DESIGN OPTIMIZATION FOR A SPECIAL-PURPOSE
MULTIPLE-COMPUTER SYSTEM

by
C. F. Summer, Naval Training Equipment Center, Orlando, Fla.

and

R. 0. Pettus, R. D. Bonnell, M. N. Huhns, and L. M. Stephens
University of South Carolina, Columbia, SC

ABSTRACT

The design and performance analysis of the architecture of a special-purpose
multiprocessor is presented. The architecture is a hierarchically structured
and functionally distributed type. 1Its operating system is a multilevel structure
implemented in an optimal combination of hardware, firmware, and software. This
architecture is suited to any application, such as process control or system
simulation, in which the basic computational tasks do not change in time.

Each processor has a dedicated memory space in which program tasks are
stored. - In addition, there is a system bus to a global memory which is used
primarily for communication among the processors. To minimize contention for
this system bus, selected areas of global memory are duplicated at each proces-
sor. This allows the processor to obtain needed information by using a Tocal bus
rather than the global, system bus. A1l write operations to the shared memory are
global and the information is duplicated at processors having that address. Read
operations then become primarily local and can occur in parallel.

Control functions are distributed among the processors; the scheduling and
execution of control and application tasks are governed at each processor level
by a Tocal, real-time operating system. This local operating system is implemented
primarily in firmware to minimize overhead. However, the control structure is
designed to be independent of implementation so that a variety of processors can
be utilized together. Moreover, it is possible to add to each local processor
an additional subprocessor which implements the operating system.

I. INTRODUCTION

Much of the previous work in multiprocessor systems has addressed the
problems of allocating system resources in a general-purpose computing
environment. In these systems the computational requirements change as a func-
tion of time as various tasks use different resources in a random manner. This
paper discusses the application of multiprocessor capabilities to a fundamentally
different problem in which the computational load is essentially independent of
time. Such applications occur in process control and in simulations of physical
systems. The computations in these applications are repetitive in that a certain
number of calculations are required to move the system from one finite state to
the next. Computations for one state must be completed before calculations for
the next state may begin. This requirement imposes a structure on the compu-
tational load because it is known in advance which computational tasks must be
completed before the system moves to the next state.

A multiprocessor is utilized in order to exploit the capabilities offered
by parallel processing. A single processor computer system may not complete
computations quickly enough to provide real-time responses, especially when a
large number of features are included in the system model. Partitioning the
program into parallel processible units and using a multiprocessor system is one
method of obtaining the required computational speeds. However, once a program
has been partitioned, a problem of communication among the processors is intro-
duced, a problem compounded by the highly-coupled structure of many system
models . If the multiprocessor system is to be effective, comunication of
data from one processor to another must be optimized so that needed data can be
passed with minimum delay to other processors. Techniques for communications

optimization are discussed in detail in section III.

One way to ameliorate the communications problem is to minimize the trans-
mission of control information. This can be accomplished by distributing
portions of the control function of the system to individual processors. These
operate autonomously from the system control processor as discussed in section
IV. Performance analysis, section V, centers around the concept of the speed-up
factor, a ratio of the computation time required in a single processor to that
in a multiprocessor system. Results and conclusions are found in section VI.

The architecture selected for the multiprocessor system described herein
is straightforward. All processors are fundamentally identical although one is
given overall system control responsibility by virtue of its priority. Each
processor has a dedicated local memory for program and operating system storage.
Communications among processors are handled via a shared memory. The details of

this architecture are further elaborated in section II.

II. ARCHITECTURAL FEATURES

The system considered here is designhed to simulate a physical process
such as the flight characteristics of a complex aircraft. This process has a
large but finite number of state variables which must be updated periodically.
The overall program is fixed once the system model is determined; only the state
variables change in time. Because the fundamental process being modeled does
not change, the program which implements the model also does not change.

In a flight simulator, for example, the state variables are updated at a
rate determined by the dynamics and outputs of the system. If at t=T0 a trainee
pulls back on a simulator control yoke, then at t=T0+At, one samp]ing‘time later,
the simulator cockpit must be moved accordingly. The computations which carry
the simulator from one state to the next can be decomposed as a four-fold pro-
cess as depicted in Figure 1 and described below.

