
Interacting with Service Workflows in a Cloud

Qianhui Liang

Singapore Management University
Singapore

althealiang1@acm.org

Michael N. Huhns

Department of Computer Science and

Engineering
University of South Carolina USA

huhns@sc.edu

ABSTRACT.
When Web services are moved into a cloud computing
environment, each service can be scaled over more servers to
handle increases in demand. However, there is still the problem
that external applications using the services must move control
and data information in and out of the cloud. If there is a large
amount of data, it would be more efficient for the data to flow
directly among the services in the cloud, rather than to and from
the external controlling application. Currently, there is no way
to specify this using SOAP + WSDL, or REST. To achieve the
full benefits of cloud computing, we describe in this paper a
technique for transitional storage called cloud data containers to
be placed within the cloud to hold intermediate process data,
such that the data traffic to and from the cloud can be reduced
substantially. The assignment of the physical data containers to
individual services relies on service dependency relationships
modeled by a directed graph that we term a weighted service
dependency graph. Dependent services share one or more data
containers. We have designed a data container selection scheme
to identify the containers best able to transmit data from one
partner service to another. The validity and efficiency of our
data container assignment and selection scheme are
demonstrated by experiments.

Keywords
Cloud data containers, data traffic, intermediate process data,
transitional storage, service flow, weighted service dependency
graph

1. INTRODUCTION

Service-oriented architectures (SOAs) have gained momentum
recently as a way to improve the flexibility and reusability of
software components [1][2]. Software components as services
expose their interfaces publicly to allow message exchanges
between each other via such interfaces and usually over a
network. Messages carry the input and output data or error
information of the internal execution of the services. Message
transmission over the network and parameter encoding and
decoding at both the service provider and consumer end points
constitute a major external cost, which is not intrinsic to the
processing of the service request by the service provider. This
also reveals that scalability of service invocation has not been
addressed by the paradigm of SOA itself. This is where cloud
computing comes in to help with the scalability issue.

Cloud computing is an Internet-centric software model that
features a scalable, multi-tenant, multi-platform, multi-network,
and global software development model [9]. It encompasses a
variety of aspects of software applications ranging from
deployment, load balancing, provisioning, business model, and
architecture. There are several views of clouds, three of which
are SaaS, PaaS, and IaaS referring to Storage-, Platform-, and
Infrastructure-as-a-Service, respectively.

Amazon provided the initial impetus for cloud computing
when it announced its Elastic Compute Cloud (EC2) [5] and
Simple Storage Service (S3) [4]. This happened because
Amazon had many servers (more than 200,000) with a large
amount of excess capacity. EC2 provides CPU cycles, and it is
a good environment for executing an application that users
access remotely. If the demand for the application becomes too
large and its response time becomes too poor, then Amazon will
just duplicate it to run on more servers. In particular, clouds can
be seen as a new model of Internet-scale computing, whereby
within minutes or even seconds they can provide a customer
with just the right amount of computing power as demands
fluctuate. Therefore, applications can exhibit linear or super-
linear scalability.

What is gained by moving services into a cloud? The
basic idea is that when services are moved into a "cloud," each
service can be scaled over more or fewer servers to handle
increases or decreases in demand. However, there is still the
problem that control and data information must flow in and out
of the cloud to any external applications using the service. If
there is a large amount of data, it would be more efficient for
the data to flow directly among the services in the cloud.
Currently, there is no way to specify this using SOAP [7] +
WSDL [8], or REST [9]. To achieve the benefits, we describe
in this paper a technique for transitional storage called cloud
data containers to be placed within a cloud to hold intermediate
process data, such that the data traffic to and from the cloud can
be reduced.

Elasticity and virtualization of resources in the cloud are
enabled by the effective organization of the distributed
resources and their supporting infrastructural auxiliaries (like
the aforementioned data containers) in the cloud. Cloud
applications must exchange data when using and sharing
resources. When data have to be physically transmitted to
provide virtualization, we need to guarantee such transmission
is always minimized in the cloud. Data access patterns of cloud
applications, to a large extent, determine how the resources and
their auxiliaries must be deployed with servers in order to allow
the most effective way of data transportation in the cloud.

