
Software Development by Ubiquitous Crowdsourcing

Michael N. Huhns
University of South Carolina

huhns@sc.edu

ABSTRACT
The benefits of the open-source approach to software
development have not been fully realized, because the
number of software developers is still relatively small and
orders of magnitude smaller than the number of users.
Developers typically are experts in computing, whereas users
typically have domain expertise: this produces a disparity in
viewpoints, causing a mismatch between the developed
software and its desired use. Moreover, the proposition,
“given enough eyeballs, all bugs are shallow,” would take on
much greater significance, if a larger fraction of the users
could also be developers. This paper describes how to take
advantage of code, components, and designs contributed by
crowds. It uses agent-based wrappers to manage the
necessary collaboration and competition, allowing the
contributions to be used alongside their existing counterparts
until their behavior and features can be assessed.

Author Keywords crowdsourcing software, multiagent
systems, software robustness

ACM Classification Keywords D.2 [Software
Engineering]: Coding tools and techniques

General Terms design, human factors, reliability

INTRODUCTION
An interviewer asked Linus Torvalds if Linux’s user base
or developer base was more important [5]. Torvalds
answered that he did not see the need to distinguish
between them, because in Linux users can also be
developers. In reality, there is a large distinction, because
the number of developers (there were approximately 800
contributors to the latest release of the kernel) ranks in the
hundreds and the number of users ranks in the millions.

Similarly, the number of open source developers for
Tomcat, the open-source middleware from Apache, is ~25
and has been that number for four or five years, while the
growth of Tomcat has been astronomical [3].

The distinction is not restricted to open-source software:
Microsoft Windows has approximately the same number of
developers as Linux, but the resultant operating system is
used by more than 100 million people.

In another facet of the distinction, [2] observed that
software tends to resemble the organization that built it: this
is often vastly different than the community that uses it,

making it more difficult for users to understand it.

Based on this, would it be beneficial for the development of
Linux, or any open-source software system, for the
distinction between users and developers to be reduced and
a much larger fraction of the users also to be developers? If
the answer is yes, then how might this be made to occur?

Superficially, it would require (1) an easy way for users to
contribute to the software development process and (2) a
way to accommodate and manage the contributions. This
paper describes both, with an emphasis on the latter. Our
research is based on the following premises:

Premise 1. Users and customers will be more satisfied
with a software system if they have a stake and involvement
in its development.

Premise 2. Software will be more robust if more
“eyeballs” are looking for and correcting bugs.

Premise 3. Software will be more understandable, and thus
usable, if end-users participate more in its design.

Given these premises, we are investigating how multiple
versions of components can be managed to take advantage
of their individual strengths, while collectively being
unaffected by the individual weaknesses. Moreover, there
are classes of software systems for which a crowdsourcing
approach is beneficial and classes for which it is not. We
can determine these classes and identify the software
development models most appropriate for each class.

BACKGROUND AND ANALYSIS
The influential essay, “The Cathedral and the Bazaar,”
promulgated a view of open-source software development
that contrasts two different development models [10]:

1. The Cathedral model, in which source code is
available with each software release, but code
developed between releases is restricted to an exclusive
group of software developers.

2. The Bazaar model, in which the code is developed
over the Internet in view of the public. Linux
development has been following this model.

It posits that "given enough eyeballs, all bugs are shallow,"
which is termed Linus' law: the more widely available the
source code is for public scrutiny and testing, the more
rapidly all forms of bugs will be discovered. It claims that
much more time and energy must be spent looking for bugs
in the Cathedral model, since the code is available only to a
few developers. The essay helped convince many open-

Copyright is held by the author/owner(s).
UbiComp’10, September 26–29, 2010, Copenhagen, Denmark.
ACM 978-1-60558-843-8/10/09.

source and free software projects to adopt Bazaar-style
models, including the Mozilla and Firefox projects.

However, the superiority of a Bazaar-style model of open-
source software development has not been evident, partly
because the size of the developer community for both
proprietary and open-source software is roughly the same
(there are not “more eyeballs” in open-source projects), and
partly because it is still orders of magnitude smaller than
the size of the user community.

To meet these challenges, a crowdsourcing approach
exploiting concepts from N-version programming,
multiagent systems, and social consensus appears
promising. We address each of these concepts next.

