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ABSTRACT.  
When Web services are moved into a cloud computing 
environment, each service can be scaled over more servers to 
handle increases in demand. However, there is still the problem 
that external applications using the services must move control 
and data information in and out of the cloud. If there is a large 
amount of data, it would be more efficient for the data to flow 
directly among the services in the cloud, rather than to and from 
the external controlling application.  Currently, there is no way 
to specify this using SOAP + WSDL, or REST. To achieve the 
full benefits of cloud computing, we describe in this paper a 
technique for transitional storage called cloud data containers to 
be placed within the cloud to hold intermediate process data, 
such that the data traffic to and from the cloud can be reduced 
substantially. The assignment of the physical data containers to 
individual services relies on service dependency relationships 
modeled by a directed graph that we term a weighted service 
dependency graph. Dependent services share one or more data 
containers. We have designed a data container selection scheme 
to identify the containers best able to transmit data from one 
partner service to another. The validity and efficiency of our 
data container assignment and selection scheme are 
demonstrated by experiments.  

Keywords 
Cloud data containers, data traffic, intermediate process data, 
transitional storage, service flow, weighted service dependency 
graph 

1. INTRODUCTION 

Service-oriented architectures (SOAs) have gained momentum 
recently as a way to improve the flexibility and reusability of 
software components [1][2]. Software components as services 
expose their interfaces publicly to allow message exchanges 
between each other via such interfaces and usually over a 
network. Messages carry the input and output data or error 
information of the internal execution of the services. Message 
transmission over the network and parameter encoding and 
decoding at both the service provider and consumer end points 
constitute a major external cost, which is not intrinsic to the 
processing of the service request by the service provider.  This 
also reveals that scalability of service invocation has not been 
addressed by the paradigm of SOA itself. This is where cloud 
computing comes in to help with the scalability issue. 

Cloud computing is an Internet-centric software model that 
features a scalable, multi-tenant, multi-platform, multi-network, 
and global software development model [9]. It encompasses a 
variety of aspects of software applications ranging from 
deployment, load balancing, provisioning, business model, and 
architecture. There are several views of clouds, three of which 
are SaaS, PaaS, and IaaS referring to Storage-, Platform-, and 
Infrastructure-as-a-Service, respectively.  

Amazon provided the initial impetus for cloud computing 
when it announced its Elastic Compute Cloud (EC2) [5] and 
Simple Storage Service (S3) [4].  This happened because 
Amazon had many servers (more than 200,000) with a large 
amount of excess capacity.  EC2 provides CPU cycles, and it is 
a good environment for executing an application that users 
access remotely.  If the demand for the application becomes too 
large and its response time becomes too poor, then Amazon will 
just duplicate it to run on more servers. In particular, clouds can 
be seen as a new model of Internet-scale computing, whereby 
within minutes or even seconds they can provide a customer 
with just the right amount of computing power as demands 
fluctuate. Therefore, applications can exhibit linear or super-
linear scalability. 

What is gained by moving services into a cloud?  The 
basic idea is that when services are moved into a "cloud," each 
service can be scaled over more or fewer servers to handle 
increases or decreases in demand. However, there is still the 
problem that control and data information must flow in and out 
of the cloud to any external applications using the service. If 
there is a large amount of data, it would be more efficient for 
the data to flow directly among the services in the cloud.  
Currently, there is no way to specify this using SOAP [7] + 
WSDL [8], or REST [9].  To achieve the benefits, we describe 
in this paper a technique for transitional storage called cloud 
data containers to be placed within a cloud to hold intermediate 
process data, such that the data traffic to and from the cloud can 
be reduced.  

Elasticity and virtualization of resources in the cloud are 
enabled by the effective organization of the distributed 
resources and their supporting infrastructural auxiliaries (like 
the aforementioned data containers) in the cloud. Cloud 
applications must exchange data when using and sharing 
resources. When data have to be physically transmitted to 
provide virtualization, we need to guarantee such transmission 
is always minimized in the cloud. Data access patterns of cloud 
applications, to a large extent, determine how the resources and 
their auxiliaries must be deployed with servers in order to allow 
the most effective way of data transportation in the cloud.  