First, the sampled input parameter (control yoke position) is mapped into

a change in elevator position. This change is called the update state calculation

SAMPLING PERIOD, T

T -

< CYCLE PERIOD G| c o, | C o C)
W R W R R R
IP-+SM SMAP APSM SM-AP SM-AP AP-+SM SM-~OP
ALCULATE ICALCULATE |CALCULATE ICALCULATE
UPDATE: STATE OUTPUT OUTPUT
STATE IN AP IN OP
IN AR N-N+] N+1-N+1 N+1-aN+]
N .
AP = application processor
SM = shared memory
OP = output processor
IP = input processor
Figure 1. Data transfers for a sampling period with four cycles.

and must be communicated to all those processors making calculations which de-
pend on it. Secondly, the next state is calculated based on the present value
of the state parameters, such as velocity and wind direction, and any changes
in input parameters, such as elevator position.

The third step in the process consists of computing output quantities such
as changes in cockpit position and instrument readings. In the fourth phase,
the output values are transmitted to the simulator mechanism and, in this example,
the cockpit moves in response to the change in control yoke position.

The sequence described above makes certain demands on the interconnection
structure of a multiple-computer system. Star and loop methods have been con-
sidered but discarded for the following reasons:

1. In a star configuration each processor is connected to every other
processor. If there are n processors, there are n-1 bidirectional
communication links to a given processor. It is difficult to con-
trol communications in such a structure because the cooperation of
the processors being addressed is required and there are numerous
paths in the network. If the addressed processor is busy with
computations, its execution would have to be suspended during the
communication.

2. In a loop configuration, communications pass through each processor,
a path which introduces buffer and repeater delays in an already
time-critical system.

The common bus structure shown in Figure 2 has been selected as being
most desirable for the application described here because this structure pro-
vides a means of orderly communications between processors. The next question
addressed is that of determining the better communications strategy: message-
based or shared-memory type. The message-based method has been discarded in

favor of a shared-memory system because the shared-memory method allows all

31NAOW
NOTLVYLIgUY

snd

‘W93sAs 43INdwod-3[d13 N Y3 404 B4NINULS sSnq [eqoLb syl ‘gz |unbL4
SN4 10Y.INOJ WILSAS
SN AYOWIW-QIAYHS
FIVAUIINI _ d40SS3204d
BRI sng ¥0S$3004d T04.1NOD
eUdpilind 104.INO? |

LINN 9ONISS3II0¥d TYIINID

0/1 QNY _
AOWIW 1207

N "ON ¥0SS3204d

o

ERle]
NOT LYY LIguy
sng

‘WaysAs 4aindwod-spdiLjinw Y3 404 BUNoNAIS snq [eqo|b ayy -z aunbi4
L - SNg_T0UINOD WALSAS
| SN _AUOWIW-IAVHS
. EMLENENL ¢ "ON H0SSI008d
_ AIQWIW OIVHS sng coe 40SS3904d 04.1N0D
_ 1404-vnd : 10U1NOD _

3 =
—

LINN ONISS3V0Ud TVHINID _

|
|
_
_

L. -

0/1 ONV
AOWIW TYI07

N “ON ¥0SS3J04d

_—

communications to occur without the cooperation of the processors involved.

A processor may send.its newly calculated parameters to shared memory whenever

the bus is available. It need not wait until the recipient processor is ready

to receive that data. This can be a significant advantage if, for example,

the calculations of one processor are required by several others. The same

advantages occur when a processor requires information from another processor.
Coordinating the processors and insuring that computations are not started

until all updated data is available is the task of the real-time operating

system. Its operation is described in section IV.

