Using Simulations to Assess the Stability and Capacity of
Cloud Computing Systems

Jingsong Wang
Department of Computer Science and
Engineering
University of South Carolina
Columbia, SC 29208
wang82@email.sc.edu

ABSTRACT

For applications hosted in a cloud computing system, where
there are many servers to handle incoming invocations of
the application, the assessment of stability of the cloud is
very important for both the planning of new applications
and the expansion of existing applications. However, a gen-
eral assessment is always hard to achieve as there are still
no standard definitions of techniques used in cloud comput-
ing and an actual cloud computing system could be very
large and complex. This paper presents a simulation for
a cloud computing environment. It enables an assessment
of the cloud’s logical stability under various configurations
without performing experiments on the actual cloud envi-
ronment. The correctness of the simulation is verified by
the theoretical calculation results of the well known M/M/1
queuing system.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services— Web-based services, Data sharing; C.2.4

[Computer-Communication Networks]: Distributed Sys-
tems— Distributed applications; 1.6.7 [Simulation and Mod-

eling]: Simulation Support Systems

General Terms

Design, Experimentation, Measurement, Performance, Reli-
ability

Keywords
Cloud Computing, M/M/1 Queuing System

1. INTRODUCTION

1.1 Cloud Computing System

Although there is still no standard definition for the con-
cept of cloud computing, regarded as the next natural step

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ACMSE' 10 April 15-17, 2010, Oxford, MS, USA.

Copyright 2010 ACM 978-1-4503-0064-3/10/04 ...$10.00.

Michael N. Huhns
Department of Computer Science and
Engineering
University of South Carolina
Columbia, SC 29208
huhns@cec.sc.edu

in the evolution of on-demand information technology ser-
vices and products [10], cloud computing is beginning to
have a significant impact on both individual end users and
enterprises, and is attracting increasing research and devel-
opment from academia and industry. We choose herein the
definition from [9], as it includes a comprehensive analysis
of the features of cloud computing. “Clouds are a large pool
of easily usable and accessible virtualized resources (such as
hardware, development platforms and/or services). These
resources can be dynamically re-configured to adjust to a
variable load (scale), allowing also for an optimum resource
utilization. This pool of resources is typically exploited by
a pay-per-use model in which guarantees are offered by the
Infrastructure Provider by means of customized SLAs.”

As described in the 2009 Horizon Report [7], which put
cloud computing as one of six emerging technologies to watch,
“The emergence of large-scale ’data farms’ - large clusters
of networked servers - is bringing huge quantities of pro-
cessing power and storage capacity within easy reach. Inex-
pensive, simple solutions to offsite storage, multi-user appli-
cation scaling, hosting, and multi-processor computing are
opening the door to wholly different ways of thinking about
computers, software, and files.”

It is a style of computing in which massively scalable I'T-
enabled capabilities are provided “as a service” to multiple
customers. Unlike previous IT licensing models, however,
these services are typically billed to customers on a con-
sumption basis, thereby converting the traditional capital
expenditure model common in data centers today to an op-
erational expenditure model. The services provided by cloud
computing environments are based strongly on the use of vir-
tualization of various types of computing technologies, but
the common theme is reliance on the Internet to satisfy the
computing needs of users. The types of computing technolo-
gies being virtualized lead to the following four categories of
cloud services: Basic Computational Services, laaS, PaaS,
and SaaS.

But just like any other service-based activities, no matter
what category the service is, it mainly involves two actors:
the service requester and the service provider. From the
service requester’s view, a cloud computing system provides
a computing utility available on demand. From the service
provider’s view, at the system level, cloud computing con-
tains a robust allocation system that rationally distributes
incoming requests to specific computer servers in the cloud
to handle the request. Notice that, being a rapidly evolv-
ing research topic, cloud computing still has no agreed-upon

Figure 1: The basic architecture of a cloud comput-
ing system.

standards, so here we make use of a very high-level abstrac-
tion for the service provider side. We discuss more about its
logical stability assessment based on system configurations
in the coming sections. An actual cloud computing system
will certainly include additional components, such as service
brokers and cloud federations. The former negotiates rela-
tionships between service requesters and service providers of
a cloud, while the latter is very necessary for social network
sites whose components could be hosted by different cloud
computing providers in order to optimally serve customers
at various geographical locations [3]. These techniques play
the same significant roles for the whole system’s performance
as those servers that process incoming requests. However,
they are not the focus of this paper. Figure 1 shows a basic
architecture of a cloud computing system. Our analytical
model presented in section two can be simply considered as
an abstraction built over the service provider, which always
contains a large network of cloud servers executing the ac-
tual computing tasks.