We address the above need by capturing the data access
patterns of cloud applications in the form of service dependency
relationships. We believe data exchanges between different
services (or, alternatively, between a service and a workflow
engine) form the vast majority, if not all, of the data
transmissions in the cloud. (Examples of other forms of data
transmission can be messages for coordinating resource

————————————————
Qianhui Liang was with School of Information Systems, Singapore
Management University, Singapore when this research was performed.

 1

mailto:huhns@sc.edu

allocation among different nodes in the cloud.) We analyze the
service dependency relationships in order to calculate the best
way of organizing the data containers with the servers. In
particular, physical data containers are assigned to individual
services. Such assignment relies on service dependency
relationships, which we model in a weighted service
dependency graph (WSDG). Dependent services share one or
more data containers. We have designed a data container
selection scheme to identify the containers best able to transmit
data from one partner service to another. The validity and
efficiency of our data container assignment and selection
scheme are demonstrated by experiments.

The remainder of the paper is organized as follows:
Section 2 is related work. Section 3 describes the motivation of
this research using an example of composed services in a cloud
and its interactions with an external application. Section 4
presents the idea of cloud data containers. It also presents the
service dependency graph model and assignment of cloud data
containers to the services of a composite service in the cloud.
Section 5 illustrates the experiments and provides an analysis of
the experimental results, while Section 6 concludes the paper.

2. RELATED WORK

Service-oriented computing (SOC) has taken hold in cross-
enterprise business settings, such as the use of FedEx and UPS
shipping services in e-commerce transactions; the aggregation
of hotel, car rental, and airline services by Expedia and Orbitz;
or book-rating services for libraries, consumers, and bookstores.
Given the widespread interest in and deployment of Web
services and service-oriented architectures that are occurring in
industry, the scope of SOC in business settings is predicted to
expand substantially. However, there has not yet been sufficient
consideration given to how services within a cloud computing
environment are selected and how the selected services need to
be deployed (or configured) with regard to the processing,
storage, and bandwidth resources of the cloud to provide
higher-level functionality and improved efficiency.

Cloud computing has recently opened another door to
sharing resources in enterprise and scientific computing. It
greatly reduces the start-up costs of configuring operating
systems, infrastructure, and platforms and providing hardware
for deploying the functions of a software system in the form of
services. It follows a charge-by-usage scheme as in utility
computing. Meanwhile, it relies on specially designed
distributed processing capabilities to provide linear and even
exponential scalability. Multiple users with very different
requirements for their operating systems and platforms are
provided individual and unaffected usage of resources by
virtualization. Physically, one machine or a set of machines
may be shared by multiple clients. Multiple physical machines
or resources may be employed collectively to serve the same
customer or redundantly to provide reliability and disaster
recovery capacity.

Amazon’s Elastic Compute Cloud (EC2) is an example of
a cloud computing environment. EC2 offers flexible and on-the-
fly computing capacity via a Web service. It has provided other
tools for making Web-scale computing easier for developers,
including a cloud-watch tool for monitoring and reporting the
utilization of the resources on the cloud, scaling tools for
automatically allocating EC2 instances to an application, and a
load balancing service to distribute incoming requests across
multiple EC2 instances [5].

Amazon Simple Storage Service (S3) is an example of a
storage cloud. It provides cheap and reliable storage over the

Internet. Simple Web service interfaces are provided to support
basic features of data management, including write, read, and
delete of objects. An object can be retrieved via a unique and
developer assigned key. Developers can construct data-centric
applications using either SOAP-based or REST-based
interfaces. Usage on S3 is charged per storage used. For
example, $0.15 per GB is charged for one month for the first 50
TB. No limitation on the number of objects is set [4].

IBM introduced ready-to-use cloud computing, named
Blue Cloud, in November 2007. More than 200 researchers
around the world are supporting the development of this
technology. Blue Cloud includes a series of offerings that
manage operations on corporate data centers, such as operating
the Internet via a distrusted, network accessible fabric of
resources. Blue Cloud is supposed to replace the traditional data
access concepts based on local machines or remote server
farms. Blue Cloud is based on IBM’s Almaden Research Center
cloud infrastructure. It relies on virtualized operating systems
like Xen and uses the parallel workload scheduling technique of
Hadoop [10] to achieve scalability. Blue Cloud uses IBM’s
Tivoli software to check the performance of the provisioned
servers and ensure they meet service-level agreements [6].

