
Ontology Matching Using an Artificial Neural Network to Learn Weights

Jingshan Huang1, Jiangbo Dang2, Jośe M. Vidal1, and Michael N. Huhns1

{huang27@sc.edu, jiangbo.dang@siemens.com, vidal@sc.edu, huhns@sc.edu}
1Computer Science and Engineering Department, University of South Carolina

2Siemens Corporate Research

Abstract

Ontologies are a formal, declarative knowledge
representation model. They form a semantic foun-
dation for many domains, such as Web services, E-
commerce, and the Semantic Web, where applica-
tions can mutually understand and share informa-
tion with each other. However, because ontologies
reflect their designers’ conceptual views of part of
the world, heterogeneity is an inherent characteris-
tic for ontologies. During (semi)automated match-
ing among ontologies, different semantic aspects,
i.e., concept names, concept properties, and con-
cept relationships, contribute in different degrees to
the matching result. Therefore, a vector of weights
are needed to be assigned to these aspects. It is not
trivial to determine what those weights should be,
and current research work depends a lot on human
heuristics. In this paper, we take an artificial neu-
ral network approach to learning and adjusting the
above weights, and thereby support a new ontol-
ogy matching algorithm, with the purpose to avoid
some of the disadvantages in both rule-based and
learning-based ontology matching approaches.

1 Introduction
As a formal and declarative knowledge representation model,
ontologies are becoming increasingly important as a founda-
tion for many kinds of Web applications. With the Semantic
Web gaining attention as the next generation of the Web, rec-
onciling different views of independently developed and ex-
posed data sources becomes a critical issue. While ontologies
serve as a basis for solving this problem, the heterogeneity
among different ontologies poses an inherent problem. This
is due to the fact that Web applications are developed by dif-
ferent parties that can design ontologies according to their
own conceptual views of the world.

To handle this heterogeneity issue in ontologies, many ap-
proaches have been proposed. Generally speaking, there are
two different kinds of solutions. The first is a centralized solu-
tion, in which a central ontology that is agreed-upon, global,
and unique and includes every concept that can satisfy the
needs of different parties is built. Cyc[Cyc, 2006] is a typical

example of this centralized solution. However, a central on-
tology will never be large and compatible enough to include
all concepts of interest to every individual ontology designer,
so it will have to be modified and extended. Each new exten-
sion will be different and likely incompatible. Therefore, it
is more common to turn to a second kind of solution, a dis-
tributed one. Basically, this solution focuses on the ability for
individual ontologies to match and reconcile with each other,
and possibly reuse each other as well. The ontology match-
ing is initially carried out by a human. There are some criti-
cal drawbacks to this manual effort, including that it is time-
consuming and error-prone, and does not scale. Therefore, to
develop tools that are either automatic or semi-automatic, and
can help people in matching ontologies is of great need and
value.

Most ontology matching techniques belong to either rule-
based or learning-based ones. Both categories have their dis-
advantages. In brief, the former ignore the information ob-
tained from instance data. A more severe problem is the way
this technique treats different semantic aspects during the on-
tology matching process. In general, ontologies are charac-
terized by the aspects of concept names, concept properties,
and concept relationships. These aspects have different con-
tributions in understanding ontologies’ semantics. Therefore,
it is essential to assign different weights to these semantic as-
pects, if a more accurate and meaningful matching result is
favored. However, current research work has made use of
human intervention and/or prior domain knowledge to define
these weights. The main problems for learning-based match-
ing algorithms include a relatively longer running time, and
the difficulty in getting enough and/or good-quality data.

In this paper, we present a new approach to match ontolo-
gies that combines both rule-based and learning-based algo-
rithms. Our contributions are in the following. (1) Our ap-
proach integrates an artificial neural network (ANN) tech-
nique in our algorithm, such that the weights mentioned
above can be learned instead of being specified in advance
by a human. (2) Moreover, our learning technique is carried
out based on the ontology schema information alone, which
distinguishes it from most other learning-based algorithms.