There are many advantages service users can take from
cloud computing. Six of the main benefits are summarized
in [2]: (1) reduced cost, (2) increased storage, (3) highly au-
tomated, (4) flexibility, (5) more mobility, (6) allows IT to
shift focus. Meanwhile, the large scale application of cloud
computing brings many issues and challenges. One major
challenge of moving applications to the cloud is the need
to master multiple languages and operating environments.
Also, cloud computing raises questions about privacy, secu-
rity, and reliability [6]. Many research issues are presented
in [10]. For example, the open challenges related to cloud
provenance data include how to collect provenance informa-
tion in a standardized and seamless way with minimal over-
head, how to store it in a permanent way so that one can
come back to it at anytime, and how to present it to the user
in a logical manner. Among the problems, system stability
is always one of the top concerns and thus the technical issue
we address here is an assessment of a system’s stability. The
resulting experimental outputs can also be used for capacity
planning in the design stage of a cloud system development.

1.2 Stability Assessment

Stability for a cloud computing system, just like for any
other system, is of utmost importance. Stability assessment
is needed for the whole system life time, from the initial de-
sign and implementation to actual operation, management,
and extension. Customers would not tolerate a slow re-
sponse from a cloud application, because they are paying for
its use on demand. Service providers need to provide quality
systems that can make full use of existing resources, while
serving every request in time to attract more customers. The
interruption of Amazon Web Services and Gmail’s unavail-

ability for only a couple of hours recently led to a number
of complaints from users who had trouble accessing their
accounts, and these cases have raised questions and worries
about the stability of cloud computing systems.

For a large cloud computing system, there are numerous
factors that essentially govern its stability, such as the con-
dition of the software and hardware supporting the system.
One exception in an operating system or a brief malfunc-
tion of a network card may put the whole system into an
unstable state. This kind of stability problem caused by
the faults or loss of equipment can be defined as a physical
stability problem, which is not the one we address in this
paper. We pay more attention to a system’s logical stabil-
ity, i.e., we focus on the stability issues caused by various
system configurations in terms of three basic metrics: the
arrival rate of requests, the number of servers in the cloud,
and the computing capacity of each server. We then con-
sider how to use simulation to assess stability in terms of the
metrics. Also as stated above, the assessment is restricted
to the system level at the service provider side, instead of
the global system containing every cloud component, and is
still theoretical as it is based on high-level abstractions.

For a cloud computing system, whose computing capacity
is fixed, stability is crucial, because bad effects can accu-
mulate. This generally happens when the current requested
computing capacity exceeds the available service capacity.
One direct result is that these requests cannot be served im-
mediately and have to wait. If the number of requests keeps
increasing at the same or even higher rate, the cloud com-
puting system then cannot handle incoming requests in a
timely manner and the number of requests waiting or never
served will grow. We say that the system in this situation
is not stable.

This situation worsens when waiting requests are resent.
For an existing system, we can assess its stability by looking
at its log files and monitoring its performance. The assess-
ment accuracy depends on the data collected and is limited
by the available resources. In fact, monitoring cloud systems
is also an active research topic. The enormous size of a cloud
data center and its large number of nodes require a robust
monitoring system to actively react to failures [11]. It would
be better to predict the stability condition in advance than
react when failures really occur. However, in the planning
period of building or expanding a large cloud system, gener-
ally we have no physical ones to observe or we cannot afford
to use the real platform to assess its stability. In these cases,
we must resort to simulation. Simulation makes possible re-
peatable results and exploitation of various scenarios in a
light-weight environment. A good simulation program for
stability assessment should reflect the potential problems or
help in finding an optimum system configuration before the
designed system is constructed and deployed.

The rest of this paper is organized as follows. Section two
describes the system definition and the simulation design.
Section three shows the experimental results, including the
results for verification using M/M/1 queuing theory. We
conclude our work in section four with a discussion of related
and future work.

