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Abstract. As computing becomes pervasive, there are increasing opportunities
for building collaborative multiagent systems that make use of multiple sources
of knowledge and functionality for validation and reliability improvement pur-
poses. However, there is no established method to combine the agents’ contribu-
tions synergistically. Independence is usually assumed when integrating contri-
butions from different sources. In this paper, we present a domain-independent
model for representing dependences among agents. We discuss the influence that
dependence-based confidence determination might have on the results provided
by a group of collaborative agents. We show that it is theoretically possible to
obtain higher accuracy than that obtained under the assumption of independence
among the agents. We empirically evaluate the effectiveness of a collaborative
multiagent system in the presence of dependences among the agents, and to ana-
lyze the effects of incorrect confidence integration assumptions.
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1 Introduction

With the increasing availability of sources of information and services, and the involve-
ment of people and organizations as contributors, there are also increased needs and
opportunities for the use of collaborating multiagent systems that make use of multiple
sources of knowledge for validation and improvement of accuracy and reliability. Po-
tential application examples are situational aware systems [18]], sensor networks [12],
and semantic sensor web [15]. A common task in these systems is the integration of
contributions, which is not straightforward. Common techniques for integrating contri-
butions are based on agent reputation models [7] and the assumption of independence
among the agents, such as majority voting and weighted majority voting techniques
[[L1414]). The dependences among agents are usually not considered despite their crucial
role. Consider, for example, a group of three weather expert agents who have the task
of collectively producing a weather forecast. Each agent has a reputation (probability
of being accurate) of 0.7 which has been asserted by looking at their past performance.
Suppose that the particular task is to predict whether or not it is going to rain. How
can the contributions of these agents be combined to achieve the most accurate possible



result and outperform any expert individual performance? Clearly, this is possible only
if the agents compensate for the mistakes, limitations, and vulnerabilities of each other.
Suppose, in our example, we get a positive result (“it is going to rain”) from the three
agents, what confidence should we give to the integrated result (“it is going to rain”)?
Common approaches used when combining contributions are based on the assumption
of independence among the contributions and either use an ad hoc technique that makes
use of the agent’s reputations to determine the confidence, or do not determine a confi-
dence for the integrated contributions at all (select the “best” contribution by some rule
like majority). Assuming independence of contributions, the best way to maximize the
probability of an accurate team prediction is to use Bayes rule to determine the confi-
dence of each contribution. In our example, there is only one contribution: “it is going
to rain”, and the confidence assigned using Bayes rule would be 0.927. However, if all
the agents employed the same program to determine rain likelihood, they would fail or
succeed identically and the confidence in the integrated result should remain at 0.7. On
the other hand, if we have a guarantee that the agents never fail together, the confidence
in the integrated result should be 1. There is a confidence uncertainty inherent when
integrating the agents’ contributions, which, in our example, sets an interval from 0.7 to
0.927 for the confidence in the result, with any additional knowledge of the dependence
relation among the agents reducing this confidence interval.

We have proposed[22] the use of multiagent-based redundancy as a basis for robust
software and Web services development. In this paper, we focus on the issue of integrat-
ing agents’ contributions. Particularly, we study the influence that dependence-based
confidence determination might have on the results provided by a group of collabora-
tive agents. In order to achieve that, we have developed a model that allows the repre-
sentation of the full spectrum of potential dependences between pairs of collaborative
agents by considering the space of their coincident errors which can be totally coinci-
dent, independent and non-coincident. Because of the impossibility to manage a model
representing all potential dependences, the model allows to capture a simplified version
using a linear structure where only adjacent nodes are directly dependent on each other
and conditional independence is assumed between all nonadjacent nodes—a reasonable
simplification that at worst, understates the potential error of assuming full contribution
independence. Using the model, we can empirically evaluate the effectiveness of a col-
laborative multiagent system in the presence of known dependences among the agents,
as well as analyze the effects of incorrect confidence integration assumptions.

In the next section we discuss related work. In section 3 we present our formal
model for the representation of dependences among agents. Section 4 show the exper-
iments conducted, which show how the model can be used to measure the sensitivity
of complex collaborative multiagent systems to incorrect assumptions of independence
among the agents. In section 5 we present our conclusions and discuss our plans for the
integration of the work presented in this paper with trust and reputation networks.

