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Abstract. This paper describes a computational approach to energy use that as-
signs importance to human psychology and social interactions. Specifically, this 
paper describes our investigations into computational mechanisms that encourage 
prosocial behavior on the part of consumers. Examples of prosocial behavior in 
the context of electrical energy use are reducing average aggregate consumption 
and peak total consumption. We consider an approach that combines minority 
games and cake-cutting that includes elements of human decision-making in sit-
uations that are hybrids of competitive and cooperative settings. For example, 
people may be motivated to reduce their consumption if that were posed as a 
competition wherein they would win a game, possibly by collaborating with their 
neighbors. And, people may be motivated to behave in a prosocial manner if sel-
fish behaviors were shunned in their social group. Previous approaches disregard 
such dynamics from technical studies, relegating them to psychological analyses; 
yet the interrelationship of the human and the technical aspects is crucial in a 
complex sociotechnical system such as the power grid. 

Keywords: Multiagent systems, electric power, demand-side control, social 
computing. 

1 Introduction 

There are many facets to the world-wide electric power problem, concerning how 
electric power can be generated in an environmentally sound way, how it can be 
stored and distributed efficiently, and how it can be used wisely. Although energy 
resources can be viewed strategically as an advantage for geopolitical entities that 
own the resources, we prefer to view them broadly as societal resources to be shared 
among the members of a society. The control of energy resources is not societal, 
however: it is centralized at the energy provider, where preferences of the members of 
the society are generally not considered.  

We are investigating the modulation of electric power demand via socially intelli-
gent computing. We seek to develop efficient consensus and incentive-based compu-
tational mechanisms for decentralized control of demand that respects system-wide 
objectives and individual preferences. Our mechanisms will influence consumer deci-
sions regarding local energy usage, generation, and storage, as well as overall energy 
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supply and demand, according to local consumption preferences and global supply 
objectives of grid operators. The societal benefits are lowered peak demand, improved 
operating efficiency, and lowered capital expenses. 

1.1 Current Situation 

In general terms, our problem involves the allocation of electric power (treated as a 
scarce societal resource) among independent consumers (households and small busi-
nesses). Recent approaches collected under the term “smart grid” enable consumer 
devices to be controlled by electric power utilities. The objective is to shed demand 
when it exceeds supply. For example, household air conditioners can be turned on or 
off easily from a central controller.  However, deciding whether and when to turn 
them on or off based on consumer preferences is nontrivial. The smart grid is smart 
only from the viewpoint of the electric power utilities. Because consumers typically 
want their preferences to remain private, centralized approaches that allocate re-
sources by fiat are not acceptable. How can consumers with diverse preferences make 
local decisions about the allocation and management of electric power that are global-
ly effective? The problem is exacerbated by large consumer communities and  
frequently changing preferences. 

Two forms of demand-side management are being used to solve energy resource 
allocation problems. In one, a central control form, a utility enters into agreements 
with customers, for a rebate incentive, under which the utility can directly control 
appliances, usually for load shedding when needed [1]. Central control does not ad-
dress customer comfort and exception requests. In the other form, home management 
systems monitor and manage appliances. Some utilities are considering providing 
real-time pricing signals to improve the effectiveness of such systems. Home man-
agement systems suffer from customer reluctance to participate and lack of clear  
benefits [2]. Utilities have begun to realize that pure technical or economic approach-
es are not effective, so they are investigating alternatives to better engage their  
customers [3, 4]. 

Here is an example of the problem we are trying to address. Charging an electric 
vehicle is equivalent to approximately four houses using all of their appliances. The 
transformers in a neighborhood (the ones you might typically see on a pole) are sized 
for approximately ten houses. If 3 or 4 people in a neighborhood buy an electric ve-
hicle and try to recharge it at the same time, the transformer will fail. To prevent this, 
the power company could double or quadruple the capacity of their lines and trans-
formers, which would be very expensive, or the power company could take control of 
when people can recharge their vehicle, OR the neighbors could cooperate with each 
other in staggering when they recharge.  We believe that the last is the best solution, 
but it requires the neighbors to be cooperative and possibly altruistic, and it must be 
done with local consumer cognizance of the global context. 
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1.2 Investigation Framework and Research Hypotheses 

Our investigations are being conducted in a framework of realistic premises designed 
to make this large problem manageable. The premises are 

Premise 1. Current pricing incentives are insufficient, because they are based on a 
history of past aggregate behavior and have little predictive value. 