2. SIMULATION DESIGN
2.1 System Definition

Although there are many different cloud computing sys-

Messages Servers

Allocation System

Figure 2: A simplified message processing process
of a cloud computing service provider.

tems, which may employ various standards and techniques,
the basic architectures and processing procedures of actual
service providers do not vary very much. Hence, they can
be reasonably modeled as described in [5] for theoretical
analysis purposes, as follows: we consider a group of com-
puter servers arranged to cooperate in providing cloud com-
puting services to a stream of randomly arriving messages,
standing for requests/programs to be executed. Each server
is assumed to have the same maximum possible comput-
ing rate in Floating Point Operations per Second (FLOPS).
Messages can be of different types, and each type of mes-
sage has a specified service capacity and requires a specified
mean execution time. An arriving message requiring specific
computer capacity will be allocated to a server and begin ex-
ecuting immediately, if the required cloud capacity is avail-
able. Otherwise, it will be placed in a queue and wait for a
given time; it will then retry for service. One message can
only reside on a single cloud element (a computer server) at
a time. When the arrival rate of messages surpasses the ser-
vice capacity of the cloud computing system, the queue will
tend to grow indefinitely, and the system is defined to be un-
stable or saturated. Figure 2 shows how messages presented
above are handled at the service provider side.

2.2 Simulation Design

Based on the theoretical model of the previous section,
we design a program to simulate its performance. A few
necessary assumptions are made as follows. We assume
that all the servers in the cloud are identical, i.e., have
the same computing capacity. In addition, we assume that
there are at most two types of messages that arrive ac-
cording to a Poisson process with given rates. Their ser-
vice times are assumed to follow an exponential distribution
with given means. We also assume that the policy of choos-
ing servers is without replacement, i.e., an arriving message
first randomly chooses one server to request processing; if
the request is rejected then the message requests service
from the remaining servers at random; when there is no
server available to try, the rejected message is placed into
the queue. Our simulation mainly measures the size of the
queue of messages that forms as processing proceeds by the
servers.! Our detailed descriptions about system structure,
input and output design, and flow of control are online at
http://www.cse.sc.edu/ " wang82/doc/ccs2009.

3. EXPERIMENTAL RESULTS

!An actual cloud computing system may have many more
types of messages that arrive according to other distribu-
tions, and more complex policies can exist not only for choos-
ing a server, but also for deciding how to serve a message on
a specific server.

Experiments were conducted on a desktop computer to
verify the correctness of the simulator.

3.1 Correctness Verification

Because the simulation program provides the flexibility
of setting values of most parameters, we can let it approxi-
mately simulate the run of a standard M/M/1 queuing sys-
tem by fixing the server number to be one. Theoretically,
there are well founded mathematical solutions for the cal-
culation of measurements like the average queue length, the
average number of requests in the system, the average time
spent in the system, the average time spent in the queue, and
so on, with respect to the mean arrival rate and the mean
service rate in the M/M/1 system. As a result, M/M/1 is
well suited for validating simulation results.

3.1.1 M/M/1 Queuing System
The M/M/1 system [1] is made of:

e Arrivals are a Poisson process (A);
e Service time is exponentially distributed (1/p);
e There is one server;

e The length of queue in which arriving requests wait
before being served is infinite;

e The population of requests available to join the system
is infinite.

We define p = A/u. Then we can use the following equa-
tion to find the number of requests in the queue:

N=p*/(1-p)
3.1.2 M/M/1 Smulation Setting and Results

To simulate an M/M/1 queuing system, we have parame-
ter values set as follows: we set Server Number to be 1, the
message Arrival Rate to be 1.0, and message Retry Time
to be 0.5. Particularly, we set Capacity Per Server to be 5.
Requested Capacity is 5 and Service Time is 0.75 for both
two types of messages. So the system has only one type
of messages, and at any time, only one message could be
served in the server, and the actual service rate pu could be
calculated to be:

p=1/0.75 = 20/15 ~ 1.3333

Then such a system is very close to an M/M/1 queuing sys-
tem, except that each message has a retry time. In a stan-
dard M/M/1 system, the retry time for a queued message
should be zero, i.e., as soon as a server is available, the mes-
sage will be sent to that server immediately.

