Workflow Coordination
for Service-Oriented Multiagent Systems

Jiangbo Dang
Siemens Corporate Research
.. Princeton, NJ 08540, USA
jilangbo.dang@siemens.com

ABSTRACT

From a multiagent viewpoint, a workflow is a dynamic set
of tasks performed by a set of agents to reach a shared goal.
We show herein that commitments among agents can be
used to model a workflow and coordinate their execution of
it. From a service-oriented computing viewpoint, a work-
flow can be represented as a set of services and a specifi-
cation for the control and data flows among these services
to address some business needs. As a formal declarative
knowledge representation model, ontology is used as a basis
for agent-based workflow execution and coordination. This
paper presents methodologies to map an Ontology Web Lan-
guage for Services (OWL-S) representation for a workflow to
a CPN graph, a graphical and mathematical modeling tool
for describing and analyzing information processing systems,
and then infer commitments and causal relationships from
the CPN graph. We provide an example scenario to describe
our algorithms.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; F.3.2 [Semantics of Programming Language]:
Process models

General Terms
Algorithms

Keywords

workflow validation, coordination, agent, commitment

1. INTRODUCTION

Workflows are becoming ubiquitous in Business Process
Management applications. To execute a workflow in an open
enterprise environment, the participants must negotiate and
enter into binding agreements with each other by agreeing
on functional and quality metrics of the services they request

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’07 May 14-18 2007, Honolulu, Hawai’i, USA.

Copyright 2007 IFAAMAS X-XXXXX-XX-X/XX/XX ...$5.00.

Jingshan Huang
University of South Carolina
Columbia, SC 29208, USA

huang27@sc.edu

Michael N. Huhns
University of South Carolina
Columbia, SC 29208, USA

huhns@sc.edu

Transformed (by XSLT)

Workflow Colored Petri Net

(PNML)

Validates (by CPN tools)!|

S/ MultiAgent
System

Figure 1: The relationships among a OWL-S work-
flow, a CPN, and commitments for service agents in
an MAS implementation

and provide. Therefore, Multiagent Systems (MAS) will be
the workflow enactment mechanism of the future.

An ontology serves as a declarative model for the knowl-
edge and capabilities possessed by an agent or of interest
to an agent. It forms the foundation upon which machine
understandable service descriptions can be obtained, and
as a result, it makes autonomic coordinations among agents
possible. The use of and reference to ontology help the func-
tionalities and behaviors of service agents to be described,
advertised, discovered, composed, and coordinated in the
execution of a workflow.

A commitment is a well-defined data structure with an
algebra of operations that have a formal semantics. The
agent that is bound to fulfilling the commitment is called the
debtor of the commitment. The agent that is the beneficiary
of the commitment is called the creditor. A commitment has
the form C(a; b; ¢), where a is its creditor, b is its debtor, and
q is the condition the debtor will bring about. A conditional
commitment C(a;b;p — ¢q) denotes that if condition p is
brought about, then the commitment C(a;b;q) will hold.
From a workflow viewpoint, ¢ in C(a;b;q) is the condition
the debtor will bring about by fulfilling the task involved.
Commitments among agents can be used to model business
processes by capturing the interactions among agents.

As illustrated in Figure 1, we discuss the relationships
among an OWL-S workflow, a PNML colored Petri net, and
agents’ commitments in a MAS, and present methodologies
to infer commitments from a workflow. Most existing work-
flow technologies do not consider commitments, and apply
only centralized methods to coordinate and monitor the ex-
ecution of a workflow through its procedural specifications.
In contrast, this paper advances the state of the art by de-
scribing how to (1) convert a semantic Web service model

| SendProductRequirement

A

| ProduceParts

(D)
(E)
Y-
PolishParts
B)

DesignProduct AnalyzePartDesign

B)

©)

AnalyzeProductDesign |

DesignParts
(©))
A AssembleProduct
\ (B)

| GeneratePartRequirement |

(B)

Figure 2: A ProduceProduct Workflow Example

(in OWL-S) to a graphic process model (in CPN) and infer
the commitments of service agents involved in a workflow;
(2) explore the use of colored Petri nets in workflow vali-
dation; (4) allow flexible MAS-based workflow coordination
through agents’ commitments.

2. A MOTIVATING SCENARIO

In a ProduceProduct workflow scenario, five parties work
together to produce a product. In Figure 2, ProductRe-
questor agent A initiates this workflow by sending a product
requirement to ProductMaker agent B. To meet A’s require-
ment, B designs this product and send its design to the third
party Analyzer C. C performs some specific tests to ensure
this design will meet the requirements. Once the product
design is approved, B will generate the requirements for dif-
ferent parts of this product and send them to PartsMaker
agent D. D will design these parts and send the design to
C. If C approves the parts design, D will produce the parts
for the product. In addition, if the design requires a specific
treatment like drilling, a Driller agent F will drill the parts.
Finally, B will polish the parts and assemble the product to
finish this workflow.