The rest of this paper is organized as follows. Section 2
introduces the related work in ontology matching. Section 3
gives an overview of our approach, and discusses the chal-
lenges in applying machine learning techniques without the



help from instance data information. Section 4 presents the
details of our algorithm. Section 5 reports the experiments
conducted and analyzes the results. Section 6 concludes with
future work.

2 Related Work
According to the classification in[Doan and Halevy, 2005],
most schema matching techniques can be divided into two
categories: rule-based and learning-based. The former con-
siders schema information only, and different algorithms dis-
tinguish from each other in their specific rules; while the
latter considers both schema information and instance data,
and various kinds of machine learning techniques have been
adopted.

2.1 Rule-Based Ontology Matching

PROMPT[Noy and Musen, 2000] provides a semi-automatic
approach to ontology merging. By performing some tasks
automatically and guiding the user in performing other tasks,
PROMPT helps in understanding and reusing ontologies.

[Dou et al., 2003] views ontology translation as ontology
merging and automated reasoning, which are in turn imple-
mented through a set of axioms. The authors regard the on-
tology merging as taking the union of the terms and the ax-
ioms defining them, then adding bridging axioms through the
terms in the merge.

Cupid [Madhavanet al., 2001] discovers mappings be-
tween schema elements based on their names, data types,
constraints, and schema structure. Cupid has a bias toward
leaf structure where much of the schema content resides. The
experimental results show a better performance than DIKE
and MOMIS.

[Giunchigliaet al., 2005] views match as an operator that
takes two graph-like structures and produces a mapping be-
tween the nodes. F. Giunchiglia et al. discover mappings by
computing semantic relations, determined by analyzing the
meaning which is codified in the elements and the structures.

The hypothesis in[Stephenset al., 2004] is that a mul-
tiplicity of ontology fragments can be related to each other
without the use of a global ontology. Any pair of ontologies
can be related indirectly through a semantic bridge consist-
ing of many other previously unrelated ontologies.[Huang
et al., 2005] extends this work to incorporate: extended use
of WordNet; use of the Java WordNet Library API for per-
forming run-time access to the dictionary; and reasoning rules
based on the domain-independent relationships and each on-
tology concept’s property list to infer new relationships.

2.2 Learning-Based Ontology Matching

GLUE [Doanet al., 2003] employs machine learning tech-
niques to find semantic mappings between ontologies. Af-
ter obtaining the results from a Content Learner and a Name
Learner, a Metalearner is used to combine the predictions
from both learners. Then common knowledge and domain
constraints are incorporated through a Relaxation Labeler,
and the mappings are finally calculated. In addition, the au-
thors extend GLUE to find complex mappings.

[Williams, 2004] introduces a methodology and algorithm
for multiagent knowledge sharing and learning in a peer-to-
peer setting. DOGGIE enables multiagent systems to assist
groups of people in locating, translating, and sharing knowl-
edge. After locating similar concepts, agents can continue to
translate concepts and then are able to share meanings.

[Soh, 2002] describes a framework for distributed ontology
learning embedded in a multiagent environment. The objec-
tive is to improve communication and understanding among
the agents while agent autonomy is still preserved. Agents
are able to evolve independently their own ontological knowl-
edge, and maintain translation tables through learning to help
sustain the collaborative effort.

[Wiesman and Roos, 2004] presents an ontology match-
ing approach based on probability theory by exchanging in-
stances of concepts. During each step of the matching pro-
cess, the likelihood that a decision is correct is taken into ac-
count. No domain knowledge is required, and the ontology
structure plays no role.

[Madhavanet al., 2005] shows how a corpus of schemas
and mappings can be used to augment the evidence about
the schemas being matched. Such a corpus typically contains
multiple schemas that model similar concepts and their prop-
erties. They first increase the evidence about each element
being matched by including evidence from similar elements
in the corpus. Then they learn statistics about elements and
their relationships to infer constraints.

2.3 Other Ontology Matching Algorithms
COMA [Do and Rahm, 2002] is a platform to combine multi-
ple matchers in a flexible way. It provides a large spectrum of
individual matchers and several mechanisms to combine the
results of matcher executions.