Premise 2. The community of consumers exhibits rich social relationships and 
energy usage dependencies that can be handled better through peer-to-peer interac-
tions rather than through centralized control. 

With these as a basis, the key is fostering peer-to-peer interactions among consumers 
to guide their individual control decisions and, by aggregating the decisions, produce 
effective system-level control. Individual demands are coordinated to reduce peak 
demand, flatten overall demand, and yield a power factor closer to 1.0. We believe 
that two levels of peer-to-peer interactions will be needed. At the macro-level, inte-
ractions create consensus on the overall goals and trade-offs, producing the equivalent 
of supply-and-demand curves. At the micro-level, interactions cause individual con-
trol decisions to be as dissimilar as possible, so as to spread demand as uniformly as 
possible.1 To investigate this foundation for a demand-side approach, we have formu-
lated the following hypotheses: 

Hypothesis 1: Participation. A sufficient number of people in a society can be moti-
vated to participate either directly or indirectly via their intelligent software agents in 
the management of an essential and limited resource (electric power). 

Subhypothesis 1.1: Influence. Consumers’ decisions can be influenced to promote 
prosocial behavior, if such behavior does not detract from their personal prefe-
rences. 
Subhypothesis 1.2: Privacy. Consumers will share some private information (indi-
rectly via their agents) so as to cooperate in promoting prosocial behavior. 
Subhypothesis 1.3: Cooperation. Consumers are more amenable to promoting 
prosocial behavior if they can cooperate with known parties, not with anonymous 
strangers. Consumers who cooperate will achieve better outcomes. 
Subhypothesis 1.4: Competition. A game environment offering competition among 
consumer groups can motivate consumers to exhibit prosocial behavior. 
Subhypothesis 1.5: Trust. Consumers will trust software agents to represent their 
interests in negotiating for resources. 

Hypothesis 2: Stability. A system of interacting agents cooperating and competing 
for resources on behalf of a community of users will produce a controllable, stable, 
and prosocial allocation of resources. 

                                                           
1 We also recognize that at times it is important to develop “herd behavior.” For example, if 

power is largely solar, then it is preferable to use that energy as it is being produced. Or, if 
industry needs large power during working hours, then it is desirable to push all residential 
demand into the nighttime so that the net consumption becomes flatter. 
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The scientific results will be improved understanding of how the macro-level and 
micro-level aspects of control come together and how users remain in control while 
engaging in socially desired behaviors. There will be three interdependent types of 
macro-level and micro-level interaction among providers, consumers, and the soft-
ware agents representing individual interests (see Figure): 

1. Expressing preferences: software agents interact with consumers to acquire their 
preferences and provide incentive-based feedback to influence their behavior.  

2. Reaching consensus: macro-level interactions among agents to optimize their dis-
tributed demand decisions based on computational collective intelligence and con-
sensus-based optimization, resulting in supply-demand curves based on local prefe-
rences and system objectives. 

3. Achieving objectives: micro-level interactions between groups of consumer agents 
and resource provider agents to minimize impact on resources (i.e., reduce peak 
demand) based on field theory from particle physics, cake-cutting algorithms from 
studies on negotiation among multiple agents, and incentive-based optimization 
mechanisms. 