We first briefly present an ontology as a basis for workflow
description and coordination in Figure 3, and then describe
this workflow as a composite service, with its behavior de-
scribed in terms of its inputs, outputs, preconditions, and
results (IOPRs) in an OWL-S model. Current workflow co-
ordination mechanisms cannot deal with this scenario prop-
erly due to its dynamic nature. We believe that commit-
ments are an appropriate abstraction to characterize and
coordinate collaborative service agents in a workflow.

3. INFERRING THE COMMITMENTS IN
A WORKFLOW

A Petri net N = (P, T, F) consists of a set of transitions
T, a set of places P, and a flow relation F'(arcs). It is a di-
rected, bipartite graph in which each node is either a place
or a transition. Place is used to describe possible states of
a process. The actions of a process are described by transi-
tions. Arcs are used to connect places and transitions. P,
T, and F are indicated by ellipses, rectangles, and directed
lines in a PN diagram, respectively. There are Tokens in
places. A transition is enabled if there is at least one token
in every place connected to a transition, any enabled transi-
tion may fire by removing one token from every input place,
and producing one token in each output place. In a work-
flow Petri net, a transition represents an atomic process,
and a place is a passive state. Petri nets are well suited for

owlClass (10)

= rdfiD {} rdfssubClassOf
1 ProductDesign | Tl rdfssubClassOf
2 Product
3 Reguirement ¥ rdfssubClassOf
4 Part
5 Design ~ rdfssubClassOf i«
6 ProductRequirement ~ rdfssubClassOf i«
7 ParnRequirement 7 rdfssubClassOf i«
8 Type 7l rdfssubClassOf i«
9 ParDesign | 7l rdfssubClassOf
10 Report 7 rdfssubClassOf
owlDatatypeProperty (7]
= rdfiD {} rdfsdomain
1 productlD =~ rdfsdomain i«
2 partlD

~ rdfsdomain i«

rdfDescription rdf
exprCondition (2]
= rdfiD {} exprexpressionLanguage
IsApprovedParDesign 7 exprexpressionLanguage rcf
IsApprovedProductDesign | 7| exprexpressionlanguage

N

processinput(5)
= rdfiD {} process parameterType
1 PariRequirements | process parameterType i
2 ReceivedDesign ¥ processparameterTyp
3 DesignType ~ processparameterType |
4 Parts 7 process parameterTyp
5 ProductDesignRequirement| 7 processparameterType ic
processOutput (5)
= rdfD {} processparameterType

1 AnalysisReports

2 PariDesignOutput

3 ProductDesignQutput
4 ProductRequirements
5 ParRequirements

=l processparameterTyp:
Tl process parameter T yp
¥ process parameterType |
T processparameterType |
¥ processparameterType |

6 Products ¥ processparameterType i
7 Parts =l processparameterTyp
8 IsApproved i processparameterType i

Figure 3: A ProduceProduct Ontology

1" (R1) sendProductRequirement DesignProduct

(1) @ (1)

DesignParts Desu;n
[[a2.ISAPPROVED=false]

AnalyzeProductDesign

[al.ISAPPROVED=false]

(a1)

(r2)
(a2) GeneratePartRequiremgnt

[al.ISAPPROVED=true]

AnalyzePartDesign

mmy
[a2.DESIGN.DRILLING=false]

p6

(12)

(a2)
Product

eParts @2p)
_ a2.|SAPPROVED=true] Parts PolishParts

[a2.DESIGN.DRILLING=true]

AssembleProduct

(m) .(m) I (pd)

Figure 4: A ProduceProduct Petri Net

(a2) (a2, py

modeling workflow processes since there are many available
simulation tools for them. Therefore, we can test the Petri
nets to determine the validity and liveness of workflows and
those commitments inferred from a workflow.

In an extension of a PN called a colored Petri net, each
token has a value referred to as color, which can be a schema
or type specification. transitions determine the values of the
produced tokens on the basis of the values of the consumed
tokens. It is also possible to specify a guard of a transi-
tion, which takes the colors of tokens to be consumed into
account. These values match the inputs of a process, the
outputs and results of a process, and the preconditions of a
process from an OWL-S definition, respectively.