We address the above need by capturing the data access 
patterns of cloud applications in the form of service dependency 
relationships. We believe data exchanges between different 
services (or, alternatively, between a service and a workflow 
engine) form the vast majority, if not all, of the data 
transmissions in the cloud. (Examples of other forms of data 
transmission can be messages for coordinating resource 
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allocation among different nodes in the cloud.) We analyze the 
service dependency relationships in order to calculate the best 
way of organizing the data containers with the servers. In 
particular, physical data containers are assigned to individual 
services. Such assignment relies on service dependency 
relationships, which we model in a weighted service 
dependency graph (WSDG). Dependent services share one or 
more data containers. We have designed a data container 
selection scheme to identify the containers best able to transmit 
data from one partner service to another. The validity and 
efficiency of our data container assignment and selection 
scheme are demonstrated by experiments. 

The remainder of the paper is organized as follows: 
Section 2 is related work. Section 3 describes the motivation of 
this research using an example of composed services in a cloud 
and its interactions with an external application. Section 4 
presents the idea of cloud data containers. It also presents the 
service dependency graph model and assignment of cloud data 
containers to the services of a composite service in the cloud. 
Section 5 illustrates the experiments and provides an analysis of 
the experimental results, while Section 6 concludes the paper. 

2. RELATED WORK 

Service-oriented computing (SOC) has taken hold in cross-
enterprise business settings, such as the use of FedEx and UPS 
shipping services in e-commerce transactions; the aggregation 
of hotel, car rental, and airline services by Expedia and Orbitz; 
or book-rating services for libraries, consumers, and bookstores. 
Given the widespread interest in and deployment of Web 
services and service-oriented architectures that are occurring in 
industry, the scope of SOC in business settings is predicted to 
expand substantially. However, there has not yet been sufficient 
consideration given to how services within a cloud computing 
environment are selected and how the selected services need to 
be deployed (or configured) with regard to the processing, 
storage, and bandwidth resources of the cloud to provide 
higher-level functionality and improved efficiency. 

Cloud computing has recently opened another door to 
sharing resources in enterprise and scientific computing. It 
greatly reduces the start-up costs of configuring operating 
systems, infrastructure, and platforms and providing hardware 
for deploying the functions of a software system in the form of 
services. It follows a charge-by-usage scheme as in utility 
computing. Meanwhile, it relies on specially designed 
distributed processing capabilities to provide linear and even 
exponential scalability. Multiple users with very different 
requirements for their operating systems and platforms are 
provided individual and unaffected usage of resources by 
virtualization. Physically, one machine or a set of machines 
may be shared by multiple clients. Multiple physical machines 
or resources may be employed collectively to serve the same 
customer or redundantly to provide reliability and disaster 
recovery capacity. 

Amazon’s Elastic Compute Cloud (EC2) is an example of 
a cloud computing environment. EC2 offers flexible and on-the-
fly computing capacity via a Web service. It has provided other 
tools for making Web-scale computing easier for developers, 
including a cloud-watch tool for monitoring and reporting the 
utilization of the resources on the cloud, scaling tools for 
automatically allocating EC2 instances to an application, and a 
load balancing service to distribute incoming requests across 
multiple EC2 instances [5].  

Amazon Simple Storage Service (S3) is an example of a 
storage cloud. It provides cheap and reliable storage over the 

Internet. Simple Web service interfaces are provided to support 
basic features of data management, including write, read, and 
delete of objects. An object can be retrieved via a unique and 
developer assigned key. Developers can construct data-centric 
applications using either SOAP-based or REST-based 
interfaces. Usage on S3 is charged per storage used. For 
example, $0.15 per GB is charged for one month for the first 50 
TB. No limitation on the number of objects is set [4].  