3. MOTIVATION

Let us assume we have a simple application, called
ExternalApplication1, consisting of sequential invocations of
three services deployed in the cloud, as shown in Figure 1.
Figure 1 additionally shows the message exchanges between the
application, which is a composite service, and the three
services, service 1, service 2, and service 3. We can use either
of the two major protocols for compositions, i.e., Web Service
Choreography Description Language (WS-CDL) and Business
Process Execution Language for Web services (WSBPEL) to
describe the message exchanges. We arbitrarily choose
WSBPEL here for illustrative purposes. The description of the
control and data links is shown in Listing 1. WS-CDL can be
mapped one-to-one to WSBPEL constructs, and therefore our
method is also applicable to WS-CDL.

Figure 1. An example of a simple application external to a

cloud and consisting of a sequential service composition

Here, ExternalApplication1 sends the first SOAP message

upon seeing the first invoke construct in BPEL description. The
SOAP message includes (1) control information, such as the

 2

access point of the operation and the name of the operation, and
(2) data, such as the input parameters needed by the operation.
Service 1 processes the request with the given input data and
returns to ExternalApplication1 (1) control information such as
an indication of results or error, and (2) data such as the results.
ExternalApplication1 will do the same when seeing the second
and third of the “invoke” commands. In this case, we can
observe that there are many messages transmitted to and from
the cloud. This means that applications with a heavy data flow
might be inefficient, which will impair the scalability benefit
created by the cloud. Therefore, a more desirable way for such
communications is via messages between the cloud-deployed
services and ExternalApplication1 that uses the services to
establish direct message transmissions between the services
within the cloud. This way, the scalability issue can be solved
by the elastic infrastructure offered by the cloud, instead of
consuming communication resources at the edge of the cloud.
Of course, if one service can always pass the result to the other,
as in this simple example of ExternalApplication1, things will
be much easier. However, this is not the case for most
applications.

For better understanding, the example of
ExternalApplication2 in Figure 2. It is a composite service
composed of again three component services: Service 1, Service
2, and Service 3. But this time, Service 3 cannot run until it gets
the inputs it needs from Service 1 and Service 2, but it expects
these to come from one SOAP message, not two. So, there
needs to be a container for intermediate results. Also, Services
1 and 2 must somehow know that their outputs go to Service 3.
Both can be used to manage the message exchanges between
component services. Meanwhile, both require something in the
cloud that can store intermediate results. Also, if there is an
error (e.g., Service 3 fails), then the error message must
somehow get back to the original caller of Services 1 and 2.

Figure 2. ExternalApplication2 composed of a parallel

composite service

Listing 1.

<flow>...
<sequence>
 ...
 <invoke name="invocation1"
partner="service_1"

portType="asns:Serivce_1PTA"

 operation="PTAOpA"

inputContainer="containerIn"
 outputContainer="service_1-
to-process">
 <target linkName="s0-to-s1"/>
 <source linkName="s1-to-s2"/>
 </invoke>
 <invoke name="invocation2" partner="
service_2"
 portType="asns:
Serivce_2PTB"

 operation="PTBOpB"

inputContainer="containerIn"
 outputContainer="
service_2-to-process ">
 <target linkName="s1-to-s2"/>
 <source linkName="s1-to-s3 "/>

</invoke>
…

</sequence></flow>

4. CLOUD DATA CONTAINERS AND
WEIGHTED SERVICE DEPENDENCY
GRAPHS

In this section, we introduce the concept of cloud data
containers and weighted service dependency graphs. We
illustrate the container assignment scheme using these graphs.

4.1 Cloud Data Containers
Cloud data containers are external data storage systems used by
one or more services deployed in a cloud. Cloud data containers
hold input, output, and fault messages temporarily, as well as
any related data associated with the execution of a composite
service or application on multiple services in the cloud. Data
containers can be located at different nodes within a cloud. An
illustration of what a cloud with data containers may look like is
shown in Figure 3.