We can transform our example workflow from an OWL-S
into a PNML CPN representation. The mapping algorithm
is based on a depth-first search and yields valuable informa-
tion about the structure of the workflow T(V,E). V is a
set of vertices and E is a set of edges. The neighbor nodes
of v € V are stored in adjacent(v), the color of each vertex
v € V is stored in the variable color(v), and the predecessor
of v € V is stored in the variable w(v). We perform the

Notations:
type(i) is the node type of vertex i;
parent(i) is the parent node of the vertex ;
t is the time;
Mapping(T):
foreach v € V do
color(u) «— WHITE;
w(u) «— NIL
end
t— 0;
foreach u € V do
if color(u) = WHITE then
Mapping — node(u)
end
end
Mapping-node(u):
color(u) «— GRAY
t—t+1;
Processing — node(u);
foreach v € adjacent(u) do
if color(v) = WHITE then
m(v) — u;
Mapping — node(v);
end
end

color(u) «— BLACK;,
Algorithm 1: Workflow Mapping Algorithm

algorithm starting with the root node of T'.

Processing-node(u) will generate a transition object if u
is an atomic task and type(parent(u)) = Sequence and an
ingoing arc that links from the place of its predecessor tran-
sition, an outgoing arc, and a place object that the outgoing
arc links to. If u is the first task of the workflow, it also
generates a place object that links to the ingoing arc. In ad-
dition, Processing-node(u) will generate auxiliary objects if
some control constructs are involved. Therefore, The input,
output, precondition, and result of the OWL-S process can
be stored in the inscription of the ingoing arc, the inscrip-
tion of the outgoing arc, the guard of the transition, and the
inscription of the outgoing arc, respectively.

Let e(v1,v2) denote an arc from vertex v1 to vertex vs.
Given a workflow defined as a Petri net N = (P,T,F),
we define a directed graph N'(V,E) where V = T and
e(vi,v2) € Eif 3p € P, e(v1,p) € F and e(p,v2) € F. From
our mapping algorithm, we know that the output PNML
is restricted so that each transition has exactly one input
and one output. Therefore, it can be done by including the
input and output arc of each transition 7" inside this transi-
tion. The neighbor nodes of v € V' are stored in adjacent(v)
and the color of each vertex v € V is stored in the variable
color(v). The start transition vg is the root node of N'.

Considering that each service agent may execute several
atomic processes in one workflow, we need to distinguish be-
tween the concepts of agent and role. A role is an abstraction
of capabilities used by an agent in dealing with one atomic
process. An agent may have several roles, each associated
with one commitment. Given a Petri net workflow as the in-
put, Algorithm 2 produces a set of commitments for service
agents involved in a workflow.

Commitment C(a; b; q) can be represented in terms of the
IOPRs of q. Therefore, we can rewrite it as C'(a; b; (IOPR)q)

Notations:
type(i) is the routing block type from vertex i;
Owner(4) is the debtor of the process i;
Q@ is an empty first-in, first-out queue;
Initialization:
foreach v € V do
color(v) — WHITE
end
enqueue(vo);
color(vg) < BLACK ;
Inference:
while Q # ¢ do
i = head(Q)
foreach v € adjacent(i) do
if color(v) = WHITE then
color(v) «— BLACK;,
enqueue(v);
end
i = dequeue(Q);
for j,where e(i,j) € E do
precondition(j) =
precondition(j) A result(i) A completed(i);
end
forall j,where e(i,j) € E do

if e(i,7) € E A owner(i) # owner(j) then
remove e
end

end
end
Algorithm 2: Commitment Inference Algorithm

and a conditional commitment C(a;b;p — q) as C(a;b; (I’
OP'R),), where I;, = I, AOyp, Py = PyARy. For PartsMaker
that owns two tasks, one of its commitment is described as
the following:

[DesignParts]
Input: PartRequirements
Output: PartDesign

Pre-conditions: Completed(GeneratePartRequirement)

A ISAPPROVED=false
Result:

Commitments are the proper abstraction to coordinate
participating agents in a workflow since they refer to inter-
agent dependencies through the IOPRs of a task. After
deriving the commitments from a workflow, the participat-
ing agents involved in the workflow can be monitored and
coordinated. These commitments can be used in two ways:
(1) Coordinating the interactions among service agents in
a competitive service-oriented environment, and (2) moni-
toring the debtor agents to fulfill the workflow by fulfilling
their committed tasks.

4. CONCLUSIONS

This paper discusses the relationships among an OWL-
S workflow, a PNML colored Petri net, and agents’ com-
mitments in a multiagent system and presents methodolo-
gies to infer commitments from a workflow. the CPN rep-
resentation can be analyzed for validity, deadlocks, live-
ness, and other faults by a variety of CPN tools. More
importantly, agents can collaboratively enact a workflow
through commitment-based formalisms by ontologically rea-
soning about their states and actions and produce coordi-
nated and verified workflow execution.