IBM introduced ready-to-use cloud computing, named 
Blue Cloud, in November 2007. More than 200 researchers 
around the world are supporting the development of this 
technology. Blue Cloud includes a series of offerings that 
manage operations on corporate data centers, such as operating 
the Internet via a distrusted, network accessible fabric of 
resources. Blue Cloud is supposed to replace the traditional data 
access concepts based on local machines or remote server 
farms. Blue Cloud is based on IBM’s Almaden Research Center 
cloud infrastructure. It relies on virtualized operating systems 
like Xen and uses the parallel workload scheduling technique of 
Hadoop [10] to achieve scalability. Blue Cloud uses IBM’s 
Tivoli software to check the performance of the provisioned 
servers and ensure they meet service-level agreements [6].  

3. MOTIVATION 

Let us assume we have a simple application, called 
ExternalApplication1, consisting of sequential invocations of 
three services deployed in the cloud, as shown in Figure 1.  
Figure 1 additionally shows the message exchanges between the 
application, which is a composite service, and the three 
services, service 1, service 2, and service 3. We can use either 
of the two major protocols for compositions, i.e., Web Service 
Choreography Description Language (WS-CDL) and Business 
Process Execution Language for Web services (WSBPEL) to 
describe the message exchanges. We arbitrarily choose 
WSBPEL here for illustrative purposes. The description of the 
control and data links is shown in Listing 1. WS-CDL can be 
mapped one-to-one to WSBPEL constructs, and therefore our 
method is also applicable to WS-CDL. 

  

 
 
Figure 1. An example of a simple application external to a 

cloud and consisting of a sequential service composition 
 
Here, ExternalApplication1 sends the first SOAP message 

upon seeing the first invoke construct in BPEL description. The 
SOAP message includes (1) control information, such as the 
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access point of the operation and the name of the operation, and 
(2) data, such as the input parameters needed by the operation. 
Service 1 processes the request with the given input data and 
returns to ExternalApplication1 (1) control information such as 
an indication of results or error, and (2) data such as the results. 
ExternalApplication1 will do the same when seeing the second 
and third of the “invoke” commands. In this case, we can 
observe that there are many messages transmitted to and from 
the cloud. This means that applications with a heavy data flow 
might be inefficient, which will impair the scalability benefit 
created by the cloud. Therefore, a more desirable way for such 
communications is via messages between the cloud-deployed  
services and ExternalApplication1 that uses the services to 
establish direct message transmissions between the services 
within the cloud. This way, the scalability issue can be solved 
by the elastic infrastructure offered by the cloud, instead of 
consuming communication resources at the edge of the cloud. 
Of course, if one service can always pass the result to the other, 
as in this simple example of ExternalApplication1, things will 
be much easier. However, this is not the case for most 
applications. 

For better understanding, the example of 
ExternalApplication2 in Figure 2. It is a composite service 
composed of again three component services: Service 1, Service 
2, and Service 3. But this time, Service 3 cannot run until it gets 
the inputs it needs from Service 1 and Service 2, but it expects 
these to come from one SOAP message, not two.  So, there 
needs to be a container for intermediate results.  Also, Services 
1 and 2 must somehow know that their outputs go to Service 3. 
Both can be used to manage the message exchanges between 
component services.  Meanwhile, both require something in the 
cloud that can store intermediate results.  Also, if there is an 
error (e.g., Service 3 fails), then the error message must 
somehow get back to the original caller of Services 1 and 2. 

 
Figure 2. ExternalApplication2 composed of a parallel 

composite service  

Listing 1.   

     
<flow>... 
<sequence> 
    ... 
    <invoke name="invocation1" 
partner="service_1"  
           
portType="asns:Serivce_1PTA"   

  operation="PTAOpA" 
               
inputContainer="containerIn"   
               outputContainer="service_1-
to-process">   
      <target linkName="s0-to-s1"/>   
      <source linkName="s1-to-s2"/> 
    </invoke> 
    <invoke name="invocation2" partner=" 
service_2"  
           portType="asns: 
Serivce_2PTB"   

               operation="PTBOpB"  
        
inputContainer="containerIn"   
                outputContainer=" 
service_2-to-process ">   
      <target linkName="s1-to-s2"/>   
      <source linkName="s1-to-s3 "/>   

</invoke> 
… 

</sequence></flow> 
     

4. CLOUD DATA CONTAINERS AND 
WEIGHTED SERVICE DEPENDENCY 
GRAPHS  

In this section, we introduce the concept of cloud data 
containers and weighted service dependency graphs. We 
illustrate the container assignment scheme using these graphs.  