Figure 3. Cloud Data Containers

A cloud may consist of many servers, including application
servers, which are shown as white circles in the figure. Each
application server can host a number of services. For example,
application server 1 hosts the two services WS1 and WS4, while
application server 2 hosts one service, WS2. Some application
servers may be equipped with cloud data containers, shown as
small dark circles attached to the edge of the application servers.
Application servers work with the attached cloud data
containers to prepare messages to be transmitted to other
correlated services used by the external application.

The application servers issue instructions to write to and
read from the cloud data container. The cloud data container
includes the following information for each possible data
exchange for an external application that involves a service
hosted at the corresponding server:

1. BusinessProcessID: unique identifier for the
application involving a data exchange

 3

2. ProcessInstanceID: unique identifier for the
application instance involving a data exchange

3. MessageID: unique identifier for the message
exchange within a process instance

4. LocalService: unique identifier for the service that
writes the content of the message to the container

5. RemoteService: unique identifier for the service that
reads the content of the message from the container

6. Time-to-live: time stamp indicating the end of the
message’s validity period

7. ExchangeData: objects of the exchanged data
8. Size: number of bytes of the data
9. Message: content of the SOAP message
Meanwhile, the application server that hosts the last

service(s) of an application will be selected as the data
exchange hub (DEH) of the application. A DEH is an
application server whose associated cloud data container
maintains the process table for an external application. The
process table is called the container data directory structure
(CDDS), with each data entry recording the following
information of a data flow for the external application:

1. BusinessProcessID: unique identifier for the external
application involving a data exchange

2. ProcessInstanceID: unique identifier for the external
application instance involving a data exchange

3. MessageID: unique identifier for the message
exchange within a process instance

4. MessageTemplate: xml SOAP message with place
holders for objects

5. NodeList: which nodes in the cloud are involved in
the data exchange of this message, including servers
of the source and remote services.

6. Time-to-live: timestamp indicating the end of the
message’s validity period

The DEH of the application is capable of generating SOAP
message templates with place holders for actual objects. After
being provided with the objects, the DEH will insert the objects
into the message template to form a SOAP message. An
example SOAP response message and its template for
Purchase_Order are given in Figure 5. In addition, each
application server is configured with a plug-in library accessible
to the services, which allows the services to call and form the
XML messages using the data objects in the cloud data
container.

Each service has access to its own application server’s data
container and has knowledge of where its data objects are
stored, but no knowledge of where other providers’ objects may
be stored. Very likely, each application server knows which
objects it stores for each service deployed with itself, but not
which objects other application servers may have in their data
containers. Among all the data containers used by an external
application, only one data container (i.e., the DEH) has
knowledge of where data objects for each message of the
external application are stored in the cloud.

Figure 4 demonstrates the end-to-end process of the data
exchange using the cloud data containers. In order to facilitate
data container access, additional APIs are provided to the
services. The most important ones are “write” and “read,”
which allow the services to write and read the cloud data
containers.

As shown in the figure, upon receiving a request from an
external application, initialization will be done in the cloud,
including initialization of the container data directory structure
attached with the last service at the DEH, in this case,

application server 3. The initialization of the CDDS includes
assigning the physical cloud data containers to the required
services. This is done by querying each application server for
the services it is hosting. Once this information is available, the
data container assignment can be decided. One straightforward
way to pick a container is to always assign a container attached
directly to the application server to the services. If there is more
than one such data container, we can perform a load-balancing
operation to select the one with the expected lowest load.
However, such a container might not always be available for
various reasons. For example, there might not be a container
attached to this server or the container is full and cannot store
more data. A more carefully planned scheme would be to select
the container that is with the first server on the best path to the
destination service, if there is no container at the hosting server.

This simple scheme cannot guarantee scalability in terms
of the overall resource consumptions in the cloud in serving the
external applications. For example, the number of containers
per application may be too many and proportional to the
number of services. The containers might be unused most of the
time. More importantly, the bandwidth consumption might be
high if a random container is selected for the services of an
application server. Therefore, we have designed a more
efficient container assignment scheme based on a weighted
service dependency graph, which is discussed in sections 4.2
and 4.3. We take into consideration the above issues in
designing the assignment scheme.