ITI. MINIMIZING BUS CONTENTION

The key to successful operation of a multiple-instruction-stream,
multiple-data-stream (MIMD) computer is effective communications among the pro-
cessors. As discussed in the previous section and shown in Figure 2, there are
two system buses--one for communicating data and the other for communicating
control information--which are common to all of the processors. The most
critical system resources are these global buses which, by being shared by all of
the processors, become the limiting factor in the overall performance of this
multiple-computer system. It is thus crucial that the design and utilization of
these buses be optimized.

The architecture of the entire system can be designed to minimize bus usage.
Most of the system control functions are distributed among the processors by
providing each with a local real-time operating system. Also, because the
programs to be executed are fixed, each processor is assigned its function in
advance. Hence, although one processor is designated as a control processor, it
needs to communicate only a minimum of control information during normal system

operation. This control information is transmitted on the control bus so as

not to interrupt the data flow on the other bus.

One way for processors to communicate is by writing messages and results
into a shared memory where other processors can access this information. For
the MIMD system described herein, all of the system memory is distributed among
the processors. Part of the memory for each processor is local and can be
accessed only by that processor. This allows most run-time memory operations to
be local, thereby avoiding contention for the global buses. The rest of a pro-
cessor's memory is global and available to all processors for memory-write
operations. This global portion is designed in a dual-port configuration so
that it can be read locally while being written globally. Also, all processors
can read in parallel without any possibilities for contention or deadlock. By
removing all global read operations from the bus, the bus traffic is reduced by
much more than half, an important reduction for this vital system resource.

As an example of this reduction, if a parameter calculated by one processor
is needed by four other processors, a simple shared memory would handle this
transfer in five cycles (one to write and four to read). With the shared memory
duplicated at each processor, only one cycle is required to simultaneously write
the parameter to all processors which need it. The destinations for a parameter
are determined by its location in the memory address space. The read operations
then occur locally and independently.

An additional architectural feature which maximizes the bandwidth of the
global data bus is synchronous operation. This reduces the overhead associated
with each data transfer and allows most data transfers to be scheduled.

The utilization of the bus can be further minimized because the system is
to be used for a single application. The program for this application caa te
partitioned into tasks and assigned to processors for execution in a way that
minimizes the interprocessor communications. Also, the communications can be

scheduled 1in advance to minimize idle period for the bus and wait periods for

processors, both of which add to communications overhead. Neither of these

optimizations are readily available in a general-purpose MIMD system.

IV. REAL-TIME OPERATING SYSTEM

The operating system is distributed among all of the processors. Each
local operating system has two major functions: it implements a virtual
machine structure and handles the chores normally associated with a real-time
task manager. In addition,it isolates a programmer from the details involved

in the passing of parameters between tasks.

A. The Virtual Machine

An individual processor may communicate with the rest of the system via
the system buses, or with an external device via the I/0 interface bus. The
external communications are controlled by the programs executing in each pro-
cessor but all interprocessor communications are handled by a virtual machine
implemented by the local operating system. Use of the virtual machine removes
much of the system dependence on any hardware characteristics of the individual
processors. The role of the virtual machine is shown in Figure 3. The system
structure is symmetrical in that the interface between the control program and
the individual processors is the same as the interface between these processors
and external devices. In addition,the interface between the control processor
and the external world is handled by the virtual machine in the same manner as
for the interface between the other processors and the system bus. This structure
increases the extensibility of the system, allowing more than one system of
multiple processors to be linked together.

A state diagram of the virtual machine is shown in Figure 4. The machine has
five states: HALT, WAIT, COMMUNICATION, EXECUTIVE, and USER. The HALT state

is used to take a processor off-line for an indefinite length of time. The

10

*94N30NU3S suLyoew [enjJaLA wa3sAs burjeuasdQ

SY0SS3I0Ud SNOILYII1ddY

A

‘¢ 9unbL4

SWYY490ud
NOILVIIlddY

ANTHOVW
WNLAIA

SWYY20Yd
NOILVII1ddY

i

mzH:u<z
YNLYTA

_ SWYH90Ud
onhiqugaq

!