The problem of allocating shared resources matches naturally with socially intelli-
gent computing—the intersection of social behavior and distributed computational 
systems—and multiagent systems. Multiagent systems can apply social computing 
to investigate the technical problem of how to allocate, distribute, and govern 
scarce societal resources in a sustainable manner across a sufficiently coherent 
community of users, each potentially having different preferences for the resources 
and when to consume them. This is difficult, because communities are large and 
preferences will change frequently and, from a centralized viewpoint, unpredicta-
bly. The sharing should accommodate member preferences, yet provide fair and 
envy-free incentives to those whose preferences most promote sustainability. Be-
cause preferences are mostly personal and private, centralized approaches that 
allocate such resources by fiat are usually not acceptable in a free society. The key 
to this is fostering peer-to-peer interactions among the participants so as to ac-
commodate both the personal and the interpersonal dimensions of decision making 
by rational, social participants. 

The two complementary strategies we have investigated for the interactions are 
based on: (1) control systems and (2) a negotiation approach that combines minority 
games, particle physics, and cake-cutting algorithms. Multiagent negotiation is one of 
the decision-making mechanisms that can be used to provide for the allocation of 
resources. The results of such negotiations, from the viewpoint of the consumers, 
should be fair and envy-free, which motivates the investigation of “cake-cutting” 
approaches. 
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2 Background and Significance 

Crowdsourcing [5] has drawn a lot of interest lately. Crowdsourcing involves (usually 
implicit) collaboration between users to solve a problem. However, crowdsourcing 
approaches are fundamentally limited to solving centrally allocated problems where 
the mode or median or individual solutions converge to the ideal solution. We refer to 
such central tendencies loosely as the majority. In majority problems, a statistical 
aggregation of individual solutions proves effective. To follow Galton’s example 
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from 1907 of the wisdom of crowds, if 800 people estimate the weight of an ox by 
just looking at it, their individual estimates may vary a lot, but in a Gaussian manner: 
their majority estimate (the median) could be close to the actual weight of the ox. So 
much so that when we have no other means to determine the weight of an ox, we 
might rely solely on the majority estimate, which is what crowdsourcing pursues. 
Such solutions can be promoted by giving users an incentive to be nearest to the ma-
jority. Notice that if we gave users an incentive to be far from the majority, the result 
would be meaningless. 

In the case of resource usage, however, the participants’ interests are not well 
aligned with the majority. If increased peak demand causes the price to go up, con-
sumers are better off spreading their individual loads to lower the peak and, thus, 
lower the price. In such settings we are not seeking a majority view of the “right” time 
to consume energy, but to influence consumers to distribute their consumption. The 
consumer in effect has an incentive to be in a minority. Minority settings in general 
are highly volatile. Are there social mechanisms that can motivate behavior to  
produce effective solutions in minority settings? 

The minority game [7][9] is defined as a game with a large number of players, N, 
with each player making a choice between two alternatives at each round of the game. 
After all players have made their choice, the players that are in the minority each win 
one point. This is relevant for electric power distribution, because the preferred  
solution is for consumers to request power at different times. 

A variant of the minority game is the Kolkata Paise Restaurant Problem [8] where 
the number of choices (n) as well as the number of players (N) are relatively large. It 
is a repetitive game where information regarding the history of choices made by dif-
ferent players is available to everyone. Assuming that n = N, a player ϵ N wins a point 
by making a choice ϵ n made by no other player. If a choice is made by more than one 
player, one is randomly selected to earn a point. Hence, while each player gains a 
point for making a unique choice, the resource utilization is maximized when each 
choice is made by at least one player. 

2.1 Power Systems and Control Theory 

Current demand-side management approaches fall into two main categories. First, in 
central control, the utility enters into agreements with customers, for a rebate incen-
tive, under which the utility can directly control appliances, usually for load shedding 
when needed [1]. Central control does not address customer comfort and exception 
requests. Thus, customers are reluctant to participate and only a few do. Second, 
home management systems monitor and manage appliances (e.g., by turning them on 
and off, or adjusting temperature settings). The consumer is expected to play a major 
role in (paying for) installing and configuring such systems. Utilities can provide 
realtime pricing signals to improve the effectiveness of such systems. Walker and 
Meier [2] observe that home management systems suffer from customer reluctance to 
participate, and lack of clear benefits. They also observe that some kind of automation  
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is essential: as they found, in settings where consumers sought to control their air 
conditioner usage manually, they would turn on their respective air conditioners  
precisely at peak times thus exacerbating peak demand. 