Figure 4. Process of data exchange with cloud data containers

Once the CDDS has been initialized, a multicast will be
triggered to update each individual application server with the
address of the data exchange involved by their hosting services.
This is shown as arrow (a) in Figure 4. With this, the
application server will be able to process the “write” and “read”
requests from the hosted services. Arrow (a) also represents
transmitting a message template with place holders to the
relevant application server. After initialization, WS1will start.
Upon its completion, it will call the “write” API provided by
the application server to write the objects in the output message
into container 1, shown as arrow (b) in Figure 4. “Write” is
asynchronous, meaning once the objects are written to container
1, WS1 returns and does not wait until a success
acknowledgement from container 2, to which the destination
service is assigned. Transmitting the message to container 2 and
its success are guaranteed by DEH, because it instructs and
oversees packaging objects into the message template and
(possibly remotely) writes to the corresponding cloud data
container, in this case, container 2. This is shown as arrow (c) in
Figure 4. This message will be read by WS2 via application
server 2 at an appropriate time, as shown by arrow (d).

 4

Figure 5. An example data exchange message and its template

in SOAP

4.2 Weighted Service Dependency Graph
A service dependency graph (SDG) is a directed graph that

is constructed dynamically to show all possible input-output
dependencies among service operations [3][11]. There are two
types of nodes in an SDG: service operation nodes and data
entity nodes. Service operation nodes model operations of
services and data entity nodes model their input and output
attributes. Edges in an SDG link one node to another. Some
edges link the nodes of the input attributes to the nodes of the
corresponding service operation. For such data entity nodes, the
operation nodes are referred to as consumer operation nodes.
Some other edges link a node of a service operation to the
corresponding nodes of its output attributes. Similarly, for such
data entity nodes, the operation node is referred to as a producer
operation node. Data dependencies in a service dependency
graph are defined as the dependency relationships between the
consumer operation nodes and the producer operation nodes of
the same data entity nodes.

For this research, we enhance a service dependency graph
by annotating the edges that connect service operation nodes to
data entity nodes with weights. The weights correspond to the
size of the data entity pertinent to the data exchange represented
by that edge. In other words, an edge is weighted more if the
data entity transmitted between the two services connected by

the edge is large. Such service dependency graphs are called
weighted service dependency graphs (WSDG).

A segment of a WSDG shown in Figure 6 depicts the
pattern of dependency of services that process purchase orders.
It encompasses functions for requesting purchase orders as well
as making payments and optionally giving rebates to customers
who meet certain criteria. It also accounts for delivery of the
purchased items. Payment is allowed by credit card and
personal checks. Both payments and rebates are referred to via
an order number, which is created when the purchase order is
submitted. The figure represents the pattern of input and output
dependency relationships of services. For example, for “Order
Number”, “Request Purchase Order” is the producer operation,
and “Pay By Credit Card”, “Pay By Check” and “Rebate Credit
Card” are the consumer operations. In other words, “Pay By
Credit Card”, “Pay By Check” and “Rebate Credit Card”
depend on “Request Purchase Order” via “Order Number”. The
edge connecting “Request Purchase Order” to “Order Number”
has a weight of 9, and the one connecting it to “Item Names”
has a much larger weight of 50, as shown in the figure.

Service Operation Nodes

Data Entity Nodes

…

…

Request
Purchase
Order

Order
Number

Order
Time

Item
Details

Pay By

Credit Card

Pay By
Check

Delivery

Rebate

Credit Card

9 50

Figure 6. An example weighted service dependency graph

A WSDG can be constructed by analyzing the
<partnerlinks> in the BPEL document of the external
application and the WSDL documents of two Web services that
are sequential, parallel, or related by other control constructs.
The pseudo code in Listing 2 can be used to generate service
dependency graphs from sequential structures.

Listing 2:

__

1. for each <sequence> element in BPEL {
2. Get next <invoke>, <receive> and <reply> element;
3. Assign this element to irr;
4. L1:
5. Extract the value of <operation> of irr and assign it

to op1;
6. Extract the value of <portType> of irr and assign it

to pt1;
7. Get the next element that immediately follows irr in

 5

<seque

9. he value of <operation> of irr_next and
assign it

10. the value of <portType> of irr_next and
assign it

if outpu
12. e of the overlapping objects

to calculate the
13.

 the

14.

em to WSDG if they

15.
ing input and output data nodes

16. edge with the corresponding

xt;
Go to L1;