4.1 Cloud Data Containers 
Cloud data containers are external data storage systems used by 
one or more services deployed in a cloud. Cloud data containers 
hold input, output, and fault messages temporarily, as well as 
any related data associated with the execution of a composite 
service or application on multiple services in the cloud. Data 
containers can be located at different nodes within a cloud. An 
illustration of what a cloud with data containers may look like is 
shown in Figure 3. 

 
Figure 3. Cloud Data Containers 

A cloud may consist of many servers, including application 
servers, which are shown as white circles in the figure. Each  
application server can host a number of  services. For example, 
application server 1 hosts the two services WS1 and WS4, while 
application server 2 hosts one service, WS2. Some application 
servers may be equipped with cloud data containers, shown as 
small dark circles attached to the edge of the application servers. 
Application servers work with the attached cloud data 
containers to prepare messages to be transmitted to other 
correlated services used by the external application.  

The application servers issue instructions to write to and 
read from the cloud data container. The cloud data container 
includes the following information for each possible data 
exchange for an external application that involves a service 
hosted at the corresponding server: 

1. BusinessProcessID: unique identifier for the 
application involving a data exchange 
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2. ProcessInstanceID: unique identifier for the 
application instance involving a data exchange 

3. MessageID: unique identifier for the message 
exchange within a process instance 

4. LocalService: unique identifier for the service that 
writes the content of the message to the container 

5. RemoteService: unique identifier for the service that 
reads the content of the message from the container 

6. Time-to-live: time stamp indicating the end of the 
message’s validity period 

7. ExchangeData: objects of the exchanged data 
8. Size: number of bytes of the data 
9. Message: content of the SOAP message 
Meanwhile, the application server that hosts the last 

service(s) of an application will be selected as the data 
exchange hub (DEH) of the application. A DEH is an 
application server whose associated cloud data container 
maintains the process table for an external application. The 
process table is called the container data directory structure 
(CDDS), with each data entry recording the following 
information of a data flow for the external application: 

1. BusinessProcessID: unique identifier for the external 
application involving a data exchange 

2. ProcessInstanceID: unique identifier for the external 
application instance involving a data exchange 

3. MessageID: unique identifier for the message 
exchange within a process instance 

4. MessageTemplate: xml SOAP message with place 
holders for objects  

5. NodeList: which nodes in the cloud are involved in 
the data exchange of this message, including servers 
of the source and remote services. 

6. Time-to-live: timestamp indicating the end of the 
message’s validity period 

The DEH of the application is capable of generating SOAP 
message templates with place holders for actual objects. After 
being provided with the objects, the DEH will insert the objects 
into the message template to form a SOAP message. An 
example SOAP response message and its template for 
Purchase_Order are given in Figure 5. In addition, each 
application server is configured with a plug-in library accessible 
to the services, which allows the services to call and form the 
XML messages using the data objects in the cloud data 
container. 

Each service has access to its own application server’s data 
container and has knowledge of where its data objects are 
stored, but no knowledge of where other providers’ objects may 
be stored. Very likely, each application server knows which 
objects it stores for each service deployed with itself, but not 
which objects other application servers may have in their data 
containers. Among all the data containers used by an external 
application, only one data container (i.e., the DEH) has 
knowledge of where data objects for each message of the 
external application are stored in the cloud. 

Figure 4 demonstrates the end-to-end process of the data 
exchange using the cloud data containers. In order to facilitate 
data container access, additional APIs are provided to the 
services. The most important ones are “write” and “read,” 
which allow the services to write and read the cloud data 
containers.  

As shown in the figure, upon receiving a request from an 
external application, initialization will be done in the cloud, 
including initialization of the container data directory structure 
attached with the last service at the DEH, in this case, 

application server 3. The initialization of the CDDS includes 
assigning the physical cloud data containers to the required 
services. This is done by querying each application server for 
the services it is hosting. Once this information is available, the 
data container assignment can be decided. One straightforward 
way to pick a container is to always assign a container attached 
directly to the application server to the services. If there is more 
than one such data container, we can perform a load-balancing 
operation to select the one with the expected lowest load. 
However, such a container might not always be available for 
various reasons. For example, there might not be a container 
attached to this server or the container is full and cannot store 
more data. A more carefully planned scheme would be to select 
the container that is with the first server on the best path to the 
destination service, if there is no container at the hosting server. 