As support for the significance of our proposed approach, Berst [3] points out that 
pure technical or economic approaches are not proving effective and utilities are in-
vestigating alternatives to better enlist their customers’ support. Similarly, the Federal 
Energy Regulatory Commission [12] acknowledges the challenge of communicating 
the importance of demand response and engaging consumers effectively. 

In recent influential works, Sean Meyn [4] has articulated well some of the  
challenges of relying purely on pricing mechanisms for system control. At the macro-
level, such approaches have led to well-known problems though they have demon-
strated that consumers can change their demand in response to severe price signals. 
However, this doesn’t mean that the resulting allocations are equitable or that con-
sumption is smoothed in the process. Mathieu et al. [14] study different types of in-
dustrial and commercial consumers and observe challenges in prediction, specifically, 
that variation may often be dominated by model error rather than due to explicit re-
sponse. Shao et al. [15][16] study residential load profiles, including the charging of 
electrical vehicles, which creates heavy loads. Shao et al. are concerned with captur-
ing consumer priorities regarding various appliances and being able to control them as 
a way to shape the overall load. 

Japan’s Digital Grid Consortium envisions large-scale energy grids that can handle 
power the way the Internet handles data, using routers and service providers to effi-
ciently direct the flow of electricity [17]. The consortium seeks to develop technology 
that can track units of energy across an entire grid, tagging them with their source and 
destination similar to the way Internet packets are handled. The consortium plans for 
inputs to include existing power plants, solar facilities, and other alternative sources. 
The grid will include local power storage systems, such as large-scale batteries in 
homes. The units of energy will be managed by service providers, tracing and charg-
ing for them like a currency exchange. The energy “messages” are intended for 
supply-side management, but could be adapted to serve demand-side management. 

Because power systems are inherently distributed, agent-based approaches apply 
naturally therein to support local control. They contrast with extant approaches, which 
develop centralized solutions, placing all the intelligence in central controllers. Baran 
and El-Markabi [18] show how to characterize a multiagent protocol that facilitates 
control in the presence of local sensitivities as long as appropriate communication 
assumptions are met. Hernández et al. [19] study the modeling of power sources in 
smart grids. Pipattanasomporn et al. [20] apply multiagent systems from the utility 
standpoint. They show how their approach can isolate a local system from the grid 
adaptively as needed. Pipattanasomporn et al. [21] motivate a home power network 
architecture, which accords with our conception. Their proposed home management 
system corresponds to an agent that controls local loads on behalf of a consumer and 
responds to signals from the grid. 
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2.2 Multiagent Negotiation for Multiplayer Resource Allocation 

An important feature of multiagent systems is that the agents can behave autonomous-
ly considering the interest of the people they represent. Fairness and envy-freedom are 
criteria used to judge the effectiveness of allocation procedures. Assume the resource 
being allocated is measurable. An allocation procedure is called fair if it distributes a 
resource among n agents such that every agent values its portion as exactly 1/n of the 
total value of the resource. An allocation procedure is called envy-free if every agent 
values its portion at least as much as the portions allocated to other agents. Thus, 
envy-freedom is stricter than fairness. When a mediator is involved in resource alloca-
tion, an additional desirable criterion is that the mediator is unbiased. In addition, the 
procedure should be efficient in time and space complexity, strategy-proof, and  
constructive. 

In open multiagent systems there is generally no global control, no globally consis-
tent knowledge, and no globally shared goals or success criteria [22]. So the agents 
compete to maximize their own utilities. We assume each agent’s utility function is 
private. A negotiation protocol should be immune to information hiding and lying by 
the agents. In addition, protocols can be evaluated on various criteria such as fairness, 
envy-freedom, equitability, and efficiency. Brams and Taylor [23] discuss various 
procedures for allocating resources. They show that it is generally difficult for any 
given procedure to fulfill more than two of the above mentioned criteria. These crite-
ria are by no means exhaustive, but may be taken as an initial test of the allocation 
procedure that is being proposed. For example, other criteria that can used to evaluate 
protocols are: simplicity, computational complexity, and verifiability. 