Based on two distinguishing characteristics observed on
the “deep Web”, a statistical schema matching is presented
in [He and Chang, 2003]. All input schemas are matched by
finding an underlying generative schema model. In addition,
the authors specialize their general framework to develop Al-
gorithm MGSsd.

[Gruninger and Kopena, 2005] describes how model-
theoretic invariants of an ontology can be used to specify se-
mantic mappings translation definitions between application
ontologies and an interlingua. The sets of models for the core
theories of PSL are partitioned into equivalence classes, each
of which is axiomatized using a definitional extension of PSL.

3 Overview of Our Approach
In our opinion, the semantics of an ontology concept is de-
termined by three aspects: (1) the name of the concept; (2)
the properties of the concept; and (3) the relationships of
the concept. These three features together specify a concep-
tual model for each concept from the viewpoint of an ontol-
ogy designer. For example, in theUniversity ontology
from mondeca.com1, a concept has “Faculty” as its name,
three properties (“emailAddress”, “homePhone”, and “work-
Phone”), and four relationships (subClassOfconcept “Em-

1http://www.mondeca.com/owl/moses/univ.owl



ployee”,superClassOfconcepts “Lecturer”, “PostDoc”, and
“Professor”).

3.1 Problems with Existing Matching Algorithms
The rule-based matching algorithms usually have the advan-
tage of relatively fast running speed, but share the disad-
vantage of ignoring the additional information from instance
data. In addition, there is a more serious concern for this
type of algorithms. In order to obtain a helpful matching re-
sult from (semi)automated tools, more than one of the three
semantic aspects mentioned above should be considered. If
only one aspect is taken into account then a meaningful
matching result is unlikely to be acquired. Once two or more
aspects are considered, it is unavoidable to determine the cor-
responding weights for different aspects, reflecting their dif-
ferent importances (or contributions) in ontology matching.
To the best of our knowledge, most existing rule-based algo-
rithms make use of human heuristics and/or domain knowl-
edge to predefine these weights. Moreover, once weights are
determined, they are unlikely to be updated, or at most by
trial-and-error.

While taking advantages of extra clues contained in in-
stance data, the learning-based matching algorithms are likely
to be slower. In addition, the difficulty in getting enough
good-quality data is also a potential problem. On the other
hand, it is very challenging for machines to learn to reconcile
ontology structures by only providing with schema informa-
tion. The most critical challenge is that, because ontologies
reflect their designers’ conceptual views of part of the world,
they exhibit a great deal of diversities. Identical terms can
be used to describe different concepts, or vice versa, different
terms can be assigned to the same concept. A more compli-
cated situation is, even if the same set of terms are adopted,
which is almost impossible in the real life, different designers
can still create different relationships for the same concept,
corresponding to their different conceptual views for this con-
cept. Compared with schemas, instance data usually have a
lot less varieties.

3.2 Our Solution
Based on the insight of the pros and cons of these two ap-
proaches, we present a new matching algorithm, Supercon-
cept Formation System (SFS), which combines rule-based
and learning-based solutions. We integrate machine learn-
ing techniques, such that the weights of a concept’s semantic
aspects can be learned from training examples, instead of be-
ing ad-hoc predefined ones. In addition, in order to avoid the
problem of lacking instance data (either quality or quantity),
which is common for real-world ontologies, our weight learn-
ing technique is carried out at the schema level, instead of the
instance level.

Our main idea is, given a pair of ontologies being matched,
although it is true that many design diversities might exist, it
is still reasonable to assume that the contributions of different
semantic aspects to ontology understanding should be inde-
pendent of specific concepts. In fact, different contributions,
which are the foundation for different weights, are character-
istics of ontologies viewed as a whole. That is, during on-
tology matching, weights are features with regard to ontolo-

gies, rather than individual concepts. Therefore, it is possible
to learn these weights forall concepts by training examples
from asubsetof concepts.