When we have parameters set this way, we can run a few
simulations and use actual outputs to compute actual values
for p and then N, the theoretical average queue length in
a long run. In the end, we can compare the computed N
with the actual output average queue length. The degree
of closeness will tell whether our system really handles mes-
sages in a proper way, or whether the program simulates a
queuing system correctly.

At first, we run the simulation program ten times with
expected arrival rate A = 1.0 and retry time to be 0.5. Ta-
ble 1 shows the actual arrival rate and the computed average
queue length, and the actual average queue length. We use
A to represent message arrival rate, u to represent service

Table 1: Expected arrival rate A = 1.0, retry time =
0.5, in 1 server case (5000 seconds)

Actual Input gl;[e:;le;l:stn Actual Output Difference

Number A 1 P N Ly Lo Li—NJ[L,—N
1 0.9936 1.3416 0.7406 2.1146 3.2008 | 3.1511 1.0862 1.0365
2 1.0009 1.3353 0.7496 2.2436 3.8936 | 3.8366 1.6500 1.5930
3 0.9924 | 1.3203 | 0.7516 | 2.2749 3.7333 | 3.6875 1.4584 | 1.4126
4 0.9948 1.3237 || 0.7515 2.2731 3.7957 | 3.7260 1.5226 1.4529
5 1.0042 | 1.3327 || 0.7535 | 2.3034 3.3631 | 3.3020 1.0597 | 0.9986
6 1.0184 | 1.3436 || 0.7580 | 2.3736 3.1267 | 3.0698 0.7531 | 0.6962
7 1.0344 1.3429 0.7703 2.5827 3.6725 | 3.6215 1.0898 1.0388
8 0.9952 | 1.3241 | 0.7516 | 2.2742 3.0875 | 3.0299 0.8133 | 0.7557
9 0.9872 1.3122 0.7523 2.2852 3.1084 | 3.0671 0.8232 0.7819
10 0.9982 | 1.3488 | 0.7401 | 2.1071 2.9316 | 2.8718 0.8245 | 0.7647

1.1081 1.0531
Mean 1.00193 | 1.33252 || 0.7519 2.2788 3.3913 | 3.33633 1.1125 1.0575

Table 2: Expected arrival rate A = 1.0, retry time =
0.05, in 1 server case (5000 seconds)

Actual Input Theoretlca.l Actual Output Difference
Computation

Number A I P N Ly Lo Li—N|[Ly—N
1 1.0108 1.3347 || 0.7573 2.3634 2.4434 | 2.5117 0.08 0.1483
2 1.0110 1.3121 0.7705 2.5872 2.3938 | 2.4455 -0.193 -0.142
3 0.9874 1.3168 0.7498 2.2477 2.0524 | 2.1183 -0.195 -0.129
4 0.9938 | 1.3642 | 0.7285 | 1.9546 1.7877 | 1.8680 -0.167 | -0.087
5 1.0046 | 1.3455 || 0.7466 | 2.2003 1.6393 | 1.7242 -0.561 | -0.476
6 0.9924 1.3247 || 0.7492 2.2373 2.6178 | 2.6802 0.3805 0.4429
7 1.0126 | 1.3521 || 0.7489 | 2.2337 3.0532 | 3.1215 0.8195 | 0.8878
8 0.9844 1.3284 0.7410 2.1206 2.4230 | 2.4973 0.3024 0.3767
9 1.0070 | 1.3402 || 0.7514 | 2.2708 2.3774 | 2.4401 0.1066 | 0.1693
10 0.9998 | 1.3478 | 0.7418 | 2.1312 2.5778 | 2.6376 0.4466 | 0.5064

0.1019 | 0.1698
Mean 1.00038 | 1.33665 || 0.7484 | 2.2265 2.3366 | 2.40444 || 0.1101 | 0.1779

rate, L1 and L2 to represent the average queue lengths from
two different ways of calculation, one by output per second,
and the other is based on integral. L1— N and L2 — N show
the differences.