N-Version Programming
N-version programming [6,9], also called dissimilar
software and design diversity, is a technique for achieving
software robustness. First considered in the 1970’s, it
consists of N disparate and separately developed
implementations of the same functionality. It has long been
recognized that the use of multiple versions of software is a
potential solution to the reliability problem, so why has it
been employed only for a few applications, such as critical
satellite systems? The reasons for its lack of use, and our
approach for addressing them, are:

 N versions require N times as much memory. Due to
storage advances memory is not typically a limitation.

 Executing N versions requires N times as many CPU
cycles. Because software is not easily parallelized and
compilers cannot always distribute machine code
uniformly, CPUs on multicore chips are often idle—
they are thus available to execute multiple versions.

 It is not clear where the N versions come from.
Algorithm versions can be solicited from the developer
and end-user communities and Web services
themselves are a source of diverse algorithms.

 N implementations based on the same flawed
specification might still result in a flawed system. Our
approach cannot account for specification flaws.

 Even N versions developed independently might fail
dependently. We will provide measures of dependence.

 Combining the results of N versions is unspecified,
seemingly different for each application of N versions,
and left to a custom module that might not be reliable.
Our research has shown that a generic wrapper agent
can be used to combine a variety of algorithms.

Agent-Oriented Software System Development
The most common technique for hardware, redundant
components, is inappropriate for software, because having
identical copies of a module provides no benefit. Software
reliability is thus a more difficult and still unresolved
problem [1,9]. Multiagent systems have been investigated

to increase reliability, and this has led to an interest in
combining them with software engineering methodologies.

The focus of this paper is on extending traditional software
development methodologies to widespread system
development by crowds other than expert developers. The
behavior of the resultant systems will depend on their
construction and execution environment.

When a conventional software system is constructed with
agents as its modules, it can exhibit the following
characteristics relevant to our needs [4]:

 Active agent-based versions can benevolently
compensate for the limitations of other modules.

 Agents can represent multiple viewpoints and can use
different decision procedures, therefore increasing
diversity and reliability.

We build upon these benefits to increase the reliability of
software systems.

Software Reliability and Redundancy
Hardware robustness is typically characterized in terms of
faults and failures; equivalently, software robustness is
typically characterized in terms of bugs and errors. The
general aspects of dealing with faults and bugs are: (1)
predict their occurrence, (2) prevent their occurrence, (3)
estimate their severity, (4) discover them, (5) repair or
remove them, and (6) mitigate or exploit them.

Software failure estimation uses statistical techniques [8,9].
Reducing failure rate is dependent on good software
engineering techniques and processes. Good development
and run-time tools can aid error discovery and repair.
Mitigation techniques mainly depend on redundancy.
However, achieving an appropriate level of redundancy in
software systems is difficult. If a hardware system fails, an
identical replacement can provide continuity, but identical
software systems would fail in identical ways under the
same demand. Moreover, code cannot be added arbitrarily
to a software system. The challenge is to design the
software system so that it can accommodate the additional
components and take advantage of the redundant
functionality.

We hypothesize that agents are an appropriate abstraction
for adding redundancy and that the software environment
that takes advantage of them is akin to a society of such
agents, where there can be multiple agents filling each
societal role. Agents by design know how to deal with
other agents, so they can accommodate additional agents
naturally. They also are able to negotiate over and
reconcile different viewpoints.

Social Consensus
The Social Web (essentially Web 2.0 technologies) derives
content and information organization from large-scale
collaboration. Folksonomies have the ability to form stable
structures by forming a consensus over large sets of tags. A

similar collective categorization scheme could be used as an
initial organization for contributed software. However, it
does not provide a solution for the crowdsourcing of software
development. For example, Wikis have the problem that the
last one to edit an entry “wins.” The design and development
of software is not a democratic process and voting is often
inappropriate for deciding which module might be best [11].

DEVELOPMENT BY CROWDSOURCING
Software robustness can be increased in an efficient manner
based on 1) support for contributions from a large and
widespread developer community at multiple levels of a
software architecture, and 2) an adaptive, multiagent
execution environment for managing collaborative and
competing versions.