2 Related Work

Voting algorithms have been used to provide an error masking capability in a wide
range of commercial and research applications. There is a large compendium of soft-



ware systems implementations and experiments reporting some degree of reliability
improvement [[L1114/2219}13]]. However, all these works usually make use of simple
voting strategies and do not address the issue of dependence, relying strongly on the
assumption of independence among the versions. A functional classification is used in
[9] to provide a taxonomy of the voting algorithms reported in the literature.

In [1]] the authors address the issue of dependence and provide a model for analyzing
the effect and propagation of potentially incorrect confidence-integration assumptions
in a complex MAS with both concurrent and sequential processing in binary scenarios
(two possible outputs). Our model is based on [[L] but it does not include the sequential
case (chains of decisions) and thus, the results are not affected by previous compu-
tations. By concentrating in one-time integration cases we are able to observe better
the effect of independence assumptions. Furthermore, we have extended the confidence
range to include the cases in which it is possible to obtain higher accuracy than that ob-
tained under the assumption of independence among the agents. Specifically, we have
extended the confidence range to include non-coincidence. In [[1] the confidence, say
of a system of 3 agents with [.8, .8, .8] reliabilities is anywhere between .8 (when they
fail identically) and .985 (when their errors are independent). Our model includes one
more case for when their errors are mutually exclusive (non-coincident), so that makes
the confidence range (in some cases) wider, since the upper bound can reach 1. Finally,
our model allows the representation of cases with more than two possible outputs.

There have been several works [16/17.2] in the field of multiagent systems that deal
modeling dependencies among agents. Specifically interdependencies among different
agents’ goals and actions where an agent is said to be dependent on another if the latter
can help / prevent him to achieve one of his goals. This type of dependency relations
allow an agent to know which of his goals are achievable and which of his plans are
feasible (or not) at any moment. In this way, an agent may dynamically choose a goal
to pursuit and a plan to achieve it, being sure that every skill needed to accomplish the
selected plan is available in the system. Our work, however, is focused on another type
of dependencies among agents, namely, dependences in the context of the diversity in
the agents’ errors. Furthermore, the target application of our approach is to collabora-
tive multiagent systems where agents combine their contributions to achieve the most
accurate possible result and outperform any expert individual performance.

3 A Model of Dependences for Collaborative Agents

Our model can be applied to collaborative multiagent systems in which all the agents in
the system have functionally equivalent capabilities and always do their best to provide
accurate contributions for a particular task. They cooperate in order to increase the over-
all outcome of the system and are not concerned with their personal payoffs. In other
words, all of the agents share the same goals or are trying to maximize a social utility
instead of an individual, personal utility. The goal is for the system to exhibit better
average performance than that of any single agent in the system. More specifically, we
make the following assumptions:

— the agents provide equivalent functionality



the agents’ contributions are not always correct

the probability of an agent’s contributions being accurate is known

agents can be trusted to always do their best to provide accurate contributions

the agents’ contributions have identical semantics, and therefore can be integrated
trivially

To analyze the spectrum of dependence between a pair of collaborative agents, we
consider the space of their coincident errors. The errors can be: totally coincident (max-
imally correlated), in which case the agents always fail together if their accuracies are
the same, or every time the more accurate agent fails if their accuracies vary; indepen-
dent, where the probability of coincident errors is given by the product of the agent’s
individual probabilities of error; non-coincident, in which case the agents never fail to-
gether. Let P(A;) denote the accuracy of agent A; and 1 — P(A;) its probability of
error. There are four different possible outcomes for each pair of contributions provided
by different agents. Assume, for example, that we have two agents A; and Ay with
P(A;) = .9 and P(A3) = .6. Table 1 shows the four different possible outcomes
and provides the number of occurrences out of 100 tests for the three different cases of
dependence among A; and As.

