
ABSTRACT The explosive expansion of the communications in-
frastructure, both within and among computing organizations,
poses new challenges to the design of distributed information
systems. Software systems are required that are open, that can be
scaled to extremely large sizes, and that can be constructed and
used effectively. The huge amount of information being made
available through network technology is still incomprehensible
and inconsistent. Previous attempts to address this problem of in-
formation management led to local solutions that were not main-
tainable or scalable, and were limited to retrieving, and not
updating, data. We propose a mediator-based approach that sup-
ports interoperation of information resources, applications, and
interfaces. Unlike previous approaches, mediator-based or other-
wise, our solution embodies techniques that specially enable it to
exploit modularity, abstraction, and adaptation. This solution en-
ables open, large-scale information management, and emphasiz-
es updates as well as retrievals.

1. Introduction

The extensive development of the communications infrastructure
across the world poses special challenges to the design and im-
plementation of software systems. Networking allows reliable ac-
cess to widely distributed and disparate computing resources,
both within large enterprises and globally. However, proper us-
age of this infrastructure presupposes that the different compo-
nents that interact over it—user interfaces, applications, and
information resources—are at least able to comprehend each oth-
er. Successful interoperation in large information spaces requires
the participating components to be (a) locally autonomous, and
(b) aware of remote components and the semantic constraints
they embody and enforce. Each of these requirements is crucial
in an open environment, to which service consumers and service
providers are continually being added and removed. “Open” not
only means that services can easily be added to a network, but
also that they need not be captive to one enterprise. This under-
lines the need for local autonomy, which however is also impor-
tant for technical reasons within an enterprise—if a system
preserves local autonomy, then the various components need not
be redesigned when they are integrated. Also, in an open system
finding, accessing, and updating information entails integration
into a semantic space that spans wide-area networks, so that the
requirements imposed by restrictions such as integrity constraints
and resource preferences can be met.

Our main contribution in this paper is an approach to make di-
verse components interoperate without disabling existing appli-
cations—a feature that ensures runtime scalability. A related
problem is how the semantic links between different components
can be “acquired.” To be scalable, an approach must not require

human effort to encode all possible relationships in advance. Our
previous research has developed a solution to this problem [Hu-
hns et al. 93] and we will not focus on it here.

Much research activity has recently been geared toward achiev-
ing interoperation within large information spaces. Our work is
similar in spirit to some of that performed under the ARPA I3 ini-
tiative, whose philosophy is described in [Wiederhold 92]. In a
broad sense, our goals are also similar to those of the Open Dis-
tributed Processing (ODP) community [de Meer et al. 94]. How-
ever, our research focuses more on the semantics of information,
than most ODP research. Further, we believe that our system is
far more advanced than of most other related approaches. Where-
as some of our software modules are prototypes others have been
successfully deployed at customer sites. We address three major
problems that extant approaches do not fully handle:

1. Updates. Updates are qualitatively more complex than re-
trieval. You can never violate a semantic constraint by just
reading data (though an attempt to do so may violate some
security or other policy constraint). Updates can, however,
cause integrity constraints to be violated. Consequently,
they call for a much more elaborate framework. Even in
traditional homogeneous databases, updating views can be
tricky; in heterogeneous systems, this problem is greatly
exacerbated. However, most related research addresses in-
formation retrieval only (e.g., [Arens et al. 93]).

2. Scalability. How does one add a new component (e.g., a
database, user interface, or application) to a large informa-
tion space and have it interoperate effectively? This is the
scalability problem, and there are multiple facets to it:

a. Modularity. We attain modularity via a novel combi-
nation of distribution and mediation.

b. Abstraction. We define a hierarchical structuring of
mediators, where mediators at higher levels in the
structure maintain abstract views of lower-level com-
ponents of the information space.

c. Incremental expansion. We enable the coexistence
of new applications with old ones, thereby facilitating
a graceful introduction of technology.

3. Heterogeneity of data and transaction models. True in-
teroperation requires resources designed with different
data and transaction models to be coherently integrated. In-
stead of proposing yet another such model [Elmagarmid
92], we have built the functionality by which several of
them can be uniformly integrated. Different transaction
models are usually closed in that they cannot be extended
with the features of other models. Our approach does not

A Mediated Approach to Open, Large-Scale Information Management

Michael N. Huhns and Munindar P. Singh

Microelectronics and Computer Technology Corporation

3500 West Balcones Center Drive, Austin, TX 78759-5398, U.S.A.

{huhns,msingh}@mcc.com

(512) 338-{3651,3431}



commit to any single such model, but can express any of
them succinctly and combine them in any way desired.
These aspects of our approach are described in [Attie et al.
93; Huhns et al. 93], so we do not discuss them here.