There are different types of software. Analogous to n-tier
architectures, we have identified as distinct types interface
software, application software, middleware, and backend
software: (1) each might or might not be suitable for
crowdsourcing development, (2) each might require a
different development methodology, and (3) each might
require a different way of combining the contributions.

Contributions would be initialized with a neutral rating and
subsequently would increase or decrease in importance and
preferential use over time. For example, if a module always
fails, then eventually it will be removed. If a module often
finishes first with a correct or common answer, then it will
in the future be invoked more preferentially.

Research and empirical results, such as [6,7,8,9], show that
multiversion software increases reliability, albeit not at the
expected rate. It has been shown that even independently
developed versions fail dependently. One explanation for
this is that people tend to make the same mistakes in similar
circumstances [6]. This indicates that changing the
circumstances may reduce failure dependencies.

We are investigating the feasibility of extending established
software design methods to enable a comparison of
dependency between different versions based on their
specifications only. We have had success in predicting
dependency and, thus, diversity, by using standard software
metrics. The availability of such metrics and supporting
tools, along with the development of the multiagent
infrastructure for melding and executing versions, allows
redundant algorithms to be obtained from people outside of
the traditional development community.

Fundamentally, the amount of redundancy required is well
specified by information and coding theory. Assume each
software module in a system can behave either correctly or
incorrectly (the basis for unit testing as used by most
software development organizations) and is independent of
the other modules (so they do not suffer from the same
faults). Then two modules with the same intended
functionality are sufficient to detect an error in one of them,
and three modules are sufficient to correct the incorrect
behavior (by choosing the best two-out-of-three). More

generally, based on a notion of Hamming distance for error-
correcting codes, 4m independent agents can detect m-1
errors in their behavior and can correct (m-1)/2 errors.

Redundancy must be balanced with complexity, which is
determined by the number and size of the components
chosen for building a system. That is, increasing the
number of independent versions increases redundancy, but
also increases the complexity of the system. Further,
choosing the proper size of the modules is crucial, because
smaller modules are simpler to handle but their interactions
are more complicated because there are more modules.

A Multiagent Execution Environment
Our second thrust addresses the need for developing an
adaptive infrastructure to handle multiversion software
efficiently and correctly. For this, we use a multiagent
system where agents encapsulate the different software
versions. The agents are produced by wrapping a
contributed module or algorithm with a minimal set of
agent capabilities. To specify these capabilities, we will
evaluate the needs of multiversion programming systems.
In particular, we are planning to investigate the problem of
version granularity (i.e., the optimal size of a version to
increase reliability at minimal cost), decision making
strategies (i.e., voting protocols and group negotiation), and
adaptive behavior (i.e., accommodating changes in the
environment and learning about which versions to trust).

A high-level view of our execution environment is shown
in Figure 1. The agent-based framework can support
competition among versions, flexible granularity (e.g.,
entire software system vs. software components), and a
variety of execution models (e.g., all versions execute in
parallel vs. a new version replaces a failed version).

Figure 1. Layered architecture for software execution
environment

In our distributed approach the algorithms jointly decide
which one(s) should perform the processing. Conventional
algorithms do not typically have such a distributed
decision-making ability, so the agent-based wrapper
enables an algorithm to participate in distributed decision-
making. An agent in this system would have to know about
itself: what it needs, what it can accomplish, and how.

Version Granularity
Software systems are usually constructed from several
components. Each component performs specific tasks and
interacts with the others. Increasing the reliability of large,

complex systems via an N-version execution environment
raises the question of what should constitute a “version.”
Considering the entire system as a single version has the
advantage of a small population of versions and fewer
control operations needed for the execution. However,
achieving independence among the versions becomes
complex and their execution rigid. Smaller version size,
such as replicating each procedure, clearly increases
flexibility of the execution. Further, developing and
evaluating independent versions will be simpler than for
large, complex programs. However, the smaller granularity
will make it necessary for the system to be controlled
carefully to compose the necessary modules correctly.