This simple scheme cannot guarantee scalability in terms 
of the overall resource consumptions in the cloud in serving the 
external applications. For example, the number of containers 
per application may be too many and proportional to the 
number of services. The containers might be unused most of the 
time. More importantly, the bandwidth consumption might be 
high if a random container is selected for the services of an 
application server. Therefore, we have designed a more 
efficient container assignment scheme based on a weighted 
service dependency graph, which is discussed in sections 4.2 
and 4.3. We take into consideration the above issues in 
designing the assignment scheme.  

 
Figure 4. Process of data exchange with cloud data containers 

 

Once the CDDS has been initialized, a multicast will be 
triggered to update each individual application server with the 
address of the data exchange involved by their hosting services. 
This is shown as arrow (a) in Figure 4. With this, the 
application server will be able to process the “write” and “read” 
requests from the hosted services.  Arrow (a) also represents 
transmitting a message template with place holders to the 
relevant application server. After initialization, WS1will start. 
Upon its completion, it will call the “write” API provided by 
the application server to write the objects in the output message 
into container 1, shown as arrow (b) in Figure 4. “Write” is 
asynchronous, meaning once the objects are written to container 
1, WS1 returns and does not wait until a success 
acknowledgement from container 2, to which the destination 
service is assigned. Transmitting the message to container 2 and 
its success are guaranteed by DEH, because it instructs and 
oversees packaging objects into the message template and 
(possibly remotely) writes to the corresponding cloud data 
container, in this case, container 2. This is shown as arrow (c) in 
Figure 4. This message will be read by WS2 via application 
server 2 at an appropriate time, as shown by arrow (d). 
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Figure 5. An example data exchange message and its template 

in SOAP 
 

4.2 Weighted Service Dependency Graph 
A service dependency graph (SDG) is a directed graph that 

is constructed dynamically to show all possible input-output 
dependencies among service operations [3][11]. There are two 
types of nodes in an SDG: service operation nodes and data 
entity nodes. Service operation nodes model operations of 
services and data entity nodes model their input and output 
attributes. Edges in an SDG link one node to another. Some 
edges link the nodes of the input attributes to the nodes of the 
corresponding service operation. For such data entity nodes, the 
operation nodes are referred to as consumer operation nodes. 
Some other edges link a node of a service operation to the 
corresponding nodes of its output attributes. Similarly, for such 
data entity nodes, the operation node is referred to as a producer 
operation node. Data dependencies in a service dependency 
graph are defined as the dependency relationships between the 
consumer operation nodes and the producer operation nodes of 
the same data entity nodes.  

For this research, we enhance a service dependency graph 
by annotating the edges that connect service operation nodes to 
data entity nodes with weights. The weights correspond to the 
size of the data entity pertinent to the data exchange represented 
by that edge. In other words, an edge is weighted more if the 
data entity transmitted between the two services connected by 

the edge is large. Such service dependency graphs are called 
weighted service dependency graphs (WSDG).  

A segment of a WSDG shown in Figure 6 depicts the 
pattern of dependency of services that process purchase orders. 
It encompasses functions for requesting purchase orders as well 
as making payments and optionally giving rebates to customers 
who meet certain criteria. It also accounts for delivery of the 
purchased items. Payment is allowed by credit card and 
personal checks. Both payments and rebates are referred to via 
an order number, which is created when the purchase order is 
submitted. The figure represents the pattern of input and output 
dependency relationships of services. For example, for “Order 
Number”, “Request Purchase Order” is the producer operation, 
and “Pay By Credit Card”, “Pay By Check” and “Rebate Credit 
Card” are the consumer operations. In other words, “Pay By 
Credit Card”, “Pay By Check” and “Rebate Credit Card” 
depend on “Request Purchase Order” via “Order Number”. The 
edge connecting “Request Purchase Order” to “Order Number” 
has a weight of 9, and the one connecting it to “Item Names” 
has a much larger weight of 50, as shown in the figure. 