}

 <operation> and
<po

 Lines 13-16 in the pseudo
cod

d and all <sequence> elements are traversed as in lines

4.3 Data Container Assignment by WSDG

ectly applying
exis

ng
the

st

t from a to c can be seen
as a

of the w een

n hts betw
pli

 inter
operations in two application server nodes.

nce>
8. Assign this element to irr_next;

Extract t
 to op2;
Extract
 to pt2;

11. t(op1) overlaps input(op2) {
Record the siz

weights {w_i} ;
Construct two nodes for op1 and op2 as
operation nodes and add them to
WSDG, if they are not already there;
Construct the corresponding data nodes
for intput(p1), output(p1), input(p2) and
output(p2), and add th
are not already there;
Connect the operation node(s) to the
correspond
by edges;
Denote each
weight w_i;

17. irr = irr_Ne
18.
19.
20. }

In the above pseudo code, we process the elements within

the <process> construct. First, we begin with a <sequence>
element and track down any <invoke>, <receive>, and <reply>
elements within the <sequence> element in line 2. A sub-
element of portType and operation contains the corresponding
operation that it invokes on other services or is invoked by other
services. So we extract both sub-elements as in line 5-6. Next,
we look at the next <invoke>, <receive>, and <reply> element
and we do exactly the same to extract its own

rtType> elements as in lines 7-10.
After these are done, we are able to check if any variables

used in the input and output of these two consecutive Web
services are the same, or if there are overlaps on some
individual elements of the input and output as in line 11. If so,
we record the size of the overlapped elements and calculate the
weight of the data overlap given the size of the overlapping
element. The weight will later be used to mark the edge
connecting the data entity node and the operation node as in line
12. Then we construct nodes for the operations and input and
output data entities and add them to the WSDG, if they are not
already there. Edges that connect operation nodes and the
corresponding data entity nodes are also constructed and also
denoted with the calculated weight.

e correspond to such activities.
This process is repeated until all the <invoke>, <receive>,

and <reply> elements within the <sequence> element are
traverse
17-18.

In this research, we need to solve the problem of assigning

data containers to services for efficient data exchanges of cloud
applications. Similar problems, such as which is the most
efficient route for data to travel from one place to another, have
been studied in the domain of network metrics (e.g., QoS-based
routing). Solutions such as Dijkstra’s algorithm for single
source shortest path are often used in network routing.
Assigning data containers to services is a more complex
problem. Here, multiple services are possibly located at
different servers and they need to choose their data containers.

Such a data container assigned to the service may or may not be
co-located with the service itself, depending on various
constraints including load balancing. Data transferred are
defined by two interacting services for the purpose of
completing an application. Once data are in the containers, data
transfer occurs between two data containers not two services.
This problem cannot be simply solved by dir

ting solutions such as Dijkstra’s algorithm.
Our purpose is simple: to define an assignment scheme for

data containers while minimizing the traffic created in the cloud
due to the data exchange for a particular external application
using cloud data containers. The volume of traffic in our
problem is determined by two factors: (1) the amount of data
that is to be transmitted and (2) the length of the route duri

transmission. We will explain these two factors in detail.
We use an example to illustrate the assignment scheme. In

terms of the fir factor of the volume of the data, we model it
as the weight iw of an edge that connects one service to the
other in a WSDG. An example WSDG and its conversion are
shown on the left hand side and right hand side of Figure 7.
(For illustration purposes, we have removed the data entity
nodes in the weighted SDG, which results in what we call a
converted WSDG.) In Figure 7, three service operations, i.e.,
operations a, b, and c are highlighted. The weight from a to b is
9. Two weights from a to c are 6 and 5, respectively. We
assume that all the objects transferred between a and c travel via
the same route. In this case, the weigh

n average of two weights, or 5.5.
Equation (1) shows the calculation eight betw

two service operations a and b i.e.,),(baw , where {d
represents the set of overlapping data between a and b, and n
represents the total number of the overlapping data items.
Equation (2) shows the calculatio of the al weig
two ap cation server nodes 1N and 2N , i.e.,),(21 NNw ,
where m denotes the number of pairs of

}

 tot een

acting service

Figure 7(a). Weighted service dependency graph

m

baw
NNw NbNa

∑
∈∈= 21,

21

),(
),(

∑
=∈

=
nidba
iwbaw

..1},{,

),(

(2)

(1)

 6

Figure 7(b). Converted weighted service dependency graph

from 7(a).