To ground our discussions of scalability and updates, imagine the
following scenario: a large brokerage house has 1000 brokers
selling securities. The brokers each have a workstation or PC
where they have created personal databases to record information
about their clients. They store additional data in spreadsheets that
they create locally. It is reasonable to assume that the computers
are interconnected, but it is likely that the semantics and syntax
of each database and each spreadsheet are different. The database
systems might, for example, be Paradox, Oracle, and DB2. The
tables might refer to “customers,” instead of “clients.” The data
might be stored “last-name-first” or “last-name-last.” In such a
diverse environment, how can

• a manager obtain information about the overall progress of
the salesforce?

• the manager download new incentive tables for the brokers,
when they each might represent the tables differently?

• a broker coordinate with another broker to avoid interfer-
ence? It would be embarrassing if two brokers simulta-
neously gave conflicting recommendations.

• the manager remove from the databases all accounts that
have been inactive for more than six months. This requires
processing temporal interresource constraints.

We base our approach on mediators—for knowledge bases, ap-
plications, interfaces, and databases [Wiederhold 92]. We present
a way of structuring mediators individually and collectively so
that the three desiderata given above can be met. Of all the differ-
ent functions that mediators can perform, we focus on workflow
management as an interesting and important one well-suited to
our approach. Section 2 discusses this problem and our overall
approach. Section 3 presents our mediator architecture in some
detail. Section 4 gives an example session of applying our ap-
proach to integrate resources within and among enterprises. Last-
ly, section 5 discusses applications in transaction processing in
heterogeneous environments.

2. Technical Approach

2.1. The Problem: Workflow Management

The problem of information management can be cast in terms of
the general problem of managing work—in government and cor-
porate offices, design labs, factories, and so on. No one accesses
information without a purpose and the purpose is best understood
in the context of the overall enterprise activities. Therefore, in-
stead of discussing information resource integration in the ab-
stract, we approach it with a view to enabling business process
integration. Business processes are the myriad activities that oc-
cur in typical enterprises. Frequently, these are informal and are
not fully understood. Indeed, in certain cases their existence may
not be known. This work focuses on the technical aspects of
specifying and executing complex activities, and presupposes
that the relevant business processes have been discovered, under-
stood, documented, and formalized.

Workflows are the structured activities, in or abutting informa-
tion systems, that enact business processes. Briefly, workflows
consist of tasks, appropriately structured, where a task is some

useful computation. Thus, tasks can be information retrieval que-
ries, database transactions, or other computations, e.g., those that
generate visualizations. These activities frequently involve sever-
al database systems, user interfaces, and application programs.
Traditional database systems do not support workflows to any
reasonable extent. Usually, human beings must intervene to en-
sure the proper execution of workflows.

The activities that comprise a workflow of interest are typically
already being carried out in the given organization. However,
they are usually carried out by hand, with people intervening at
crucial stages to ensure that the necessary tasks are done and that
organization-wide consistency constraints are enforced. The se-
mantics is supplied by the people or is implicitly encoded in dif-
ferent business procedures. For instance, when an order is
received, it is first entered, and then numerous decisions are
made about it. These decisions typically involve accessing sever-
al information resources within an enterprise and possibly some
outside of it. For example, a request to buy stock against a money
account requires that the authorization be verified, the account
numbers be validated, and the source account be tested to have
the required balance. External sources of information would be
accessed for other requests, such as loan applications, where a
credit bureau’s databases might be consulted to determine the
credit worthiness of an applicant.

Integrating existing systems is much harder than designing them
afresh. Many systems, especially those based on mainframe ar-
chitectures, allow data to be accessed only through arcane inter-
faces. The systems and their interfaces cannot be easily modified,
and our work assumes they cannot. This is for two main reasons:
(1) the complexity of the programming effort that would be re-
quired to achieve any modifications, and (2) the constraint that
older applications continue to run as before, since they typically
have a wide user base. Thus, the integration must permit newly
developed applications to coexist with previous applications.
This proves to be a major requirement.