P(A:1) = .90|P(A2) = .60|C| I [NC
fails fails 10/4 |0
fails succeeds |0|6|10

succeeds fails 30(36( 40
succeeds succeeds |60(54| 50

Table 1: The four different possible outcomes for each pair of contributions provided by
agents A; and As, and the number of occurrences, out of 100, for each outcome for the
three different cases of dependence among the agents. C=Coincident, I=Independent,
and NC=Non-Coincident

Figure 1 shows this idea in a graphical representation. We can see what happens
as the individual accuracies and the difference between them change. As agent accu-
racies increase, the contributions naturally become more correlated and the difference
between the coincident, independent, and non-coincident extremes becomes smaller.
When P(A;) = 1.0 there is no difference. Therefore, if our agents are close to perfect,
incorrect dependences assumptions will have less impact in the final result.

A set of decisions made by agents is concurrent if the decisions are made without
knowledge of any of the other decisions in the set [[1]. Figure 2a illustrates the concur-
rent decisions of n agents related to node W, which is the state of the world that the
agents are trying to match. In our model, W can take on any number of values, though
for simplicity we will illustrate it for two values, 1 and 0. In our initial weather agents
example, this abstraction could represent W = {rain,no — rain} Given a set of n
agents as in Figure 2a, there are 2" subsets or groupings that can be made out of the n
agents, and therefore, potential dependences between them. Consequently, a full model
representing all the potential dependences between the agents, becomes unmanageable
as the number of agents grows. To keep the number of dependences manageable, we
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Fig. 1: Dependence relations of two agents. The black bars indicate cases where the
agent’s result is correct. The percentage of black versus white is the accuracy of the
agent. Region X represents where both agents’ results are correct; region Y is where
their results disagree, and region Z represents where both agents’ results are wrong.

simplify the model to the linear structure assumed in [1I], where only adjacent nodes are
directly dependent on each other and conditional independence is assumed between all
nonadjacent nodes—a reasonable simplification that at worst, understates the potential
error of assuming full contribution independence. Figure 2b shows the subset of de-
pendences represented in our model. For each pair of nodes with a dependence relation
(adjacent nodes) we introduce two nodes, a C' node and a N C' node, to represent coin-
cident and non-coincident dependence information, respectively, between A; and A;_.
For simplicity of notation, we will use C; to refer to the node C;_;_, ; and N C}; to refer
to the node NC;_1_, ;. When both nodes are false (C; = false and NC; = false),
the errors in A; and A;_; are independent. In other words, A; is conditionally indepen-
dent of Ai,1 giVGl’l W, P(AAW) = P(AZ|VV, Aifl).

When C; = true, the errors between A; and A;_; are maximally correlated with
one another (as in the coincident case in Figure 1). When NC; = true, the errors
between A; and A;_; are totally exclusive (as in the non-coincident case in Figure 1).

We can assign C; and NC; a value between 0 and 1 to represent the range of de-
pendence from fully coincident (P(C; = true) = 1), to conditionally independent
(P(C; = true) = 0) and (P(NC; = true) = 0), to non-coincident (P(NC; =
true) = 1).

TOD

Fig. 2: a) Concurrent decisions of n agents related to node W; b) The subset of depen-
dences represented in our model



Tables 2 to 4 show the conditional probability tables (CPTs) for agent As in the fully
coincident, conditionally independent, and non-coincident cases respectively. For inter-
mediate values of P(C; = true) or P(NC; = true) (only one can have an intermedi-
ate value, while the other must have a 0 value), P(A;|W, A;_1) is obtained by combin-
ing the mixed distributions defined by either one or the other. Thatis: P(A;|W, A;—1) =
P(C; = true)P(A;|W,A;—1,C; = true) + P(C; = true)P(A;|W, A;—1), when
0< P(Cl = true) <lor P(A1|W, Ai—l) = P(NC’l = true)P(Ai|W, Ai—la NC; =
true) + NC; = true) P(A;|W, A;—1), when 0 < P(NC; = true) < 1.

A1 W Cy 1
. (P(A
1 11 min( PEAf;,l)
1 — min(£22) 1)

00 1
1 0 1| min(3=241) 1)
01 1

1-P(A3)’
1-P(Ay) )

1-— min(m7

Table 2: Conditional probability table for agent A, under the fully coincident model.
The errors between Ao and A; are maximally correlated with one another (as in the
coincident case in Figure 1).

P(Az) |1 — P(Az)

AW 0 1
0
11— P(A2)| P(A2)

Table 3: Conditional probability table for agent A5 under the independent model. The
errors in A, and A; are independent. In other words, A, is conditionally independent
of Ay given W.