          

 

Service Operation Nodes 

Data Entity Nodes

… 

… 

Request 
Purchase 
Order 

Order  
Number 

Order  
Time 

Item 
Details

 
Pay By 

Credit Card

 
Pay By 
Check 

 
Delivery 

 
Rebate 

Credit Card 

9  50 

Figure 6. An example weighted service dependency graph 

A WSDG can be constructed by analyzing the 
<partnerlinks> in the BPEL document of the external 
application and the WSDL documents of two Web services that 
are sequential, parallel, or related by other control constructs. 
The pseudo code in Listing 2 can be used to generate service 
dependency graphs from sequential structures. 

Listing 2: 

______________________________________________ 
 

1. for each <sequence> element in BPEL { 
2. Get next <invoke>, <receive> and <reply> element; 
3. Assign this element to irr; 
4. L1:  
5. Extract the value of <operation> of irr and assign it 

to op1; 
6. Extract the value of <portType> of irr and assign it 

to pt1; 
7. Get the next element that immediately follows irr in 
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<seque

9. he value of <operation> of irr_next and 
assign it

10. the value of <portType> of irr_next and 
assign it

if outpu
12. e of the overlapping objects 

to calculate the 
13. 

 the 

14. 

em to WSDG if they 

15. 
ing input and output data nodes 

16.  edge with the corresponding 

xt; 
Go to L1; 

} 

____

 <operation> and 
<po

 Lines 13-16 in the pseudo 
cod

d and all <sequence> elements are traversed as in lines 

4.3 Data Container Assignment by WSDG

ectly applying 
exis

ng 
the 

st 

t from a to c can be seen 
as a

of the w een

n hts betw
pli

 inter
operations in two application server nodes. 

 

nce> 
8. Assign this element to irr_next; 

Extract t
 to op2; 
Extract 
 to pt2; 

11. t(op1) overlaps input(op2) { 
Record the siz

weights {w_i} ; 
Construct two nodes for op1 and op2 as 
operation nodes and add them to
WSDG, if they are not already there; 
Construct the corresponding data nodes 
for intput(p1), output(p1), input(p2) and 
output(p2), and add th
are not already there; 
Connect the operation node(s) to the 
correspond
by edges; 
Denote each
weight w_i; 

17. irr = irr_Ne
18. 
19. 
20. } 
___________________________________________________ 
In the above pseudo code, we process the elements within 

the <process> construct. First, we begin with a <sequence> 
element and track down any <invoke>, <receive>, and <reply> 
elements within the <sequence> element in line 2. A sub-
element of portType and operation contains the corresponding 
operation that it invokes on other services or is invoked by other 
services. So we extract both sub-elements as in line 5-6. Next, 
we look at the next <invoke>, <receive>, and <reply> element 
and we do exactly the same to extract its own

rtType> elements as in lines 7-10.  
After these are done, we are able to check if any variables 

used in the input and output of these two consecutive Web 
services are the same, or if there are overlaps on some 
individual elements of the input and output as in line 11. If so, 
we record the size of the overlapped elements and calculate the 
weight of the data overlap given the size of the overlapping 
element. The weight will later be used to mark the edge 
connecting the data entity node and the operation node as in line 
12.  Then we construct nodes for the operations and input and 
output data entities and add them to the WSDG, if they are not 
already there. Edges that connect operation nodes and the 
corresponding data entity nodes are also constructed and also 
denoted with the calculated weight.

e correspond to such activities.  
This process is repeated until all the <invoke>, <receive>, 

and <reply> elements within the <sequence> element are 
traverse
17-18. 

 
In this research, we need to solve the problem of assigning 

data containers to services for efficient data exchanges of cloud 
applications. Similar problems, such as which is the most 
efficient route for data to travel from one place to another, have 
been studied in the domain of network metrics (e.g., QoS-based 
routing). Solutions such as Dijkstra’s algorithm for single 
source shortest path are often used in network routing. 
Assigning data containers to services is a more complex 
problem. Here, multiple services are possibly located at 
different servers and they need to choose their data containers. 