The following assumptions are made in this paper for two
ontologies being matched.

1. They are from the same or similar general domain, and
they have “Thing” as a built-in common root.

2. Each is correct or reasonable in itself.

Ontology matching consists of many mapping tasks, SFS
concentrates on finding pairs of equivalent concepts as the
first step. In addition, after the successful discovery of equiv-
alent concept pairs, it is not difficult to design an algorithm to
merge/align corresponding ontologies.

There are many different kinds of relationships in ontolo-
gies, e.g.,superClassOf, subClassOf, partOf, contains, etc.
In this paper, we consider only thesuper/subClassOfrela-
tionships, which are the most common ones in most real-
world ontologies. We plan to extend SFS to include other
relationships later.

4 Details of SFS
We build a 3-dimension vector for each concept, and each
dimension records one semantic aspect, i.e., concept name,
concept properties, and concept relationships. When we
match two concepts, we compare their contents in these three
dimensions, and acquire the corresponding similarity in each
dimension. Recall that our goal is to find the equivalent con-
cept pairs.

4.1 Similarity in Concept Names
The similaritys1 between a pair of concept names is a real
value in the range of[0, 1]. Some pre-processing on these
two strings is performed before the calculation ofs1. For ex-
ample, the removal of hyphens and underscores. Another ex-
ample is the transformation of a noun from its plural form to
a single form, which is accomplished automatically through
WordNet JWNL API[JWNL-1.3, 2006].

If two names have an exact string matching or are syn-
onyms of each other in WordNet thens1 has a value of 1.
Otherwise,s1 is calculated according to

s1 = 1− d

l
, (1)

whered stands for the edit distance between two strings, and
l for the length of the longer string.

4.2 Similarity in Concept Properties
Given two lists of concept properties (including those inher-
ited from ancestors),p1 andp2, their similarity s2 is a real
value in the range of[0, 1], ands2 is calculated according to

s2 =
n

m
, (2)

wheren is the number of pairs of properties matched, andm
is the smaller cardinality of listsp1 andp2.

In order for a pair of properties (one fromp1 and the other
from p2) to be matched, their data types should be the same



or compatible with each other (floatanddoublefor example),
and the property names should have a similarity value greater
than a threshold. Notice that here we use the same procedure
as in Section 4.1 to calculate the similarity between a pair
of property names. In addition, we adopt the idea of “stable
marriage” in determining the matched property pairs. That
is, once two properties are considered matched, it means that
they both find the best matched one from the other property
list. Imagine a similarity matrix built betweenp1 andp2, each
time we pick up a pair with the maximum value in the matrix,
say cell[i, j], and then discard rowi and columnj.

4.3 Similarity in Concept Relationships
As mentioned before, we take into account only thesu-
per/subClassOfrelationships. In order to obtain a better
matching result, we try to make use of as much information
as we can. For example, suppose there are two pairs of equiv-
alent concepts, and the numbers of concepts in-between are
different from each other, i.e., the ontology with more de-
tailed design tends to have more intermediate concepts. If the
direct parent alone is considered, the information from this
multilayered parent-child hierarchy will be ignored. There-
fore, we not only consider the direct parent of a concept, but
also all ancestors (concepts along the path from a concept
up to the root “Thing”) of this concept as well. Descendants
(direct and indirect children of a concept) are not taken into
account as that would lead to an infinite loop.

Given two lists of concept ancestors,a1 anda2, their sim-
ilarity s3 is a real value in the range of[0, 1], and is obtained
by first calculating the similarity values for pairwise con-
cepts (one froma1, the other froma2, considering all com-
binations), then assigning the maximum value tos3. Notice
that this is a recursive procedure but is guaranteed to termi-
nate, because (1) the number of concepts is finite; (2) we are
traversing ontologies bottom-up; and (3) “Thing” is a com-
mon root for the two ontologies being matched.