INTHIVW
TYNLYIA

SWYY904d
NOILVDITddY

INTHIYKW
TYNLYIA

T04LNOD

INIHIVW

40SS3J04d
T0Y1NOD

TYNLYIA

G740M TYNY31X3
WOYd NOILYWHOINI
T04LNOD WILSAS

11

‘wedbeLp 93e3s suLydew |[BNIALA “H 24nbL4

MOT4 WYHO0Ud TYWHON
T04LNOD 3Y4YMLIJ0S
GNYWWOD 1TVH JYVMQUVH
LdNYY3LNI

1408
1408 *17vH

SNOILYOINNWWOD

LIVH

‘MO
+ 1408
*LVH
*YLNIT

12

WAIT state is similar to the HALT state but is used for synchronization. A
common control line can cause all waiting units to enter the EXECUTIVE state
simultaneously. Most of the normal operating system activities, such as the
scheduling of tasks, take place in the EXECUTIVE state. The USER state is used

to run the actual programs.

B. Run-Time Structure
A simplified flowchart of the operating system is shown in Figure 5. Entry

to this system is by a software or hardware interrupt. The interrupt handler has
a structure which is similar to that of the CASE statement. This allows the
operating system to have a one-in, one-out structure even though there are multiple
interrupts. Normally control is passed to the scheduler; however, under some
conditions an exceptional task may be activated. Exceptional tasks include the
following:

(1) The supervisor-call handler

(2) The error handler

(3) An initialization procedure

(4) The communications, halt and wait states
of the virtual machine.

A flowchart for the handler of the exceptional events is shown in Figure 6.

The supervisor-=call handler is a mechanism which provides system services
to the executing programs. The supervisor calls allow scheduling of tasks, time
management, and intertask communications control. Semaphore and message buffers
are available as supervisor calls and are the main techniques used for inter-
task communications and control. In additien, flags are used to implement a
conditional critical region. Executing programs issue supervisor calls by
using software interrupts.

The occurrence of an error, such as an attempt to address nonexistent memory

or to divide by zero, causes a trap which activates the error handler. The error

13

INTERRUPTS

~_~

l INTERRUPT I

HANDLER

YES EXCEPTIONAL
EVENTS .
HANDLERS

NO

I SCHEDULER |

EXIT TO
USER STATE

Figure 5. Simplified flowchart of operating system.

14

37INAOH
NOILVZIVYILINI

*Sdad|puey uoL3dsox3y g aunbL4

¥3NAIHIS 0L »

ENR AR

NOILYIINNIWWOI

dITANYH 11V0
d37ANYH Y¥0YY3 40SIAY3IdNS

374VYL ¥0LI3A ONY HITONVH LdNY¥3LNI

SLdMYYIINI D

15

handler prepares a message, with information such as the machine state and
identity of the active task, and passes control to the communications state
where the message is then sent to the control processor. The task may or may
not be restarted, depending upon the severity of the error.

The communications state is used for the transmission of programs, data, and
control information between the control processor and other system processors.
A11 messages sent to a processor in the communications state are interpreted by
the virtual machine. The control processor does not have to be involved with
any hardware details of the processor with which it is communicating.

The scheduler is shown in Figure 7. It uses single-level dynamic priority
assignment and pre-emptive scheduling with resumption. The three main components
of the scheduler are the event queue handler, the system program handler, and
the application task scheduler. The event queue is the mechanism used to handle
all events scheduled to occur either at some specific time or after an elapsed
time. When an event timer interrupt occurs, the event queue handler is flagged
to run by the interrupt handler. When the scheduler is entered,the task at the
top of the event queue is activated. This insures only that the task can compete
for processor time, not that it will run.

System programs implement operating system functions that are matched to a
particular application. These programs are executed until completed whenever
they are scheduled.

The application task scheduler compares the priority of the currently active
task, if any, with the highest priority task in the queue. The higher priority
task is scheduled and control is passed to that task. If there are no currently

active tasks a diagnostic program is run.

16

INPUT TO SCHEDULER

EVENT QUEUE

HANDLER
SloHER SYSTEM
PROGRAM

i PROGRAM
HANDLER

APPLICATION
TASK
SCHEDULER

EXIT SCHEDULER TO
CURRENTLY ACTIVE APPLICATION TASK

Figure 7. Flowchart of scheduler portion of operating system.

