembles, such as those presented in [3], [6],
a combinatorial problem arises. They claim that the
total is not intrinsically too large since N is usually a
small odd integer, such as three, five or seven, for
practical implementations of multi-version systems.

We used the models proposed by Voas [3] and Dai
[6] as a basis for maintaining record of the coincident
failures. However, we do not perform testing on the 2N
− 1 ensembles into which the N versions can be
decomposed. In our case, their claim does not hold –
the design space is not small (228). Instead, we execute
all the versions for each test case and keep record only
of the ensembles that do exhibit coincident failures.
This is usually a much smaller set.

A set of 1000 input strings, representing sequences
of operations, were randomly created. For each input
case, we invoke the 28 programs, providing them the
corresponding input string. The results of each
program are analyzed and the programs giving the
same incorrect output are grouped together. The
coincident failures count is increased by one for each
of these ensembles.

After performing 1000 input cases on the 28
programs, we have a coincident failure count of each
ensemble of programs from the 2N − 1 ensembles into
which the N versions can be decomposed.

3.3.3 Metrics data. For each one of the 28 programs,
we calculate their corresponding value for each of the
metrics listed in Table 1. For space reasons, we do not
show such values here. We then use the individual
measures of the programs to calculate, for each of the
ensembles of programs exhibiting coincident failure
behavior, the average and the variance of such
measures.
3.3.4 Calculating the correlation. We determined the
correlation between the averages and variances
complexity measures of each ensemble with the
number of coincident failures exhibited by that
ensemble. For this purpose, we use the Spearman rank
correlation [12], which is a commonly used and robust
correlation technique because it can be applied even
when the association between elements is non linear.
The Spearman rank correlation has been used in
previous software reliability experiments. For example,
Nagappan [8] used it in their experiments for
calculating the correlation between software
complexity measures and post-release observed
failures in large scale systems (single systems, as
opposed to multi-version systems).

4. Results

The resulting standard Spearman correlation

coefficients are shown in Table 3. The coefficients
represent how well the average and variance
complexity of the programs in the ensembles
exhibiting coincident failures, correlate with the
number of coincident failures observed. Highlighted
values indicate significant correlation. Average per
Ensemble is the correlation with number of coincident
failures in ensembles based on average metric values.
Variance per Ensemble is the correlation with number
of coincident failures in ensembles based on variance
metric values.

As it can be observed from Table 3 the average
complexity and the average number of statements per
method of the programs in an ensemble have a positive
correlation to the number of coincident failures
exhibited by that ensemble. This is analogous to results
of previous studies on individual programs, showing
that software metrics can be estimators of software
faults [8-11].

On the other hand, we can observe the negative
correlation between the variance of several metrics of
the programs in an ensemble and the number of
coincident failures of the ensemble. This maybe
interpreted as if the structural similarity, in our
particular experiment setup, of programs in the
ensembles positively correlates to failure proneness.
Likewise, the variance (structural diversity) negatively
correlates to failure proneness.

5. Discussion and Conclusion

In the same way that software metrics have been
used as estimators of faults in individual programs, we
have proposed their use in multi-version systems as
possible estimators of coincident failures. Analogous
to results of previous studies on individual programs
showing that software metrics can be estimators of
software faults [8-11], we have presented experimental
evidence showing a correlation between software
metrics and coincident errors. As of the current state of
our study we can not yet generalize. The programs
used for our experiments are more representative of
programming in the small than large commercial
software. Also, there was no methodology followed for
the development of the programs, nor for assuring
diversity. We need more empirical analyses before we
can generalize our observations. However, we have
shown that the use of software complexity metrics as
indicators of the proneness to coincident failures of
multi-version systems is worth exploring.

Of course, there is no such thing as a magic or

Table 3. Correlation of code complexity
measures of the versions (average and
variance) and their coincident failures.

Metric
Average
per
Ensemble

Variance
per
Ensemble

Lines -0.14342 -0.01868
Statements -0.238 -0.44286
Percent Branch Statements 0.261434 -0.41978
Method Call Statements 0.311124 -0.42528
Percent Lines with
Comments 0.004517 -0.18791
Classes and Interfaces -0.17307 0.072527
Methods per Class 0.374082 -0.51648
Average Statements per
Method 0.51157 -0.15714
Line Number of Most
Complex Method -0.07002 0.053846
Maximum Complexity 0.234049 -0.44835
Line Number of Deepest
Block 0.133258 0.172527
Maximum Block Depth 0.248447 -0.16044
Average Block Depth 0.35799 -0.44066
Average Complexity 0.40880 -0.51758
Statements at block level 0 -0.17307 0.072527
Statements at block level 1 -0.29164 -0.23077
Statements at block level 2 -0.32693 -0.42088
Statements at block level 3 0.58865 -0.06044
Statements at block level 4 0.089215 -0.46484
Statements at block level 5 0.248447 -0.17033