2.2. General Approach

Most importantly, our approach supports a new methodology for
information systems design. Currently, information systems are
constructed monolithically with a tight coupling among the inter-
face, the application program, and the database (see Figure 1). In
many cases, the three components are inseparable. This coupling
makes the systems difficult to maintain, cumbersome to enhance,
and expensive to reengineer as new technology becomes avail-
able. For example, it cannot benefit from advances in network-
ing. Collectively, these problems contribute to the formation of
what are pejoratively called “legacy systems.”

We loosen this coupling by introducing mediators between the
three components (see Figure 2. Some of the mediators function
as “wrappers,” i.e., protocol converters. But, in general, they can
(1) update, create, and delete information, not just query it, and
(2) learn models of their own component and of other mediators.
This yields modular systems that can more readily be maintained,
enhanced, or reengineered.

3. Mediator Architecture

In our approach, mediators translate semantics among different
ontology domains, manage workflows, and enforce integrity and
security constraints. Traditionally, mediators perform the func-



tions of semantic translation and security constraint enforcement.
However, we see mediators as providing higher-level abstrac-
tions, and key among which are the semantic notions of work-
flows. Consequently, our mediators must also enforce integrity
constraints, when the executed workflows may modify the data
that might lead to an integrity violation.

As discussed above, the properties of modularity, abstraction, ad-
aptation, and incremental expansion are highly desirable. Our

Interface

Application Program

Database System

Figure 1: Model (simplified for illustrative purposes)

of most current information systems.

procedurally
coded

procedurally
coded

of the tight coupling among the three major components

Mediator
for

Interface

Mediator
for

Application

Mediator
for

Database

Database

ApplicationInterface

Figure 2: Information system components decoupled

Amorphous Communication Substrate

Existing or new system component

Advanced network technology

Our contributions

Mediator
for

Info Provider

Information
Provider

by the use of mediating agents.

challenge, then, is to design a mediator architecture that

• is scalable,

• is extensible,

• is easy to implement and maintain,

• is reusable,

• does not violate the autonomy of integrated systems, and

• does not impose an unbearable performance penalty.

These might appear to be conflicting requirements. However, we
motivate and present a design that meets the above criteria. We
first discuss the structuring of each mediator and then the struc-
turing of collections of them. The latter is particularly important
in an open, extensible environment.

3.1. Layering of Functionality

Each mediator has a layered architecture, as shown in Figure 3.

Not all layers may be present in each mediator. The lower layers
handle the syntactic aspects of mediation and are closest to the
communications infrastructure; the upper layers handle the se-
mantic and adaptation-oriented aspects. Consequently, the lower
layers are easily reused; the upper layers require human interven-
tion, hopefully limited, in their construction. For reasons of reus-
ability and testing, we implement the different layers of a
mediator as different entities—actors in Carnot’s Extensible Ser-
vices Switch. However, an entire set of such instantiated actors is
one mediator because conceptually it performs as a logical unit—
a mediator of a single resource.

The structuring aspects of our approach that we describe here ap-
ply to each layer of the mediators. Here we concentrate on the in-
terresource aspects, which is the most interesting semantically.

3.2. Locality in Mediators

We hierarchically structure collections of mediators. The lowest
level of mediators are associated with individual resources and
applications. Semantics relating them to the rest of the informa-
tion space are maintained by local domain experts. Higher level
mediators manage interresource constraints among lower sys-
tems, and common ontologies to attach a semantics to those con-
straints. Local domain experts can construct these ontologies
incrementally, using other parts of Carnot, thereby making those
ontologies extensible. This approach is scalable, because it is
based on the local construction and maintenance of mediators.

Figure 3: The Layered Architecture of a Generic Mediator

Network Facilities: Actor treespace, Kerberos, etc.

Protocols: RDA SQL, KQML

Semantic Translation: articulation axioms, value maps

Workflow and interresource integrity constraints

Security enforcement

Distributed truth maintenance

Cooperation and negotiation mechanism

Learning mechanism



tages of distributed computing. Indeed, as we describe below,
control hierarchies for mediators lead to additional complications
that cannot be resolved without violating the autonomy of exist-
ing applications. We resolve this dilemma through a distributed
architecture in which mediators can deal with other mediators on
an even footing. Additionally, we also attach a hierarchical struc-
ture to these mediators, based not on control, but on scope.