From Table 1, we can see that the actual arrival rate
1.00193 and service rate 1.33252 is very close to the values
we set (expected) A = 1.0 and p = 1.3333, and the out-
put average queue length L1 and L2 are just a little more
than the theoretically computed N values. The difference
is about 1 message more. Most importantly, in ten random
runs, the system stably produces values which are in a fixed
range that is close to the theoretical computation results.
Then we use the same parameter values except a different
retry time. We reduce the retry time from 0.5 to be 0.05.
We still randomly run ten times the simulation program and
get ten sets of outputs shown in Table 2. From Table 2, it
is very obvious that the difference between the actual out-
put L1 and L2 and N is much smaller. It decreases from
about 1 message to about 0.1 message, a very close value,
when having retry time reduced from 0.5 to 0.05. To fur-
ther verifying the correctness of simulation, we change the
expected arrival rate to be 0.5 and all the other parameter
values are kept same as before, i.e. still the same expected
service rate. Table 3 shows the actual outputs, where the
average difference can reach 0.006, which is very good.

When the arrival rate is higher than the system service
rate, the queue length should apparently increase. We make
some runs with such settings and even longer simulation
time, 10k seconds, and we can see the increase change of
queue length from Table 4. From Figure 3, 4, and 5, we
can see the queue length increases rapidly as the time value
increases. Especially, the higher the ratio of A/u, the steeper
is the shape.

Table 3: Expected arrival rate A = 0.5, retry time =
0.05, in 1 server case (5000 seconds)

Theoretical

Actual Input . Actual Output Difference
Computation
Number A P N Ly Lo Li—N | L—N
1 0.5082 0.395 0.2579 0.2235 | 0.2839 -0.034 0.026
2 0.5190 0.3882 0.2463 0.2203 | 0.2769 -0.026 0.0306
3 0.4936 0.2134 0.2183 0.0049 | 0.0615
4 0.4906 | 1.3062 0.2259 0.2707 0.0448 | 0.1044
5 0.4864 | 1.3038 0.2220 0.2387 0.0167 | 0.0747
6 0.5058 | 1.3197 0.2382 0.2687 0.0305 | 0.0901
7 0.5002 1.3436 0.3723 0.2208 0.2267 0.0059 0.0515
8 0.4864 | 1.3310 | 0.3654 | 0.2105 0.1943 -0.016 | 0.0349
9 0.4996 1.3127 0.3806 0.2338 0.2559 | 0.3152 0.0221 0.0814
10 0.4990 | 1.3086 | 0.3813 0.235 0.2471 | 0.2986 0.0121 | 0.0636
0.0060 0.0619
Mean 0.49888 | 1.31924 || 0.3813 0.235 0.2364 | 0.29225 0.0014 0.0572

Table 4: X > 4 in 1 server case (10k seconds)
X

Number m oy Ly Ly

1 1.3490 | 1.3449 | 1.0030 || 156.5855 | 156.5745
2 1.3648 | 1.3151 | 1.0378 || 380.1344 | 380.1154
3 1.3698 | 1.3366 | 1.0248 || 332.4943 | 332.4885

Number

50
200 ﬂvh‘
150 —Queued Messages
‘ ‘ Being Processed
100 ‘ Messages
50
0 Time (5)

1 1498 2995 4492 5989 7486 8983

Figure 3: A = 1.3490 (#1 in Table 4), in 10k seconds.

Number
500

150 3
400 M
350
300 .
250
200 /J
150 -
50

0 Time (5)

1 1498 2995 4492 5989 7486 8983

—Queued Messages

Being Processed
Messages

Figure 4: X\ = 1.3648 (#2 in Table 4), in 10k seconds.

Number

600

500 jll
400

—Queued Messages

80 V" Being Processed
Messages
200
100
0 Time (5)

1 1498 2995 4492 5989 7486 8983

Figure 5: A = 1.3698 (#3 in Table 4), in 10k seconds.

Number

A

200

—Queued Messages

150 Being Processed
Messages

100

50

i Yl

0 Time (5)

1 1498 2995 4492 5989 7486 8983

Figure 6: A\ = 1.3519, p = 1.3456, in 10k seconds.