golden method to predict failures in software, much
less, coincident failures in multi-version systems.
Neither is there a single set of metrics that fits all
projects. However, it seems that, for some projects, it
might be possible to find a set of complexity metrics
that correlates with coincident failures. This could be
exploited, for example, when selecting the versions to
include in a system, or the versions to use for a
particular run. It can also be used as heuristics for the
adjudication strategy to decide on the final result.

We have provided only a particular situation where,
for a multi-version system, there is a correlation
between software metrics and coincident failures and
we plan to further extend our empirical studies.

6. References

[1] J.C. Knight and N.G. Leveson, An experimental
evaluation of the assumption of independence in multi-
version programming. IEEE Trans. Software Engineering 12
(1986).
[2] S.S. Brilliant, J.C. Knight and N.G. Leveson, Analysis of
Faults in an N-Version Software Experiment, IEEE Trans.
Software Engineering 16, 2 (1990), 238-247.
[3] Voas, J., Ghosh, A., Charron, F., and Kassab, L.,
Reducing Uncertainty About Common-Mode Failures. In
Proceed of the 8th Intl Symposium on Software Reliability
Engineering (ISSRE '97), IEEE Computer Society,
Washington, DC, 308.
[4] Littlewood, B. and Miller, D. R., Conceptual Modeling of
Coincident Failures in Multiversion Software. IEEE Trans.
Software Engineering 15, 12 (Dec. 1989), 1596-1614.
[5] Littlewood, B., Popov, P. T., Strigini, L., and Shryane,
N., Modeling the Effects of Combining Diverse Software
Fault Detection Techniques. IEEE Trans. Soft. Eng. 26, 12
(Dec. 2000), 1157-1167.
[6] Y. S. Dai, M. Xie, K. L. Poh, S. H. Ng, A model for
correlated failures in N-version programming, IIE
Transactions 36, 12 (2004), 1183-1192.

[7] Whale, G. 1990. Software metrics and plagiarism
detection. J. Syst. Softw. 13, 2 (Oct. 1990), 131-138.
[8] Nagappan, N., Ball, T., and Zeller, A. Mining metrics to
predict component failures. In Proceed of the 28th Intl
Conference on Software Engineering (ICSE '06). ACM, New
York, NY, 452-461.
[9] V. R. Basili, L. C. Briand, and W. L. Melo, A Validation
of Object-Oriented Design Metrics as Quality Indicators,
IEEE Transactions on Software Engineering, 22(10), 1996.
[10] R. Subramanyam and M. S. Krishnan, Empirical
Analysis of CK Metrics for Object-Oriented Design
Complexity: Implications for Software Defects, IEEE
Transactions on Software Engineering, 29(4) pp. 297-310,
April 2003.
[11] J. P. Hudepohl, Aud, S.J., Khoshgoftaar, T.M., Allen,
E.B., Mayrand, J., Emerald: software metrics and models on
the desktop, IEEE Software, 13(5), pp. 56 - 60, 1996.
[12] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach: Brooks Cole, 1998.
[13] A. Avizienis and J. P. J. Kelly. Fault tolerance by design
diversity: Concepts and experiments. Computer, August
1984.
[14] J.R. Parker., Voting methods for multiple autonomous
agents. In Proceed of the 3rd Australian and New Zealand
Conference on Intelligent Inf. Systems, Australia, 1995.
[15] P. Townend and J. Xu. Assessing multi-version systems
through fault injection. In Proceed of the 7th IEEE
International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2002), Computer Society.
[16] P. Townend, P. Groth, and J. Xu. A provenance-aware
weighted fault tolerance scheme for service-based
applications. In ISORC '05: Proceedings of the 8th IEEE Intl
Symposium on Object-Oriented Real-Time Distributed
Computing, 2005. IEEE Computer Society.
[17] Rosa Laura Zavala Gutierrez and Michael N Huhns. On
building robust web service-based applications. In Lawrence
Cavedon and others, eds, Extending Web Services
Technologies: The Use of Multi-Agent Approaches, Chapter
14, Kluwer Academic Publishing, New York, 2004.
[18] M Donnelly, B Everett, J Musa, G Wilson, Best Current
Practice of SRE, Handbook of Software Reliability
Engineering, M. Lyu, Ed., Mc Graw, 1996.