The task of creating the initial local mediators can be carried out
by different resource coordinators almost independently. Typi-
cally, however, there are additional resource constraints that per-
tain to multiple resources. Such constraints may be known from
the beginning or may emerge later through experience. Rather
than attempt to capture these constraints directly in one or some
of the local mediators, we define another mediator whose scope
includes the relevant resources. The scopes of the different medi-
ators thus nest in a natural manner.

The new, high-level mediator can be seen as a descriptive con-
struct, i.e., as a virtual mediator. Service requests from without
can be directed to this virtual mediator as if it mediated for a
monolithic resource with complex properties and constraints.
This reflects the nature of business deals in general. Enterprises
as a whole provide services and enter into contractual agree-
ments. Their internal structure, though important, is irrelevant or
hidden from without.

A control hierarchy creates higher-level mediators that control
predefined lower-level ones. They determine the requests to be
made to different lower-level mediators to maintain high-level
constraints. Direct access to the predefined lower-level mediators
must be disabled; otherwise, high-level constraints can be easily
violated (see Figure4). This debilitating limitation is not usually
noted, since most approaches are restricted to information re-

Our approach is bottom-up and resource-driven. It respects the
organization of resources present in any enterprise: for example,
individual databases, although usable by themselves, are often
linked to other databases within a corporate division, to resources
within an entire corporation, and increasingly nowadays to infor-
mation resources in other corporations. The bottom-up approach
assures not only that the system can be systematically construct-
ed and tested, but also that constraints at a lower-level are never
violated in favor of higher-level constraints. When higher-level
constraints, such as those pertaining to intercorporate exchange
of data, conflict with lower-level constraints, then the latter take
precedence by default: however, such conflicts can and should be
resolved through negotiation.

For each resource, we postulate a mediator that captures the con-
straints local to that resource. The schema of a database, its integ-
rity constraints, and its transaction suite are in this category, as
are security and access policies. In general, a mediator should be
loyal to its own enterprise and not provide services to external
entities that they are not authorized to access.

3.3. Scope Hierarchies

The requirements on mediators motivated above may appear to
conflict. On the one hand, distribution is clearly crucial for scal-
ability, extensibility, and to preserve local autonomy. On the oth-
er hand, the need to avoid significant performance or
maintenance costs is suggestive of a hierarchical organization in
which unnecessary interactions are avoided at runtime, and
changes in the structure of a local system can be propagated as
needed to other mediators. Control hierarchies are antithetical to
distributed computing. They create bottlenecks and hot spots for
performance, and make systems susceptible to the failure of the
controlling node. These limitations subvert one of the key advan-

Corporate Mediator

Intercorporate Mediator

Mediator
for

Database

Tax Data

Figure 4: Control hierarchy

Mediator
for

Database

Customer

Mediator
for

Database

Securities

Brokerage Databases IRS Database

All Accesses

Accesses
Disallowed

Accesses
Disallowed

Accesses
Disallowed

Accounts



trieval. As stated above, retrieval cannot cause semantic con-
straints to be violated. Hence, all read accesses can be safely
permitted. In general, however, all requests must be funneled
through the higher-level mediators.

By contrast, a scope hierarchy creates higher-level mediators that
add constraints to the lower-level ones. All requests (physically)
go to the lower-level mediators, which handle their old con-
straints as well as the new constraints. In this way the new high-
er-level mediator is distributed over the predefined lower-level
mediators. Old applications can thus continue to issue requests
directly to the lower-level mediators. Of course, if the requests is-
sued by old applications violate new constraints, then such viola-
tions would be detected as easily as for new applications. Old
applications would need to be disabled in such cases, as indeed
they should be.

Hence, our architecture achieves the goals of scalability, extensi-
bility, and local autonomy through distribution, in a manner in
which no inessential constraints are imposed. Only the necessary
interactions among mediators are required, and existing applica-
tions are affected just if they conflict with new constraints. More-
over, the mediators can be locally maintained and their different
layers independently reengineered. Consequently, mediators can
adapt through learning without wreaking havoc on the system as
a whole.