AL W NC» 1
1 1 1 P(A2)—(1—-P(A1))
Pl ~H—P(a)
2)— — 1
0 0 1 |1 2l U=P)
10 1
01 1 1

Table 4: Conditional probability table for agent A, under the non-coincident model.
The errors between Ay and A; are totally exclusive (as in the non-coincident case in
Figure 1).

4 Experiments and Analyses

Our model can be used to measure the sensitivity of complex collaborative multiagent
systems to incorrect assumptions of independence among the agents when integrating
their contributions. In this section we demonstrate the use of our model with homo-
geneous and heterogeneous multiagent systems of different sizes and under different
scenarios given by real versus assumed dependence relations between the agents.

To determine the accuracy of a particular system configuration, we determine the
confidence of the integrated result for each combination of agents’ contributions A4; in
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Fig. 3: Reliability of the system for fully coincident (C), independent (I), and non-
coincident (NC) agents—homogeneous and heterogeneous cases with 2 and 3 outputs
each.

the model. Assuming the system answer is the value of TV that maximizes P(TV|A), the
confidence of an integrated result is then maxy P(W|A). Since we want to evaluate
the sensitivity of a system to particular incorrectly assumed dependence relation, we
measure the expected belief that our answer is correct by taking a weighted average over
all possible instances of the observed data, > , P(A) x mazw P(W|A) and compare
it to the expected belief obtained under the assumed dependence relations, >~ , P(A) x
maxw P(W|A, P(C;), P(NC})).

For simplicity of notation refer to P(C' = true) as (P(C)) and P(NC = true)
as (P(NC). Figure shows the accuracy of homogeneous and heterogeneous systems
for fully coincident, independent, and non-coincident agents with 2 and 3 outputs. For
homogeneous systems, there is no difference, in terms of accuracy, between fully coin-
cident and non-coincident. The difference in these cases becomes clear when looking
at heterogeneous systems.

Expected belief that answer is correct: 2 outputs, reliabilties = 0.6 Expected belief that answer is correct: 3 outputs, reliabilties = 0.6
100
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Fig. 4: The effect of assuming agents are independent when they are fully coincident
(maximally correlated).

The sensitivity of multiagent systems to incorrect assumptions of independence
among the agents is shown in figures [] to [7} Figure [4] shows the effect of assuming
agents are independent when they are fully coincident, for homogeneous systems with
two and three outputs. P(C) = 0, assumed0 shows the expected belief for the case
when the agents are conditionally independent which is the usual assumption when
applying Bayes rule. But if we make that assumption and the agents are not con-
ditionally independent, the expected belief is overestimated, at worst, as shown by
P(C) = 1, assumed0, which is the case when the agents are fully coincident.



Figures [5]to [7] show the sensitivity of multiagent systems to incorrect assumptions
of independence among the agents for heterogeneous systems with two and three out-
puts. As Figure 2b shows, the model implies a direction of the dependence relations.
If the system is homogeneous (agents have the same reliabilities), the direction does
not matter. But that is not the case for heterogeneous systems. Therefore, we include
two cases in figures [5|to[7] The first case is when more reliable agents depend on less
reliable agents. The second case is when less reliable agents depend on more reliable
agents.

Figure [5] shows the effect of different dependence assumptions when agents are
fully coincident. Specifically, assuming agents are either independent or non-coincident
when they are fully coincident. The plots on the top row show the case when more
reliable agents depend on less reliable agents. The plot for two outputs shows how
when agents are fully coincident, adding more reliable agents improves the expected
belief, but it can never be greater than that of the most reliable agent at any particular
system configuration (number of agents). The plots on the second row show the case
when less reliable agents depend on more reliable agents. The expected belief does
not improve adding less reliable agents, and again, it can never be greater than that of
the most reliable agent. Finally, the expected belief is underestimated when assuming
independence and non-coincidence.

Figure [6] shows the effect of different dependence assumptions when agents are in-
dependent. Specifically, assuming agents are either coincident or non-coincident when
they are independent. The plots on the top row show the case when more reliable agents
depend on less reliable agents. When agents are independent, adding more reliable
agents improves the expected belief. Contrary to the case when agents are dependent
(Figure [5), the expected belief becomes greater than that of the most reliable agent at
a certain system configuration (number of agents). The improvement is bigger for sys-
tems with a larger number of outputs. Finally, the expected belief is overestimated when
assuming coincidence and underestimated when assuming non-coincidence.