Such a data container assigned to the service may or may not be 
co-located with the service itself, depending on various 
constraints including load balancing. Data transferred are 
defined by two interacting services for the purpose of 
completing an application. Once data are in the containers, data 
transfer occurs between two data containers not two services. 
This problem cannot be simply solved by dir

ting solutions such as Dijkstra’s algorithm.  
Our purpose is simple: to define an assignment scheme for 

data containers while minimizing the traffic created in the cloud 
due to the data exchange for a particular external application 
using cloud data containers. The volume of traffic in our 
problem is determined by two factors: (1) the amount of data 
that is to be transmitted and (2) the length of the route duri

transmission. We will explain these two factors in detail. 
We use an example to illustrate the assignment scheme. In 

terms of the fir factor of the volume of the data, we model it 
as the weight iw  of an edge that connects one service to the 
other in a WSDG. An example WSDG and its conversion are 
shown on the left hand side and right hand side of Figure 7. 
(For illustration purposes, we have removed the data entity 
nodes in the weighted SDG, which results in what we call a 
converted WSDG.) In Figure 7, three service operations, i.e., 
operations a, b, and c are highlighted. The weight from a to b is 
9. Two weights from a to c are 6 and 5, respectively. We 
assume that all the objects transferred between a and c travel via 
the same route. In this case, the weigh

n average of two weights, or 5.5.  
Equation (1) shows the calculation eight betw  

two service operations a and b i.e., ),( baw , where {d  
represents the set of overlapping data between a and b, and n  
represents the total number of the overlapping data items. 
Equation (2) shows the calculatio  of the al weig  
two ap cation server nodes 1N  and 2N , i.e., ),( 21 NNw , 
where m denotes the number of pairs of

}

 tot een

acting service 

 
Figure 7(a). Weighted service dependency graph 
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Figure 7(b). Converted weighted service dependency graph 

from 7(a). 
 

 
 
In terms of the second factor of the length of the 

transmission, we assume that the network distance of any two 
application server nodes in a cloud are known in advance.  The 
lengths between any two application servers can be represented 
as an m by m matrix L , where m again is the total number of 
application server nodes in the cloud. Equation (3) can be used 
to calculate the cost of using certain data containers for the 
application, i.e., .  returns the length of 

the jth path between nodes and , which is the element at 
the th row and th column of 

),( 21 NNc j )',( NNl j

N 'N
N 'N L  or the sum of 

and , where  is an intermediate node 

between and .  is the average bandwidth 

of the jth route between nodes N and . In (3), nodes 

and  correspond to where the containers for the 

services in and  are located respectively. Equation (4) 
shows the calculation of the total cost contributed by all the data 
communications of external application p. Here P corresponds 
to the set of server pairs that communicate due to information 
exchanges required by p. 

)",( NNl )',"( NNl "N
N 'N )',( NNbd j
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aN bN
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The following algorithm can be used to calculate the 

best assignment scheme of containers to the services for 
external applications using services in a cloud 
environment. 

Listing 3: 

______________________________________________ 
 

1. for each pair of  service operations (a,b) in the 
WSDG that exchange data for application p{ 

2. Use (1) to calculate w(a,b); 
3. record it in {w(a,b)}; 
4. }  
5. for each pair of application server nodes ( , ) 

involved in application p { 
iN kN

6. Use (2) to calculate  and record 
them; 

),( ki NNw

7. } 
8. for all possible assignments of containers to services 

in application p, i.e.  {a}  { 
9. for all possible paths j  between any two 

communicating server nodes{ 
10. use (3) to calculate of 

the jth path for assignment a and 
record them; 

),(, kija NNc

11. }  
12. use (4) to calculate the total cost  

and record them;  
)(, pc ja

13. } 
14. a*=min_arg( ); )(, pc ja

15. return a*; 
__________________________________________________ 
 

In Listing 3, we first calculate the weights between each 
pair of service operations in the application that exchanges data, 
as in lines 2-5. Using such weights, we can calculate the 
weights between two services that their operations exchange 
data as in line 2. Services of the same application that exchange 
data may be deployed with different application servers. One 
server might have multiple pairs of services whose operations 
exchange data. So, one extra step is to calculate the weights 
between any pair of servers that exchange data and then the cost 
of such exchange considering different paths of transmitting 
data as in lines 6-9. Once all paths have been investigated, the 
path that has taken the minimum cost will be returned. 