4.4 Concept Similarity Matrix
After s1, s2, ands3 between two concepts,C1 andC2, are
calculated, the similarity values betweenC1 andC2 is ob-
tained as the weighted sum ofs1, s2, ands3:

s =
3∑

i=1

(wisi), (3)

where
3∑

i=1

wi = 1. Notice thatwi are randomly initialized, and

will be adjusted through a learning process (see Sec. 4.5).
For two ontologies being matched,O1 andO2, we calcu-

late the similarity values for pairwise concepts (one fromO1,
the other fromO2, considering all combinations). Then we
build a n1 × n2 matrixM to record all values calculated,
whereni is the number of concepts inOi. The cell [i, j] in
M stores the similarity value between theith concept inO1

and thejth concept inO2.

4.5 Weight Learning through ANN
The main purpose of SFS is to try to learn the differ-
ent weights for three semantic aspects during the ontology

Figure 1: Neural Network Structure

matching process. We design our learning problem as fol-
lows.

• TaskT : match two ontologies (in particular, find equiv-
alent concept pairs)

• Performance measureP : PrecisionandRecallmeasure-
ments with regard to manual matching

• Training experienceE: a set of equivalent concept pairs
by manual matching

• Target functionV : a pair of concepts→<

• Target function representation:̂V (b) =
3∑

i=1

(wisi)

We choose ANN as our learning technique, based on the
following considerations.

• Instances are represented by attribute-value pairs

• The target function output is a real-valued one

• Fast evaluation of the learned target function is prefer-
able

Network Design
We adopt a two-layer 3× 1 network in SFS, as shown in Fig-
ure 1. The input into this network is a vector~s, which consists
of s1, s2, ands3, representing the similarity in name, proper-
ties, and ancestors, respectively, for a given pair of concepts.
The output from this network iss, the similarity value be-
tween these two concepts as given by Formula (3). Notice
that a linear function might not be powerful enough to reflect
the true relationships amongwi. However, the delta rule con-
verges toward a best-fit approximation to the target concept
even when the training examples are not linearly separable
[Mitchell, 1997]. If more relationships among ontology con-
cepts are to be considered then one or more layers of hidden
units might need to be added to express a rich variety of non-
linear decision surfaces.

Initially, we obtain a concept similarity matrixM for O1

andO2, with wi being initialized randomly. Then we ran-
domly pick up a set of concepts fromO1, and find the cor-
responding equivalent concepts by a manual matching with
O2. Each of such manually matched pairs will be processed



by SFS, and the similarity values in name, properties, and an-
cestors for these two concepts are calculated and used as a
training example to the network in Figure 1.

Hypothesis Space and Our Searching Strategy
We regard the hypothesis space in this learning problem as
a 3-dimensional space consisting ofw1, w2, andw3, that is,
a set of weight vectors~w. Remember that our objective is
to find the weights that best fit the training examples. We
adopt gradient descent (delta rule) as our training rule, and
our searching strategy within the hypothesis space is to find
the hypothesis, i.e., weight vector, that minimizes the train-
ing error with regard to all training examples. According to
[Mitchell, 1997], a standard definition of the training errorE
of a hypothesis is given by

E(~w) ≡ 1
2

∑
d∈D

(td − od)2, (4)

whereD is the set of training examples,td is the target output
for training exampled, andod is the output of the network for
d.

We customize the above formal definition according to the
characteristics of our learning problem as follows. For any
training exampled, instead of a given target valuetd, we
need some other values. The intuition is that a given pair
of manually matched concepts corresponds to a cell [i, j] in
M, therefore, the value of cell [i, j] should be the maximum
one in both rowi and columnj. Suppose the maximum value
for row i and columnj aretr andtc, respectively, then our
customized description ofE is

E(~w) ≡ 1
2

∑
d∈D

[(tr − od) + (tc − od)]2. (5)

Accordingly, the weight update rule for gradient descent in
SFS is

∆wi = η
∑
d∈D

[(tr − od) + (tc − od)]sid, (6)

whereη is the learning rate, andsid is thesi value for a spe-
cific training exampled.