4. An Example Session

We now describe an example session of integration using our ap-
proach. Schematic and other semantic mismatches that may oc-
cur among the various databases must be resolved at the time of
integration. Details of this are described elsewhere [Huhns et al.
93]. Here we describe the logical integration of databases at runt-
ime, so that the proper integrity constraints are maintained, given
that the mismatches have been taken care of already.

4.1. Intracorporate Integration.

Assume that the customer account and the securities databases
are already in use. The former gives the number of units of each

security owned by each account; the latter gives the total number
of units of each security managed by the entire brokerage firm.
The accounts database is accessed by different brokers; the secu-
rities database is accessed by a VP to determine how much of the
firm’s business is dependent on different securities and to adjust
the risk for the mutual funds managed by the firm.

These databases are to be integrated to enforce the obvious se-
mantic constraint between them. First, the administrators for the
two databases must integrate their local schemas with a common
ontology, which must be created if not already present. Then, the
administrators are ready to capture the interresource integrity
constraint. They begin by stating that constraint in terms of the
common ontology and adding it to a new corporate mediator.

They then fold the constraint back into the local schemas of the
two databases. The administrators also capture the temporal as-
pects of the constraint, namely, the frequency at which it must be
validated. If it were required to be exactly maintained at all times,
no feasible solution would exist in a heterogeneous environment.
Fortunately, that is typically not the case. The administrators de-
cide that whenever an update is performed on the accounts data-
base, the mediator for the accounts database would send a
corresponding transaction to the securities database. This update
would eventually be executed. Thus, all existing applications
continue to execute unchanged.

4.2. Intercorporate Integration.

Later, it is decided at the corporate level that certain information
from the accounts and securities databases will be released to the
Securities Exchange Commission. The SEC system administra-
tors integrate their database with the common ontology, enhanc-
ing the common ontology as necessary. The additional constraint
is added to a newly constructed intercorporate mediator. The
constraint is folded back into the schema of the corporate media-
tors and then on to the local schemas of the involved databases.
The necessary workflow constraints are set up as before. Conse-
quently, all applications continue to be usable. Periodically, up-
dates are sent from the brokerage database to the SEC database to

Accesses

Corporate

Intercorporate

Mediator
for

Database

Tax Data

Figure 5: Scope hierarchy

Mediator
for

Database

Customer

Mediator
for

Database

Securities

Brokerage Databases IRS Database

Accounts

Mediator

Mediator

updateupdate



maintain consistency of the two databases. No new bottlenecks
are introduced into the brokerage’s information system.

In this example, after the interresource constraint was acquired, it
was folded automatically into the applicable local schemas.
However, the actual cross-system updates to be performed and
when to perform them also need to be determined. These are a
kind of flow constraint determined by reasoning about available
actions and information flow in an integrated system. Such rea-
soning can be extremely complex. Our aim has been to design a
tool that can assist humans in this activity, but not replace them.
As different kinds of reasoning appear more and more useful, we
augment the reasoning component of our tool so that it can be of
increasing assistance.

5. Relaxed Transaction Processing

Transaction processing provides a related, but more complex, ap-
plication for our approach. Classical transaction processing in da-
tabases deals with executing access and update tasks on a single
database. Such tasks are traditionally assumed to have the so-
called ACID properties:

• atomicity—each task happens either fully or not at all;

• consistency—each task takes the database from a consis-
tent state to a consistent state;

• isolation—the intermediate results of a task are not visible
to another task; and

• durability—the changes caused by a task are persistent.

These assumptions help simplify transaction management con-
siderably [Gray & Reuter 93]. However, they are overly restric-
tive in loosely-coupled heterogeneous environments. For
example, one of the ways in which ACID tasks may be coordi-
nated is through mutual commit protocols, which ensure that ei-
ther all of a given set of tasks commit or none do. Such protocols,
e.g., the two-phase commit protocol, are notoriously inefficient
when executed over networks. Further, to execute such a proto-
col, one requires access to the internal states of a transaction,
such as the precommit states (when it is internally ready to com-
mit, but is awaiting permission from the transaction manager to
do so). Most commercial database systems do not provide access
to such internal states, thereby making direct implementations of
commit protocols difficult.