Table 5: Parameter Values for Message Types

Message Type 1 | Type 2
Capacity Requested (FLOPS) 5 10
Mean Execution/Service Time (Seconds) 15 12
Probability of Message 0.5 0.5

3.1.3 Service Rate Discussion

If we reset some of the parameter values, for example,
Capacity Per Server to be 100, Requested Capacity to be 5,
and Service Time to be 15 for both two types of messages,
i.e., the system still has only one type of messages, but at
any time, more than one message (in fact it can be at most
20 messages) could be served in the server, then it seems
that the actual service rate p could be calculated to be:

1 =20/15 = 1/0.75 ~ 1.3333

which is equal to the service rate we have in the system we
simulated in the previous section. But the output of actual
runs shows that the actual service rate of this system is
slightly higher than we thought and calculated. We choose
one sample with input arrival rate 1.34, actual arrival rate
1.3519, and the calculated service rate 1.3456, running in
10k seconds. Figure 6 shows the queue length fluctuation
in the run where we do not find the same way of increase
shown in Figure 3, 4, and 5, even if we have 1.3519 > 1.3456,
whose ratio is A/u = 1.0047, which is even higher than #1
sample in Table 4.

3.2 Simulations for More Servers

Now we return to the more complex case. We simulate a
system with 500 servers and 2 types of messages as defined
in Table 5. Each server has the same capacity: 100 FLOPs.
We do three simulation replications.

Because there are two types of messages, we do not have
a simple way as before to know the possible service rate,
but we can now approximate its value from the simulation
outputs. We have found that the system is in a stable state
when the arrival rate is around 510. The actual arrival rate
and outputs are shown in Table 6. Figure 7 shows that the
queue length is very small when A is smaller than 510 (corre-
sponding to #4 in Table 6). When X is close to 510, we can
see that the queue length fluctuates very much, as shown in
Figure 8, 9, and 10 (corresponding to #1, #2, #3 in Table 6
respectively), but the system is still in a stable state. When
we choose a higher value for the expected arrival rate, 515,
we can see apparently that the queue length goes straightly
up as the time increases, even within a shorter 5000 seconds,
in Figure 11 (corresponding to #5 in Table 6).

Table 6: Two message types in 500 server case in
10k and 5k seconds separately

Time | Number A L1 Lo
10000s | 1 509.8101 || 145.3111 | 145.2435
2 510.1773 143.6217 143.6174
3 510.1916 || 169.2893 | 169.2670
4 499.9239 2.2004 2.1804
50008 | 5 514.5486 || 5384.8341 | 5384.7288
Number
8000
7000 [—Queue Total
6000 |- ——Queue Type 1
5000 Queue Type 2
4000 4 A L T Being Processed
3000 - Total
——Being Processed
2000 | Type 1
—Being Processed
1000 | Type 2
0 Time (5)

1 1540 3079 4618 6157 7696 9235

Figure 7: A = 499.9239 (#4 in Table7), 500 servers,
10k seconds.

Number

8000

7000 — Queue Total
6000 —— Queue Type 1
5000 Queue Type 2
4000 mmm Being Processed
3000 - " - Total
’- ——Being Processed
2000 Type 1
——Being Processed
1000 Type 2

Time (5)

1 1540 3079 4618 6157 7696 9235

Figure 8:)\ = 509.8101 (#1 in Table 6), 500 servers,
10k seconds.

Number
8000
7000 1 —Queue Total
6000 |- ——Queue Type 1
5000 Queue Type 2
1000 S 2 W Y ‘ Ve Being Processed
3000 . ¥ Total
——Being Processed
2000 [Type 1
—Being Processed
1000 Type 2
0 Time (5)
1 1540 3079 4618 6157 7696 9235

Figure 9: A\ = 510.1773 (#2 in Table 6), 500 servers,
10k seconds.

Nu
8000

7000 — Queue Total

6000 —— Queue Type 1

5000

1000 AT P o

Queue Type 2

Being Processed

3000 e ” - on—— Total
——Being Processed
2000 Type 1
——Being Processed
1000 Type 2

0 bl o i e s Ve
1 1540 3079 4618 6157 7696 9235

Time (5)

Figure 10: A = 510.1916 (#3 in Table 6), 500 servers,
10k seconds.

Nur
8000

7000 —Queue Total

6000 |- 00— Queue Type 1

5000 " ," Queue Type 2

4000 Faodurinaen B o vy

ki o . Being Processed

3000 Total
e ——Being Processed

2000 e Type 1
b ——Being Processed

1000 . Type 2

0 Time (5)
1 631 1261 1891 2521 3151 3781 4411

Figure 11: A\ = 514.5486 (#5 in Table 6), 500 servers,
5k seconds.