5 Experiments
Our hypothesis is that the three weights for semantic aspects
learned from a subset of concepts are representative of all
concepts in the same ontology. In order to verify this, we
need to show by our experiments: (1) the learning process
itself is a correct one, i.e., three weights converge to certain
values; and (2) when we apply the learned weights to other
concepts, the matching result from our approach has a good
performance.

We adopt tworeal-world ontologies built by professionals:
akt 2 andiswc 3. The characteristics of these two ontologies
are summarized in Table 1.

2http://www.csd.abdn.ac.uk/∼cmckenzi/playpen/rdf/
akt ontologyLITE.owl

3http://annotation.semanticweb.org/iswc/iswc.owl

Features akt iswc

Max Depth of Ontology 8 4

Number of Concepts 83 33

Number of Properties 105 68

Number of Relationships 116 49

Number ofsuper/subClassOfRelationships 54 32

Percentage ofsuper/subClassOfRelationships 71% 65%

Table 1: Characteristics of Source Ontologies

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 15 20 30 50 70 100 200 500 1000 2000 3000 5000

va
lu

es
 fo

r w
ei

gh
ts

 a
nd

 tr
ai

ni
ng

 e
rr

or

number of iterations

w1
w2
w3

training error

Figure 2: Values for Weights and Training Error – Setting 1

Results and Analysis
We randomly setw1 = 0.22, w2 = 0.28, w3 = 0.5, learning
rateη is set to0.05, and we provide with 3 pairs of equivalent
concepts by human. Figure 2 shows the values of the training
error andwi after different iterations of the gradient descent
algorithm. After settingη to 0.2 and keeping all other param-
eters the same as before, the experiment result is shown in
Figure 3.

We then use the learned weights (w1 = 0.56,w2 = 0.16,w3

= 0.27) to match the remaining concepts. Out of 13 pairs of
equivalent concepts suggested by SFS, 11 are agreed by two
ontology experts; and there are 4 pairs not output by SFS but
suggested by experts.

From the evolution of weights in both Figure 2 and 3, it is
clear thatall three weights for semantic aspects converge.
At the same time, the training error also converges, along with
the change of these weights. Moreover, after the learning rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 15 20 30 50 70 100 200 500 1000 2000 3000 5000

va
lu

es
 fo

r w
ei

gh
ts

 a
nd

 tr
ai

ni
ng

 e
rr

or

number of iterations

w1
w2
w3

training error

Figure 3: Values for Weights and Training Error – Setting 2



changes from 0.05 to 0.2, the convergence speeds up. The
number of iterations needed drops dramatically from 500 in
the former to 70 in the latter.

By comparing the matching result from SFS with that from
ontology experts, we calculate bothPrecision(the percentage
of correct predictions over all predictions) andRecall (the
percentage of correct predictions over correct mappings) as
follows:

• Precision= 11
13 = 0.85

• Recall= 11
15 = 0.73

Notice that this is achieved with the help from human ef-
forts playing a very small portion—only 3 pairs of equivalent
concepts, which are 20% of 15 (the total number of equiva-
lent pairs agreed by human experts), are input into SFS. Also
notice that ANN usually requires a large number of training
examples, which is not the case in this paper. The possi-
ble reason could be the simple (but justified via experiments)
structure we choose for our learning problem.

6 Conclusion
Being a semantic foundation for Web applications, ontolo-
gies help in reconciling different views of independently de-
veloped and exposed data sources. However, due to their in-
herent heterogeneity, ontologies need to be matched before
they are able to be made better use of. We present SFS, a
new matching algorithm aiming at overcoming some disad-
vantages of both rule-based and learning-based approaches.
Our contributions are: (1) we exploit an approach to learn the
weights for different semantic aspects of ontologies, through
applying an artificial neural network technique during the on-
tology matching; and (2) we challenge the difficult problem
of carrying out machine learning techniques without the help
from instance data. We explain and analyze our algorithm in
details, and a set of experiments verify the promising result
of SFS.