A protocol for negotiated resource allocation—the basis for the multiplayer game 
envisioned here—is said to be verifiable if the allocation of the resource is invariant 
to the bias of the mediator (game engine). Iyer and Huhns [10][11] address verifiabili-
ty in a resource allocation procedure for one or two-dimensional resources, proving 
that if the agents follow a specified multiagent negotiation protocol, it is possible to 
have a fair and unbiased allocation of the resource. At the end of the negotiation, one 
of the agents volunteers to act as a mediator and executes the procedure. Based on the 
computation of agent preferences, there are two outcomes: the procedure (i) finds a 
solution and all agents get a fair deal; or (ii) fails to find a solution and all agents re-
ceive the conflict deal, i.e., no agent receives any part of the resource. The salient 
point is that the agents can detect if the mediator attempts to manipulate the results. 
Hence the results of this method are verifiable to any agent who wants to check them 
and the mediator need not be a trusted outsider. Importantly, the utility functions of 
the agents are not compared and therefore are unconstrained: all that matters is how 
the agents’ preferences relate to one another. 

3 Analysis 

Let us consider one concrete scenario of how sustainable energy use can be treated as 
a societal problem. This scenario seeks to reduce peak demand but does not address  
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reducing total demand. That is, we would like consumers to shift their individual de-
mands in time so that the peak aggregate demand at any time is reduced. Doing so has 
benefits in yielding a more stable load and reducing the need for capital expenses. 

The most traditional approach would be to determine the popular times of the day 
or week for demand and to set the price higher for such times, so as to encourage 
consumers to move away from such times. Such an approach works from historical 
data and lacks knowledge of and flexibility in addressing changing situations. 

A more modern approach is to apply real-time pricing. However, real-time pricing 
is difficult from a practical standpoint because of characteristics of power systems 
that cannot match production to demand instantaneously. Further, real-time pricing is 
difficult for consumers to deal with, and often leads to chaotic outcomes [5]. 

We now describe the interactions between a consumer, a power supplier, and our 
proposed system, which could be thought of as a mapping to an energy service pro-
vider (ESP) [13]. Let’s begin with a variant wherein the consumers act independently 
of each other. 

As the Figure shows, a consumer assisted by an agent submits constraints on an 
expected future load profile. A local broker/manager considers all the submitted pro-
files and determines a nonbinding allocation for each consumer that reduces the peak 
demand and demand variations. The allocation is guaranteed to satisfy each consum-
er’s stated constraints. A simple way to find such an allocation is to order the con-
sumers randomly and, for each consumer in turn, allocate power usage timeslots to 
that consumer in a way that greedily minimizes the peak consumption. Each  
consumer may or may not act according to the allocation. 

A consumer who follows the recommended consumption profile pays the average 
price for the current total demand in each time slot. A consumer who consumes power 
arbitrarily either by never participating in our approach or by participating but deviat-
ing from the recommendation pays the usual marginal rate. 

The price for power increases with the instantaneous demand at the time of con-
sumption. With some key assumptions, this scenario provides a way to address some 
important properties: 

• Prosociality. The local broker/manager charges a higher price to ad hoc consumers 
than for plan-ahead consumers, which creates an overall incentive to reduce peak 
demand. 

• Individual rationality. Those who submit a profile and follow the resulting alloca-
tion benefit by paying a smaller price for the power they draw. Thus participants 
pay a lower price for power in a given slot than someone who consumes the same 
amount of power in the same slot but without a prior submission. Thus consumers 
are motivated to participate in the brokering and management. 

• No coercion. Those who submit a profile are free to ignore the suggested alloca-
tion. They pay the same price for that consumption as if they had never partici-
pated. 