The ACID properties are naturally realized when the correctness
of database transactions is characterized through some purely
syntactic or structural criterion, such as serializability [Bernstein
et al. 87]. However, serializability cannot be efficiently imple-
mented in distributed systems whose component systems are au-
tonomous. Following [Garcia-Molina & Salem 87], we
characterize correctness criteria semantically, rather than syntac-
tically. This simplifies coordination requirements, though at the
cost of a deeper domain model. Thus, we can replace mutual
commit by optimistic commit protocols. If need be, we undo the
effects of incorrectly committed tasks by compensating them in a
domain-dependent manner.

Figure 6 shows an example graph with tasks for updating broker-
age accounts, updating the securities database, compensating for
this update, and updating an alarm if some application-specific
condition is met. Each task is modeled as a finite-state automaton
whose nodes are events significant to the execution of the task.
For example, the start of the accounts updates triggers the securi-
ties update. The conjunctive constraint (&) indicates starting the
compensating transaction if the accounts update fails and the se-
curities update succeeds.

Typically, to maintain the above constraints, a script would be re-
quired that starts the appropriate subtransactions to execute. This
script might unnecessarily constrain executions. In any case, it
would be difficult to modify. In our approach, the application,
e.g., a user interface, that generates the accounts request does not
need to be aware of the securities database or of the constraint. It
generates the request as always. However, a higher-level media-
tor whose scope includes both databases introduces a constraint
that at runtime triggers the securities subtransaction. Other con-
straints related to the commit or abort of the various subtransac-
tions execute similarly. Thus the global semantics are enforced
without affecting preexisting applications.

6. Conclusions

The concept of mediators is applied recursively within Carnot to
provide applications with access to a variety of heterogeneous
data and knowledge resources. Carnot has developed mediators
for several kinds and varieties of database systems, including re-
lational database systems, such as Oracle, Ingres, and Sybase, ob-
ject-oriented database systems, such as Objectivity and Itasca,

<

=>

=>

=>

=>

&
=>

accountsUpdate securitiesUpdate

securitiesUpdateCompensate

update?alarm

Figure 6: Task Dependency Example



and text retrieval systems, such as Topic. These mediators prima-
rily handle protocol mediation, translate database schema seman-
tics, and manage low-level concurrency [Woelk et al. 92]. Here
we discussed how more sophisticated mediators that handle
workflows are naturally incorporated in the same framework.

The ESS is constructed in Rosette, a high-performance imple-
mentation of an interpreter for the Actor model [Hewitt et al. 73]
enhanced with object-oriented mechanisms. This interpreter has
been developed over five years of research on parallel algorithms
and control of distributed applications. Actors can be understood
as concurrent and asynchronous units of computation [Agha 86].
Rosette is enhanced with remote evaluation, tree spaces, and vir-
tual synchrony. We use cooperating groups of actors to imple-
ment application-driven mediated access to resources.

Scope hierarchies can be naturally implemented using ESS’s
treespaces [Tomlinson et al. 93a], which are a general-purpose
mechanism for relaying messages anywhere on a network.
Treespaces support symbolic addressing, and allow messages to
be retrieved both by their content and by the recipient’s name.
The treespace facility pertains to the lower layers of the Carnot
architecture. It is used for message addressing by the various da-
tabase and expert system mediators we have already implement-
ed. Thus, it provides just the right set of abstractions to
implement scope hierarchies of mediators.

We presented a mediator architecture in which the individual me-
diators are layered by functionality and organized in a manner
that yields the benefits of hierarchies without losing the benefits
of distribution. Our approach yields local autonomy, easy main-
tainability, efficiency, and scalability. The architecture is embed-
ded in an interpretive, dynamic development and execution
environment, and provides capabilities ranging from protocol
conversion to intelligent cooperation and learning. It enables the
simple incorporation of new components into large information
spaces. Our approach is also unique in that we develop mediation
techniques for transaction processing on information resources,
not just querying.

References

[Agha 86] Gul Agha, Actors, The MIT Press, Cambridge, MA,
1986.

[Ahlsen & Johannesson 90] Matts Ahlsen and Paul Johannesson.
“Contracts in Database Federations,” in S. M. Deen, ed., Coop-
erating Knowledge Based Systems 1990, Springer-Verlag,
London, 1991, pp. 293–310.

[Ansari et al. 92] Mansoor Ansari, Marek Rusinkiewicz, Linda
Ness, and Amit Sheth, “Executing Multidatabase Transac-
tions,” Proceedings 25th Hawaii International Conference on
Systems Sciences, January 1992.