Figure[7]shows the effect of different dependence assumptions when agents are non-
coincident. Specifically, assuming agents are either coincident or independent when
they are non-coincident. The plots on the top row show the case when more reliable
agents depend on less reliable agents. When agents are non-coincident, adding more
reliable agents improves the expected belief. As in the independent case (Figure[6), the
expected belief becomes greater than that of the most reliable agent at a certain system
configuration (number of agents), but the improvement is even greater. The improve-
ment is also bigger for systems with a larger number of outputs. Finally, the expected
belief is overestimated when assuming independence and coincidence.

5 Conclusions and future work

We presented a domain independent model for the study of the effect that incorrect
assumptions about the dependences among collaborative agents have on the overall
system accuracy estimation. We showed results of experiments using our model with
homogeneous and heterogeneous multiagent systems of different sizes and under dif-
ferent scenarios given by real versus assumed dependences relation between the agents.
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Fig.5: The effects of assuming agents are either independent (IND) or non-coincident
(NCON) when they are fully coincident (CON). When agents are coincident, the ex-
pected belief can never be greater than that of the most reliable agent. The expected
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We showed that the accuracy of a collaborative multiagent system varies according
to the diversity of the errors of the agents. We also showed that the lower bound on
the accuracy is given by the case where the agents errors are maximally correlated; and
that the upper bound is not given by the conditional independence case, but by the case
where agents errors are non-coincident (never fail together), usually 1.

We did not specify how to obtain the degree of dependence among agents, which
can be a difficult task and varies with the application. In software fault tolerance, for
example, testing as well as static programs analyses techniques have been used in trying
to determine potential dependences among programs[4/20(10121]]. A challenge, as we
mentioned earlier, is that the number of potential dependences grows exponentially
with the number of agents. Also, multiagent systems are typically open and dynamic,
which makes it difficult to measure dependences among the agents. A future work is the
study of dynamic and adaptive strategies to estimate and model dependences among the
agents, including alternative formalisms , e.g. Dempster-Shafer theory.

Finally, we have discussed our plans to use our work in the area of trust networks
and online reputation systems. The dependences in reputation systems can be obtained
from the rating similarities between pairs of users.

5.1 Modeling and using dependences in trust and reputation networks

We are interested in investigating the relation of our work with trust networks and online
reputation systems. In this section we briefly discuss our insights on these tasks which
we have planed as a future work.

The benefits of linking our work with trust networks are in both directions, i.e. using
trust networks as an instrument in the dependences model, and using the dependences
model as an instrument in trust networks. In the first case, a trust network could be used
in assigning dependency probabilities among entities (e.g. the same contribution by a
group of friends is likely to have some underlying dependences —similarities in the
process of generating the contribution). In this case we can say that we use the trust
network to navigate between the lower and upper (confidence) bounds generated by the
model. In the second case, the dependences model could be used to assist existing trust
propagation algorithms [[6] in predicting trust between any two nodes in the network.

We plan to use our work on modeling dependences among entities when integrat-
ing contributions as a baseline to develop a Bayesian inference-based recommendation
approach for online reputation systems[8]] such as Flixster and Epinions. The depen-
dences correspond to rating similarities between a pair of users, which can be measured
by a set of conditional probabilities derived from their mutual rating history. Integrating
contributions corresponds to calculating a rating score for an item based on the ratings
(contributions) of the users. Suppose for example, in the electronics domain, a user is
considering buying a certain product and wants to know what the general opinion is
about it. Other user’s rating of the product can be combined as an averaged score or
can be better combined using likely dependences among the users that have rated the
product to obtain a score that accounts for similarities among users. Further, the depen-
dences of the user who is querying the product with those who have rated the item can
also be factored into the result so that the obtained score is biased towards the user’s
preferences. In the first case we would be calculating an overall (not averaged) score



that reflects the reputation of the product in the community, and in the second case we
simply give more weight to some users’ contributions.
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Fig.7: The effects of assuming agents are either coincident (CON) or independent
(IND) when they are non-coincident (NCON).
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