• Budget balance. When consumers as a group create more expensive demand on 
the power source, they pay more for the privilege. 

However, this approach assumes the consumers have NO knowledge of the con-
straints (preferences) of other consumers or of the constraints of the power generation 



10 M.N. Huhns 

 

and distribution system. That is, a consumer might be willing to shift its need for 
power to a slightly different time interval if it would result in a major savings in cost, 
but has no way of discovering this.  This approach forms an imperfect information 
game.  

Our approach combines pricing with social mechanisms. Consumers join coopera-
tives, which we assume are small, such as neighborhood blocks. Each cooperative 
seeks to minimize its overall cost in terms of financial units or in terms of environ-
mental impact. Thus the members of each cooperative, must negotiate with each other 
with respect to their individual preferences as such preferences are affected by impor-
tant externalities such as the changing price of energy, changing weather, and social 
factors such as whether it is a holiday season. 

We are investigating some key challenges that arise from our vision, such as power 
system models, social interaction models, design models of agents, user models, and 
economic models. In addition to formal models and simulations, we are using games 
to explore how consumers interact in different circumstances and how we may effec-
tively promote prosocial behavior. The interactions among power consumers might 
take the form of 

1. Auctions, with the following features: 

─ Individuals base their bids on their own preferences 
─ Individuals do not reveal their preferences 
─ Individuals could maintain and use a history of interactions.  Based on this, in-

dividuals could learn the strategies of others, although the auctions might be de-
signed to reduce or eliminate the need for this 

─ The auctions do not allow any future considerations 

2. Round-robin power scheduling, where individuals take turns having first prefe-
rence for power use, in an endless cycle. 

3. Direct negotiating among consumers, involving promises / commitments for future 
use, and which might be multiparty. 

Particle physics provides both a metaphor and a mathematical basis for solving the 
resource allocation problem.  Particle physics dictate that particles tend to occupy  
the most energetically favorable states, while certain other particles cannot occupy the 
same state together. This translates into an analogy of electric power resources that 
either any number of consumers can share or that only one consumer can have. 

4 Research Agenda 

The goal of the power company (maximize profit) is different than the consensus 
goals of its customers (minimize cost, maximize comfort, protect environment). Al-
though the proposed project studies household electrical power consumption, its re-
sults could be applied to a broader class of societal resources, such as fresh water, 
thus promoting sustainability in such settings as well. Our approach applies social 
computing to sustainability problems. We treat consumers and providers as important 
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participants and rely upon their mutual interactions—mediated by computational 
agents—as a basis for arriving at high-quality solutions. Each user delegates some 
authority to an agent, which then acts on the user’s behalf. Traditional social compu-
ting approaches are limited to information problems where consensus is important. In 
contrast, our approach applies to allocation problems where the dissimilarity of the 
participants’ decisions improves social welfare and helps capture each participant’s 
local preferences. There are two main considerations: 

1. Can a sufficient number of people in a society be motivated to participate either di-
rectly or indirectly via their intelligent software agents in the prosocial manage-
ment of an essential and limited resource (electric power)? 

2. Will a power distribution system managed from the edge by consumers be control-
lable and stable in a control system theory sense?   

4.1 Uninvestigated Hypotheses 

The following hypotheses are relevant and deserving of investigation, but this has not 
yet been done: 

• Bottom-up preferences negotiated among users in a neighborhood are more secure 
than top-down control of appliances by power companies, as is envisioned for var-
ious “smart grids.”  

• Being cognizant of global warming and climate change, people will act altruistical-
ly towards their neighbors in allocating electric power resources. 

• It remains to be shown that the grid will be more efficient and more fair if consum-
er preferences are considered. 

• Because they have only local information and minimal global information, con-
sumers have been shown to act suboptimally when the global grid is considered 
and not even in their own best interests locally when allowed to participate in  
decisions about the distribution and usage of electric power. 

• Agents expressing local preferences and exchanging information with providers 
and other consumers can obtain a global view and can act optimally in both an  
individual and global sense. 
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