17

C. Implementation of the Local Operating System

The Tlocal operating system was designed to work on a wide variety of
processor types. During the design phase, coding was performed in PASCAL.
However, the first actual test version was coded in assembly language for the
Motorola 6809 microprocessor. All of the basic operating structures were de-
signed to allow flexibility in the coding of the machine-dependent portions of
the code. The PASCAL version defined all the standard features and became an

important part of the documentation.

V. PERFORMANCE ANALYSIS
As has been noted by Kober1, how well the processing power of a multiple-
computer system can be utilized (i.e., its efficiency) is a function of three
major factors:
1. The organization and architecture of the system.
2. The number and power of the individual processors.
3. The type of application program.
One measure of the efficiency of a multiple-computer system is the speed-up

ratio, g, defined as:

5 ols
Tp
where TS = the execution time needed for the sequential

computation of the application program.

= the execution time needed for the parallel
computation of the application program.

—
-o
|

In this section, the speed-up ratio and the factors affecting it are
examined.

For the multiple-computer system presented in this paper, a cycle is the

*

Kober, R., "A Fast Communication Processor for the SMS Multimicroprocessor
System", Second Symposium on Micro Architecture, M. Sami, Et.A1 (Ed's), North-
Holland PubT. Co. 1976, pp. 183-189.

1

18

time allowed to complete a write plus a read on the global shared-memory bus.
During each cycle, a set of calculations is also performed by the individual
processors. - The physical sampling period is a function of the significant
highest natural frequency of the system being simulated. The sampling period
consists of several cycles, as it will normally require several cycles to per-
form the required calculations that must be completed during each sampling
period. Because the total computation is performed by a repetitive sequence
of cycles, the speed-up ratio is based on only one cycle.

Consider a multiple-computer system which has n individual processors and
a total computation load of M tasks where a task is a self-contained portion of
this load. Once a task is initiated it can be completed without the need for
additional inputs.

The average computation time for one task is denoted by TA' The average
time for data exchange on the shared-memory bus per task with only global shared
memory is denoted by TC' The average time for data exchange on the shared-

memory bus per task with both Tocal and global shared memory, TC', is given by

IC =k TC

where k is the local shared memory factor (O<k<1). A Tower bound for k is 1/n.
If k=1, there is no local shared memory and shared variables are com-
municated only through a global shared memory. For k<1 the average time for
data exchange on the shared-memory bus is reduced by the presence of the Tocal
shared memory.
The average processor utilization for computation, o, is given by

T

M

u:

(0<0<T)

where TM = the maximum time allowed for computation. Given the above parameters
TA’ TC', n, M and e, the speed-up ratio for the multiple-computer system with

distributed control, Bd’ can be determined.

19

The execution time needed for sequential computation of M tasks is
given by

To=MT

A
The parallel computation time for M tasks by a multiple-computer system

with distributed control is

T
8 :——S-= .I
d T L, T
Pd 1, _c
no T
A

The maximum speed-up factor Bd is given by

. 1
T1im ————— = =
N-sc0 + TC T
7
@A

SI-—I

The speed-up ratio for the multiple-computer system without distributed control,
By is given by
MT

B= = .
d £, M
TD + MTC + e TA

where TD = duration of control phase.

The speed-up ratio is improved by the factor,y, with the use of distributed

control.

20

VI. SUMMARY

An architecture for a special-purpose multiprocessor has been presented.
Limiting the use of this multiprocessor to a single application allows it to
be optimized with respect to the use of critical system resources. This optimi-
zation consists of 1) distributing the system control functions to individual
processors by implementing Tocal real-time operating systems, 2) distributing
copies of the system memory to each processor so that all system write operations
are global and all system read operations are local and parallel, 3) scheduling
the communications that occur on the synchronous data bus, and 4) partitioning
the program tasks to minimize interprocessor communications. The resultant
system has been shown to have a significant speed-up factor over a single pro-

cessor system.