4. CONCLUSION AND DISCUSSION

This paper presents a simulation program for a stability
assessment of a cloud computing system. The stability as-
sessment can also help us find the actual service rate. The
simulation program has provided flexibility in setting val-
ues of critical parameters. The only restricted parameter is
the number of message types(two currently). But from the
way of design we can see that it is not hard at all to ex-
tend the program to accommodate more types of messages.
Unlike other computing techniques in the distributed envi-
ronment, such as Grid computing for which several simula-
tors have been proposed, including GanSim [4] and SimGrid
[8], we have not found many efforts for the cloud comput-
ing paradigm, especially for its stability analysis. [3] has
made a good attempt. However it is based on the analy-
sis of a global system and tries to simulate most aspects of
a cloud computing system. Instead of stability, its exper-
iments focus more on scalability issues of such a compre-
hensive system and quantification of its performance using
some basic configuration, which lacks natural variety. Also,
as emphasized by [3] itself, cloud computing is still a rapidly
evolving research area and there is a severe lack of defined
standards. [3]’s simulation results have been restricted by
their own architectures and standards, and have reduced its
generality for other systems. In addition, in their work they
provide no way of verifying the simulator, which is criti-
cal for most simulations. In our work, we focus on a special
issue that is smaller but applicable to various cloud comput-
ing systems, because the basic system level architecture we
modeled will not vary much. We have used the well-known
theory of M/M/1 queuing systems to verify the correctness
of our simulation. There are a number of avenues for future
exploration via the simulation of cloud computing environ-

ments, as follows: 1) Improve the simulation program to
accept more types of messages. This improvement should
be very easily achieved. 2) Study the queued possibility of
messages regarding their types. We have seen from the ex-
perimental results that the type of messages requiring more
capacity will have higher probability to be queued, even if
they need less execution time. We can study the correla-
tions between these two features to find the threshold that
has deterministic influence. 3) Research the influence of sys-
tem architecture to its actual service rates. As we noticed
before, for one server system, the ratio of the required ca-
pacity of a single message to the total capacity in the server,
i.e., the number of messages a server can process at a mo-
ment, has affected the system’s actual service rate. We need
to investigate whether it matters in a multi-server case.

5. ACKNOWLEDGEMENTS

The authors wish to thank Dr. William Lewis, who in-
spired and guided the work described in this paper.

6. REFERENCES

[1] M/m/1 model. Available at
http://en.wikipedia.org/wiki/M/M/1 model.

[2] Six benefits of cloud computing. Available at
http://web2.sys-con.com/node/640237.

[3] R. Buyya, R. Ranjan, and R. N. Calheiros. Modeling
and simulation of scalable cloud computing
environments and the cloudsim toolkit: Challenges
and opportunities. In Proceedings of the 7th High
Performance Computing and Simulation (HPCS 2009)
Conference, pages 21-24, Leipzig, Germany, July 2009.

[4] C. L. Dumitrescu and I. Foster. Gangsim: A simulator
for grid scheduling studies. In CCGRID ’05:
Proceedings of the Fifth IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid’05) - Volume 2, pages 1151-1158,
Washington, DC, USA, May 2005.

[5] D. P. Gaver, P. A. Jacobs, and W. C. Lewis. Models
to assess stability of cloud computing, January 2009.
To be published.

[6] B. Hayes. Cloud computing. Communications of the
ACM, 51(7):9-11, July 2008.

[7] L. Johnson, A. Levine, and R. Smith. The 2009
horizon report, 2009. Austin, Texas, The New Media
Consortium.

[8] A. Legrand, L. Marchal, and H.Casanova. Scheduling
distributed applications: the simgrid simulation
framework. In Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and
the Grid, pages 138-145, May 2003.

[9] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and
M. Lindner. A break in the clouds: Toward a cloud
definition. ACM SIGCOMM Computer
Communication Review, 39(1):50-55, 2009.

[10] M. A. Vouk. Cloud computing : Issues, research and
implementations. In Information Technology
Interfaces, 2008. ITI 2008. 30th International
Conference on, pages 31-40, June 2008.

[11] L. Youseff, M. Butrico, and D. D. Silva. Towards a
unified ontology of cloud computing. In Grid
Computing Environments Workshop (GCE08), pages
1-10, November 2008.