In terms of the second factor of the length of the

transmission, we assume that the network distance of any two
application server nodes in a cloud are known in advance. The
lengths between any two application servers can be represented
as an m by m matrix L , where m again is the total number of
application server nodes in the cloud. Equation (3) can be used
to calculate the cost of using certain data containers for the
application, i.e., . returns the length of

the jth path between nodes and , which is the element at
the th row and th column of

),(21 NNc j)',(NNl j

N 'N
N 'N L or the sum of

and , where is an intermediate node

between and . is the average bandwidth

of the jth route between nodes N and . In (3), nodes

and correspond to where the containers for the

services in and are located respectively. Equation (4)
shows the calculation of the total cost contributed by all the data
communications of external application p. Here P corresponds
to the set of server pairs that communicate due to information
exchanges required by p.

)",(NNl)',"(NNl "N
N 'N)',(NNbd j

'N
aN bN

1N 2N

The following algorithm can be used to calculate the

best assignment scheme of containers to the services for
external applications using services in a cloud
environment.

Listing 3:

__

1. for each pair of service operations (a,b) in the
WSDG that exchange data for application p{

2. Use (1) to calculate w(a,b);
3. record it in {w(a,b)};
4. }
5. for each pair of application server nodes (,)

involved in application p {
iN kN

6. Use (2) to calculate and record
them;

),(ki NNw

7. }
8. for all possible assignments of containers to services

in application p, i.e. {a} {
9. for all possible paths j between any two

communicating server nodes{
10. use (3) to calculate of

the jth path for assignment a and
record them;

),(, kija NNc

11. }
12. use (4) to calculate the total cost

and record them;
)(, pc ja

13. }
14. a*=min_arg();)(, pc ja

15. return a*;
__

In Listing 3, we first calculate the weights between each
pair of service operations in the application that exchanges data,
as in lines 2-5. Using such weights, we can calculate the
weights between two services that their operations exchange
data as in line 2. Services of the same application that exchange
data may be deployed with different application servers. One
server might have multiple pairs of services whose operations
exchange data. So, one extra step is to calculate the weights
between any pair of servers that exchange data and then the cost
of such exchange considering different paths of transmitting
data as in lines 6-9. Once all paths have been investigated, the
path that has taken the minimum cost will be returned.

Here we further illustrate this assuming an example length
matrix for the application server nodes in the cloud as in (5).
Therefore, =3, = =1,

=2, and =1. We use the same weights
shown in Figure 7. We assume that each service operation
belongs to three different services, i.e., sa, sb, and sc,
respectively, and each service is with a different node,
respectively. There is only one communication of this
application, which is between service a and service b.
According to (3), we can calculate = 9*1+6*2
= 21, when taking the path of a->d>b. Therefore, the best
container nodes for services sa and sb will be and ,
respectively.

),(ba NNl),(ca NNl),(da NNl
),(cb NNl),(bd NN

),(min ba NNc

aN bN

)),(/),(

),(/),(

),(/,((*

),(),(

22

11

2121

NNbdNNl

NNbdNNl

NNbdNNl

NNwNNc

bjbj

bajbaj

ajaj

j

+

+

=

(3)

∑
∈

=
PNN

kijj
ki

NNcpc
),(

),()(
(4)

0
30
120
1130

),,,(=dcba NNNNL

(5)

 7

5. EXPERIMENTS

We simulated our container assignment scheme to analyze
its effectiveness. We compare the cost of an application
external to a cloud using our scheme of assigning containers, as
defined in section 4.3, with the baseline scheme. The baseline
scheme is defined as follows: for any Web service, select the
container that is encountered first on the best path (which has
the minimum cost) of any communication from the service to
its corresponding destination. Formally, it can be written as in
(6), where denotes the container node of service s on

server node 1N , is the server node with which s
communicates, and l is the distance between the two nodes.