PRELIMINARY RESULTS
We collected a number of algorithms in four domains—
geographic location control, sorting, list-reversing, and
evaluation of postfix arithmetic expressions—each written
by a different person and therefore having different input
and output signatures and performance characteristics. The
programmers were undergraduate computer science majors
and the work was done as standard homework assignments.
The students were unaware that their algorithms would be
used in our tests for robustness, so the algorithms did not
have any special features that would bias our results. We
converted each algorithm into an agent composed of the
algorithm without any modifications and a wrapper for that
algorithm. The wrapper knows nothing about the inner
workings of its associated algorithm. It has knowledge only
about the external characteristics of its algorithm, such as
the data type(s) it requires and produces, its time
complexity, and its space complexity.

First, 30 students each implemented an agent for a control-
system application as a concurrently executing Java thread
and interacting through a base class environment. The goal
of the agents was to form themselves into a geometric circle
in a plane. The agents each understand what a circle is,
what it means to be part of a circle, where the nearest
agents are located, and an estimate of how close the group
is to being in a circle. The agents can reason about where
they should be and the direction they should move to get
there. We introduced a few agents that do not have the
ability to move properly. The group overcomes this by
helping to move the misbehaving agents and produces an
acceptable circle. We have anecdotal evidence, via one
comparison, that such an implementation can be
constructed more rapidly and robustly than conventionally.

We have compared several adjudication approaches,
including majority voting, consensus voting, maximum
likelihood voting, recovery blocks, consensus recovery
blocks, and combinations. These assume the reliabilities of
individual versions are known and the versions are
independent. Unfortunately, we have found that
independently developed versions tend to fail dependently.
Fortunately, we have also found that code complexity

measures (e.g., source lines of code, percent branch
statements, complexity, number of statements per method,
and average block depth) are an indirect means of
representing dependencies among versions and, thus,
estimates of proneness to coincident failures [11].

CONCLUSIONS
Producing robust software has never been easy, and the
crowdsourcing approach recommended here would have
major effects on the way that software systems are
constructed. We plan to explore answers to the following
questions: What types of software are amenable to the
crowdsourcing development approach? Is there an optimal
granularity for the size of the agent-based components?
How many versions are needed for a desired correctness?
How can independently constructed components reconcile
their behaviors? The result will be improved software that
more closely behaves as users and stakeholders desire.

REFERENCES
1. Algirdas Avizienis, “Toward Systematic Design of

Fault-Tolerant Systems,” IEEE Computer, Vol. 30, No.
4, 1997, pp. 51-58.

2. Fred Brooks, The Mythical Man Month, Addison-
Wesley, Reading, MA, 1995.

3. Bob Brown, “Open source’s future: More Microsoft,
bigger talent shortages,” Network World, 11/27/2007.

4. Helder Coelho, Luis Antunes, and Luis Moniz, “On
Agent Design Rationale,” in Proceedings of the XI
Simpósio Brasileiro de Inteligência Artificial (SBIA),
Fortaleza (Brasil), October 17-21, 1994, pp. 43-58.

5. ComputerWorld, Vol. 41, No. 43, October 22, 2007.

6. D.E. Eckhardt and L.D. Lee, “A Theoretical Basis for
the Analysis of Multiversion Software Subject to
Coincident Errors,” IEEE Transactions on Software
Engineering, Vol. SE-11, No. 12, 1985, pp. 1511-1517.

7. J.C. Knight and N.G. Leveson, “A Reply to the
Criticism of the Knight&Leveson Experiment,”ACM
SIGSOFT Softw. Engr. Notes, 15, 1, pp. 24-35.

8. B. Littlewood and D.R. Miller, “Conceptual Modeling
of Coincidental Failures in Multiversion Software,”
IEEE Transactions on Software Engineering, SE-15, 12,
pp. 1596-1614, 1989.

9. Bev Littlewood, Peter Popov, and Lorenzo Strigini,
“Modelling software design diversity—a review,” ACM
Computing Surveys, Vol. 33, No. 2, 2001, pp. 177-208.

10. Eric S. Raymond, “The Cathedral and the Bazaar,” 1998
www.firstmonday.org/issues/issue3_3/raymond/.

11. Rosa Laura Zavala Gutierrez and Michael N. Huhns,
“Multiagent-based Fault Tolerance Management for
Robustness,” in Robust Intelligent Systems, Alfons
Schuster, editor, Springer, London, 2008, pp. 23-42.