[Arens et al. 93] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and
Craig A. Knoblock, “Retrieving and Integrating Data from
Multiple Information Sources,” International Journal on Intel-
ligent and Cooperative Information Systems, Vol. 2, No. 2,
1993, pp. 127–158.

[Attie et al. 93] Paul C. Attie, Munindar P. Singh, Amit P. Sheth,
and Marek Rusinkiewicz, ̀ `Specifying and Enforcing Intertask
Dependencies,’’ Proceedings of the 19th VLDB Conference,
1993.

[Bernstein et al. 87] Philip A. Bernstein, Vassos Hadzilacos, and
Nathan Goodman, Concurrency Control and Recovery in Da-
tabase Systems, Addison Wesley Publishing Co., 1987.

[Bukhres et al. 93] Omran A. Bukhres, Jiansan Chen, Weimin Du,
Ahmed K. Elmagarmid, and Robert Pezzoli, ``InterBase: An
Execution Environment for Heterogeneous Software Sys-
tems,’’ IEEE Computer, Vol. 26, No. 8, Aug. 1993, pp. 57–69.

[Buneman et al. 90] O.P. Buneman, S. B. Davidson, and A. Wat-
ters, “Querying Independent Databases,” Information Scienc-
es, Vol. 52, December 1990, pp. 1–34.

[Cannata 91] Philip E. Cannata, “The Irresistible Move towards
Interoperable Database Systems,” First International Work-
shop on Interoperability in Multidatabase Systems, Kyoto, Ja-
pan, April 7–9, 1991.

[de Meer et al. 94] J. de Meer, B. Mahr, and S. Storp, eds., Open
Distributed Processing II”, IFIP Transactions, C-20, North-
Holland, 1994.

[Elmagarmid 92] Ahmed K. Elmagarmid, ed., Database Transac-
tion Models for Advanced Applications, Morgan Kaufman, San
Mateo, CA, 1992.

[Finin et al. 92] Tim Finin, Don McKay, and Rich Fritzson, “An
Overview of KQML: A Knowledge Query and Manipulation
Language,” University of Maryland Computer Science Tech-
nical Report, March 1992.

[Garcia-Molina & Salem 87] Hector Garcia-Molina and K. Sa-
lem, “Sagas,’’ Proceedings of ACM SIGMOD Conference on
Management of Data, 1987.

[Gray & Reuter 93] Jim Gray and Andreas Reuter, Transaction
Processing: Concepts and Techniques, Morgan Kaufman, San
Mateo, CA, 1993.

[Heimbigner & McLeod 85] Dennis Heimbigner and Dennis
McLeod, “A Federated Architecture for Information Manage-
ment,” ACM Transactions on Office Information Systems, Vol.
3, No. 3, July 1985, pp. 253–278.

[Huhns et al. 93] Michael N. Huhns, Nigel Jacobs, Tomasz Ks-
iezyk, Wei-Min Shen, Munindar Singh, and Philip Cannata,
‘‘Integrating Enterprise Information Models in Carnot,’’ Inter-
national Conference on Intelligent and Cooperative Informa-
tion Systems (ICICIS), Rotterdam, June 1993.

[Klein 91] Johannes Klein, “Advanced Rule Driven Transaction
Management,” Proceedings of the IEEE COMPCON, 1991.

[Singh & Huhns 94] Munindar P. Singh and Michael N. Huhns,
``Automating Workflows for Service Order Processing: Inte-
grating AI and Database Technologies,’’ IEEE Expert, August
1994, in press. This is a special issue of selected papers from
the 10th IEEE Conference on Artificial Intelligence Applica-
tions, San Antonio, Texas, March 1994.

[Tomlinson et al. 93b] Christine Tomlinson, Paul Attie, Philip
Cannata, Greg Meredith, Amit Sheth, Munindar Singh, and
Darrell Woelk, “Workflow Support in Carnot,’’ IEEE Data
Engineering, 1993.

[Wiederhold 92] Gio Wiederhold, “Mediators in the Architecture
of Future Information Systems,” IEEE Computer, March 1992,
pp. 38–49.

[Woelk et al. 93] Darrell Woelk, Paul Attie, Philip Cannata, Greg
Meredith, Munindar Singh, and Christine Tomlinson, ‘‘Task
Scheduling Using Intertask Dependencies in Carnot,’’ ACM
SIGMOD, 1993.


