
Transforming Abstract QoS Requirements, Preferences, and Logic Constraints
for Automatic Web Service Composition

Incheon Paik*, Haruhiko Takada*, and Michael N. Huhns**

* School of Computer Science and Engineering
University of Aizu

E-mail: paikic@u-aizu.ac.jp, takada@ebiz.u-aizu.ac.jp
** Dept. of Computer Science and Engineering

University of South Carolina
E-mail: huhns@sc.edu

Abstract

The constraints revealed during a logical composition
of services are often too abstract for automatic service
composition. The abstract constraints have to be
transformed to concrete attributes. This research
investigates semi-automatic transformation of
intermediate constraints to concrete constraints for
automatic service composition. It considers
simultaneously a stack of composition attributes for QoS,
preferences, and logic constraints.

Keywords
Automatic Web Service Composition, Composition
Attributes, Constraint Transformation, Semantic Web

1. Introduction

The goal of automatic Web service composition is to
create new value-added services from existing Web
services, resulting in more capable and novel services for
users.

Automatic service composition usually follows a two-
stage procedure: logical composition followed by
physical composition. The abstract constraints during
logical composition (LC) supplied by users or generated
internally need to be translated into concrete constraints
that can be used by a physical composer (PC). The
transformation must occur automatically.

In this paper, a framework for the semiautomatic
transformation of intermediate composition attributes in
the LC to concrete version is introduced. A schematic of
the framework is shown in Figure 1.

2. Automatic Service Composition
Procedure

As described above, the creation of a new service via
Web service composition is a process involving logical
composition, concrete candidate service extraction, and
physical composition that considers the composition
attributes to produce a concrete workflow (Figure 1).

Logical
Composer

Physical
Composer

C
om

position
Specification

Abstract
Workflow

Verification
Exception Handling

Composition
Attribute

Transformer
Concrete Composition
Attributes (Constraints
including Preferences)

Ontology

Knowledge Base

Candidates
Generator

Concrete
Workflow

QoS

Service
Candidates

Abstract Composition
Attributes

User

Matcher

Filter /
Selection

Services
Repository

Preference
C

onstraints

Figure 1: A Framework for Automatic Service
Composition

Attributes for Service Composition

The abstract workflow consists of solely the abstract
process (or task) with its domain. There may be more
than one abstract task, i.e., candidate services that satisfy
QoS factors in that workflow. The PC selects a service
considering all the constraints and preferences. The
candidate services are to be selected by matched entries
from a service registry.

To select concrete services from abstract services, the
PC must consider user preferences and constraints, which
are composition attributes. The composition attributes in
the logical composition are abstract, so they do not match
to real services that can be understood by a machine.
They must therefore be transformed to a form that can be
understood by the PC.

3. Composition Attribute Stack
The composition attributes come from users or domain-

specific knowledge, and there are four levels of the
attributes to consider. Level 0 can be handled by the LC
and PC, so it is not included in the composition attributes
that we are discussing. Level 1 describes QoS-related

information. These are used to generate candidate
services for physical composition. Level 2 deals with
domain-specific constraints or preferences. Level 3 deals
with constraints and preferences beyond specific domains.

4. Transformation of Abstract Constraints
4.1 Abstract, Intermediate, and Concrete

Constraints
Abstract constraints have informal concepts

meaningful to humans. All terms are abstract and not
already formalized into FOL.

Intermediate constraints consist of a relation, terms,
and context information. They are generated by extracting
abstract relations, terms, and context information from
abstract terms (which may include context information) in
natural language or compound terms at the upper level.

Concrete constraints have relations, terms as arguments
of Web services, and invocation information for physical
composition (in our implementation, CSP solving). All
terms are bound to a real message for the operation of a
Web service.
4.2 Ontologies to Support Transformation
The “AttributeDomain” ontology defines attributes for

characteristics of terms that appear in constraints, such as
for cost and time. The “ServiceDomain” ontology defines
all the terminologies and relations of a service domain,
such as the domains for travel planning or emergency
situations. The “ContextInformation” ontology defines
terms and operations for indicating a service that is
related to the term that has an instance of the ontology.
The instances of the ontologies are the terminal terms.

5. Transforming Architecture
We developed an architecture (Fig. 2) to transform an
intermediate constraint into a concrete constraint. Sound
transformation is carried out by a network of semantics
and relations among classes in the ontologies for
abstract/concrete constraint, abstract task, service
candidate, and service/attribute domain. It includes an
algorithm that uses the ontologies to find concrete terms
from abstract terms.
5.1 Transformation Example

Our algorithm considers five cases according to the
context information. As an illustration of a case in the
algorithm, when a user wants to make a trip, the logical
composer makes an abstract workflow for a trip sequence
consisting of a train, an airplane, and a hotel; the tasks are

taskn = {TrainFromAtoB, AirplaneFromBtoC, HotelC}

If a user wants the total cost to be less than $2,000, an
abstract constraint is “Total.Cost < 2000”.

As the “TermOperator” here means sum of candidates
selected, it will be transformed to a concrete constraint

 (TrainSerivice.getCost("LocationA","LocationB") +
 <AirlineB.getCost("BX101","Travel") ˅

AirlineB.getCost("BX102","Economy") ˅
AirlineC.getTicketFee("CZ103") > +

<HotelC1.getCost("Single") ˅ HotelC2.getPrice()>)
 ＜ 2000$

Transformation

Ontology
Knowledge Base

Concrete
Constraint

Concrete Constraint
Ontology

Abstract Constraint
Ontology

Abstract
Task

Ontology

Attribute
Domain

Ontology

Service
Domain

Ontology

Abstract
Constraint

Service
Candidates

Figure 2: A Transformation Architecture

6. Conclusion and Future Work
We have developed an architecture of transforming

abstract constraints into concrete constraints for automatic
service composition. Our focus has been on
abstract/concrete constraints together with ontology and
an algorithm for transformation of the intermediate
abstract constraints to concrete ones for automatic Web
service composition. Future work will include translation
from highly abstract constraints to intermediate abstract
constraints and robust service orchestration.

7. References
[1] A.B. Hassine, S. Matsubara, and T. Ishida, A
Constraint-based Approach to Horizontal Web Service
Composition, Proceedings of ISWC 2006, pages 130-143,
Athens, USA, 2006.
 [2] V. Agarwal, and 6 others, A Service Creation
Environment Based on End to End Composition of Web
Services, Proceedings of WWW 2005, pages 128–137,
Chiba, Japan, 2005.
[3] I. Paik, D. Maruyama, and M. Huhns, A Framework
for Intelligent Web Services: Combined HTN and CSP
Approach, Proc. of IEEE ICWS, pages 959-962, Chicago,
2006.