),(1NsNC

2N

In the experiments, there are two parameters, (1) P, the
possibility that the costs of two schemes are different and (2) Δ,
the amount of the cost difference, if any. The simulated cloud
has 300 server nodes, each hosting a number of services. The
number varies between 0 and 10 uniformly. The network
connectivity of the cloud is 20%. The number of
communications from one service to another and the total
number of communicating services for an external application
vary. We also vary the distances between two communicating
services for the application. The above three facts determine,
jointly, the cost of the external application.

The results of the cost savings of our scheme as the
percentage of the baseline scheme is given in Figure 8. We have
experimented on three sets of Δ values. The first set is for P =
0.2, meaning that the probability is 0.2 that there will be a cost
difference. Under this circumstance, we have taken three Δ
values, i.e., 10%, 20%, and 30% of the cost of the baseline
scheme. This is repeated for P = 0.5 and P = 0.7. In all cases,
the savings increase proportionally to the value of Δ. This
means that our scheme has larger savings if the cost difference
increases. Also, we see that the line corresponding to P = 0.7 is
above the line corresponding to P = 0.5, which is again above
the line corresponding to P = 0.2. This means that our scheme
saves more as the probability of a cost difference increases.

Cost Savings of Our Container Assignment Scheme

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

10% 20% 30%

Possible Cost Difference

Co
st

 S
av

in
gs

P=0.2
P=0.5
P=0.7

Figure 8. Cost savings using our container assignment
scheme

6. CONCLUSIONS

A cloud computing environment can provide beneficial
infrastructure scalability in processing, storage, and bandwidth.
A benefit of services is that they can be deployed independently
of each other, yet can be composed to work in concert to
achieve higher-level functionality. However, when the services
are moved into a cloud to take advantage of the cloud’s
scalability, the storage and bandwidth scalability might not be
fully realized unless special provisions are made. We address
the provisions in this paper.

In particular, we consider the possibly large amount of
data exchanged between an external application and the
services in the cloud. We have presented a technique of using
transitional storage we term cloud data containers to hold
immediate process data to reduce the data traffic
(communication bandwidth) to and from the cloud. In essence,
we use the scalability of cloud storage to reduce the
communication bandwidth, reduce the time needed to process
an application consisting of composed cloud services, and
thereby improve throughput. The validity and efficiency of our
data container assignment and selection scheme are
demonstrated by experiments. The contribution of the paper is
to provide a solution to the scalability issue of a cloud
environment where software-as-services is deployed.

We are continuing to investigate the performance and
benefits of this technique when it is applied to typical types of
applications with a variety of real-world characteristics. We are
also interesting in customizing this technique for catering to
different types of applications.

7. REFERENCES

[1]. Ryszard Kowalczyk, Michael N. Huhns, Matthias Klusch,
Zakaria Maamar, Quoc Bao Vo: Service-Oriented
Computing: Agents, Semantics, and Engineering, AAMAS
2008 International Workshop, SOCASE 2008, Estoril,
Portugal, May 12, 2008, Proceedings Springer 2008

[2]. Michael N. Huhns, Munindar P. Singh, “Research
Directions for Service-Oriented Multiagent Systems,”
Internet Computing, 2005.

[3]. Q. Liang, L. N. CHAKARAPANI, S. Su, R. N.
CHIKKAMAGALUR, H. Lam,"A Semi-automatic
Approach to Composite Web Services Discovery,
Description and Invocation", 2004, Vol. 1, No. 4,
International Journal of Web Services Research (IJWSR).

[4]. http://aws.amazon.com/s3/
[5]. http://aws.amazon.com/ec2/
[6]. http://www-

03.ibm.com/press/us/en/pressrelease/22613.wss
[7]. http://www.w3.org/TR/soap/

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

≤

∈
∀=

),(),(

),,(argmin_,,
),(

11

21

1
MNlNNl

NNcjMN
NNsNC

j
j

(6)

[8]. http://www.w3.org/TR/wsdl
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm [9].

[10]. http://hadoop.apache.org/core/
[11]. "AND/OR Graph and Search Algorithm for Discovering

Composite Web Services", by Q. LIANG, S. SU, 2005,
Vol. 2, No. 4, International Journal of Web Services
Research (IJWSR), page 46-64

 8

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kowalczyk:Ryszard.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Klusch:Matthias.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Maamar:Zakaria.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Vo:Quoc_Bao.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/socase/socase2008.html
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
http://hadoop.apache.org/core/