Our focus has been on locating the equivalent concept pairs
between two ontologies, leaving the other mapping tasks as
future work, such as the discovery of parent-child concept
pairs, the finding of sibling concept pairs, and so on. Another
potential direction for the future work is to consider other re-
lationships besides just thesuper/subClassOfrelationships.
In that case, multilayer networks might be more appropriate,
owing to their representational power.

References
[Cyc, 2006] Cyc. http://www.cyc.com, June 2006.

[Do and Rahm, 2002] H. Do and E. Rahm. Coma c a system
for flexible combination of schema matching approaches.
In Proceedings of the Twenty-eighth VLDB Conference,
Hong Kong, China, 2002.

[Doan and Halevy, 2005] A. Doan and A. Y. Halevy. Seman-
tic integration research in the database community: A brief
survey.AI Magazine, 26(1):83–94, 2005.

[Doanet al., 2003] A. Doan, J. Madhavan, R. Dhamankar,
P. Domingos, and A. Halevy. Learning to match ontologies

on the semantic web.The VLDB Journal, 12(4):303–319,
2003.

[Douet al., 2003] D. Dou, D. McDermott, and P. Qi. Ontol-
ogy translation on the semantic web. InProceedings of the
International Conference on Ontologies, Databases, and
Applications of Semantics, Berlin, 2003. Lecture Notes in
Computer Science, Springer-Verlag.

[Giunchigliaet al., 2005] F. Giunchiglia, P. Shvaiko, and
M. Yatskevich. Semantic schema matching. InProceed-
ings of the Thirteenth International Conference on Co-
operative Information Systems (CoopIS 05), Agia Napa,
Cyprus, November 2005.

[Gruninger and Kopena, 2005] M. Gruninger and J. B.
Kopena. Semantic integration through invariants.AI Mag-
azine, 26(1):11–20, 2005.

[He and Chang, 2003] B. He and K. C. Chang. Statistical
schema matching across web query interfaces. InProceed-
ings of SIGMOD 03, San Diego, CA, June 2003.

[Huanget al., 2005] J. Huang, R. Zavala, B. Mendoza, and
M. N. Huhns. Reconciling agent ontologies for web ser-
vice applications. InProceedings of Multiagent System
Technologies: Third German Conference (MATES 05),
Berlin, September 2005. Springer Verlag.

[JWNL-1.3, 2006] Java WordNet Library JWNL-1.3.
http://sourceforge.net/projects/jwordnet, June 2006.

[Madhavanet al., 2001] J. Madhavan, P. A. Bernstein, and
E. Rahm. Generic schema matching with cupid. InPro-
ceedings of the Twenty-seventh VLDB Conference, 2001.

[Madhavanet al., 2005] J. Madhavan, P. A. Bernstein,
A. Doan, and A. Halevy. Corpus-based schema matching.
In Proceedings of the Twenty-first International Confer-
ence on Data Engineering (ICDE 05), Tokyo, Japan, April
2005.

[Mitchell, 1997] T. M. Mitchell. Machine Learning. The
McGraw-Hill Companies, Inc., 1997.

[Noy and Musen, 2000] N. F. Noy and M. A. Musen.
Prompt: Algorithm and tool for automated ontology merg-
ing and alignment. InProceedings of the 17th National
Conference on Artificial Intelligence (AAAI 00), Menlo
Park, CA, USA, 2000. AAAI Press.

[Soh, 2002] L.-K. Soh. Multiagent distributed ontology
learning. InWorking Notes of the second AAMAS OAS
Workshop, Bologna, Italy, July 2002.

[Stephenset al., 2004] L. Stephens, A. Gangam, and M. N.
Huhns. Constructing consensus ontologies for the seman-
tic web: A conceptual approach.World Wide Web Journal,
7(4):421–442, 2004.

[Wiesman and Roos, 2004] F. Wiesman and N. Roos. Do-
main independent learning of ontology mappings. InPro-
ceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 04),
New York, NY, July 2004.

[Williams, 2004] A. B. Williams. Learning to share meaning
in a multi-agent system.Autonomous Agents and Multi-
Agent Systems, 8(2):165–193, 2004.