Here we further illustrate this assuming an example length 
matrix for the application server nodes in the cloud as in (5). 
Therefore, =3, = =1, 

=2, and =1. We use the same weights 
shown in Figure 7. We assume that each service operation 
belongs to three different services, i.e., sa, sb, and sc, 
respectively, and each service is with a different node, 
respectively. There is only one communication of this 
application, which is between service a and service b. 
According to (3), we can calculate = 9*1+6*2 
= 21, when taking the path of a->d>b. Therefore, the best 
container nodes for services sa and sb will be  and , 
respectively. 
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5. EXPERIMENTS   

We simulated our container assignment scheme to analyze 
its effectiveness. We compare the cost of an application 
external to a cloud using our scheme of assigning containers, as 
defined in section 4.3, with the baseline scheme. The baseline 
scheme is defined as follows: for any Web service, select the 
container that is encountered first on the best path (which has 
the minimum cost) of any communication from the service to 
its corresponding destination. Formally, it can be written as in 
(6), where denotes the container node of service s on 

server node 1N , is the  server node with which s 
communicates, and l is the distance between the two nodes. 

),( 1NsNC

2N

In the experiments, there are two parameters, (1) P, the 
possibility that the costs of two schemes are different and (2) Δ, 
the amount of the cost difference, if any. The simulated cloud 
has 300 server nodes, each hosting a number of services. The 
number varies between 0 and 10 uniformly. The network 
connectivity of the cloud is 20%. The number of 
communications from one service to another and the total 
number of communicating services for an external application 
vary. We also vary the distances between two communicating 
services for the application. The above three facts determine, 
jointly, the cost of the external application.  

The results of the cost savings of our scheme as the 
percentage of the baseline scheme is given in Figure 8. We have 
experimented on three sets of Δ values. The first set is for P = 
0.2, meaning that the probability is 0.2 that there will be a cost 
difference. Under this circumstance, we have taken three Δ 
values, i.e., 10%, 20%, and 30% of the cost of the baseline 
scheme. This is repeated for P = 0.5 and P = 0.7. In all cases, 
the savings increase proportionally to the value of Δ. This 
means that our scheme has larger savings if the cost difference 
increases. Also, we see that the line corresponding to P = 0.7 is 
above the line corresponding to P = 0.5, which is again above 
the line corresponding to P = 0.2. This means that our scheme 
saves more as the probability of a cost difference increases. 

Cost Savings of Our Container Assignment Scheme
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Figure 8. Cost savings using our container assignment 
scheme 

6. CONCLUSIONS 

A cloud computing environment can provide beneficial 
infrastructure scalability in processing, storage, and bandwidth. 
A benefit of services is that they can be deployed independently 
of each other, yet can be composed to work in concert to 
achieve higher-level functionality.  However, when the services 
are moved into a cloud to take advantage of the cloud’s 
scalability, the storage and bandwidth scalability might not be 
fully realized unless special provisions are made.  We address 
the provisions in this paper. 

In particular, we consider the possibly large amount of 
data exchanged between an external application and the 
services in the cloud. We have presented a technique of using 
transitional storage we term cloud data containers to hold 
immediate process data to reduce the data traffic 
(communication bandwidth) to and from the cloud. In essence, 
we use the scalability of cloud storage to reduce the 
communication bandwidth, reduce the time needed to process 
an application consisting of composed cloud services, and 
thereby improve throughput.  The validity and efficiency of our 
data container assignment and selection scheme are 
demonstrated by experiments. The contribution of the paper is 
to provide a solution to the scalability issue of a cloud 
environment where software-as-services is deployed.  

We are continuing to investigate the performance and 
benefits of this technique when it is applied to typical types of 
applications with a variety of real-world characteristics. We are 
also interesting in customizing this technique for catering to 
different types of applications.  
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