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Abstract

The Carnot project integrated a wvariety of lech-
niques to achieve interoperation in heterogeneous en-
vironments. We describe four major applications of
this project, concerning (a) accessing a legacy scien-
tific daiabase, (b) automating o workflow involving
legacy systems, (c) cleaning dala, and {d) retrieving
semantically appropriate information from structured
databases in response to text queries. These appli-
cations support scientific decision support, business
process management, data iniegrity enhancement, and
analytical decision support, respectively. They demon-
strate Carnot’s capabilities for (a) heterogeneous query
processing, (b) relazed transaction and workflow man-
agement, (c) knowledge discovery, and (d) heteroge-
neous resource model integration.

1 Introduction

Even as database technology has made significant
inroads into real applications, nontrivial problems in
information automation still remain. All too often, en-
terprise information systems consist of a diverse mix
of applications, files, and databases that are each in-
dividually essential, but do not cohere well as a whole.
Many of these systems were not designed as such, but
have just evolved to keep up with new needs and tech-
nologies. This has resulted in a mix of operational sys-
tems that collectively manage huge amounts of data.
The data is critical to the enterprise, but also redun-
dant and inconsistent.

The need to access diverse information systems in
a logically coherent manner translates into three tech-
nical challenges: (1) interoperability, despite hetero-
geneity with respect to communication and database
connection protocols, query languages, logical schema
access, and application semantics; (2) distribution of
resources; and (3) autonomy of resources in terms of
metadata and schemas, legacy applications, and closed
transactions.

*The Carnot Project team included Philip E. Cannata, Nigel
Jacobs, Tomasz Ksiezyk, Kayliang Ong, Wei-Min Shen, Munin-
dar P. Singh, Christine Tomlinson, and Darrell Woelk.
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The Carnot architecture provides a flexible frame-
work for addressing the challenges. It presupposes an
open, standards-based, distributed computational ap-
proach based on mediated access to passive and ac-
tive resources, such as databases, knowledge sources,
and applications. It includes a facility for specifying
constraints among resources, enabling transparent ac-
cess to data at the conceptual level and strategies to
maintain or restore consistency in the face of various
contingencies.

The above situation is well-recognized [4, 17]. Like
the Carnot project, a number of research projects have
addressed this problem by developing toolkits that en-
able interoperation to varying extents. These are ex-
cellently reviewed and tabulated in [12], so we shall
concentrate on the diverse applications of the Carnot
project.

2 Overview of the Carnot Architecture

Carnot is composed of the following five major lay-
ers of services, as shown in Figure 1. semantic, dis-
tribution, support, communication, and access. The
Carnot execution environment is a software compo-
nent called the Exztensible Services Switch (ESS). The
ESS is a distributed interpreter that provides access
to communication, information, and application re-
sources at a site [16]. The ESS is constructed in
Rosette, an actor language enhanced with object-
oriented mechanisms 1, 6]. Rosette has facilities for
remote evaluation and concurrent execution, making
it an effective infrastructure for coordinating informa-
tion resources and transactions.

The ESS operates typically at each host as a single
process that contains actors for each computation in
which it is engaged. The ESSs at different hosts com-
municate with each other and, based on their inter-
actions, can invoke remote operations either through
specialized actors within the ESS, or by spawning sep-
arate operating system processes. Specifically, the
ESS can invoke operations at multiple databases con-
currently, thereby managing the gathering and com-
bining of results.

The Distributed Semantic Query and Transaction
Manager (DSQTM), which physically resides inside
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Figure 1: The Basic Carnot Layers

an ESS process, uses its data dictionaries to produce
scripts that specify the distribution of queries to other
ESSs or databases, and the collection and processing
of results, e.g., to perform joins or domain value trans-
lations. The DSQTM includes actors that embody the
protocols for accessing various resources, including Or-
acle, Sybase, Ingres, Objectivity, and Verity (Topic).
It also has an implementation of the Relational Data

Access (RDA) standard.

The distribution layer also includes the Distributed
Commaunicating Agent (DCA) facility. DCA is a tool
that supports the modular construction and interop-
eration of agents—both human and knowledge-based.
Each knowledge-based agent, called a RAD agent,
can perform forward and backward reasoning, and in-
cludes a frame system with multiple inheritance, dis-
tributed truth-maintenance [7], and contradiction res-
olution. The ESS manages communications among
the agents: actors in the ESS serve as communica-
tion aldes, one for each agent, and forward messages
through the ESS treespace.

Lastly, distribution services include the Declara-
tive Resource Constraint Base (DRCB). The DRCB is
an extended data catalog that captures interresource
dependencies, consistency requirements, contingency
strategies, and organizational rules. The interresource
dependencies are expressed as mappings in a dictio-
nary.

The knowledge-based RAD agents are used to cap-
ture the consistency constraints to help maintain
the coherence of applications executing across au-
tonomous information resources. The agents use mod-
els of each other and of the resources local to them so
as to communicate and cooperate effectively. Resource
models may be the schemas of databases, frame sys-
tems of knowledge bases, or process models of business
operations. These enable relaxed, distributed trans-
actions to execute concurrently across heterogeneous
databases that previously had incompatible semantics.
Thus the appearance and effect of homogeneity among

heterogeneous resources is obtained.

The semantic services consist of a suite of tools for
enterprise modeling, model integration, data clean-
ing, and knowledge discovery. The Model Integra-
tion and Semantics Tool (MIST) is used to generate
mappings and consistency constraints, which form the
basis for semantic mediation among information re-
sources in the distribution services. MIST relies on a
common ontology [8], which represents the concepts
and their relationships characterizing a domain of in-
terest. Database schemas, even from the same ap-
plication domain, implicitly involve distinct concepts,
which makes it difficult to relate them. However, by
relating different database schemas to a common on-
tology, we can semantically relate the schemas with
each other, and thereby enable interoperation of the
underlying databases. MIST can work with a common
ontology expressed in Cyc [10], or in Carnot’s own
knowledge representation tools called KRBL. Carnot
was one of the pioneers of an ontology-based approach
to interoperation.

The semantic services also include the Knowledge
Representation Base Language {KRBL) as a tool for
representing and accessing ontologies. This tool has
a simple frame-based representation of such knowl-
edge in the form of n-ary relations, metaclasses, and
metarelations.

The Knrowledge Miner (KM) is a semantic tool
used for knowledge discovery. It includes sym-
bolic inductive learning and statistical clustering tech-
niques, which it combines with the LDL++ deductive
database environment (described below). The knowl-
edge discovery methods infer patterns and regulari-
ties from information resources and check consistency
between information and corresponding models [13].
The discovery is guided by expectations about the na-
ture of the information and its embedding in the ap-
plication.

The access services provide mechanisms for per-
sonal and group interaction with Carnot services, in-
cluding user interface software and the Logical Data
Language (LDL++), which provides a Prolog-like
rule-based language optimized for database access
[11]. Figure 2 shows some example configurations with
the major components and their relationships.

3 Legacy System Access

This application involves accessing data from a
legacy database for scientific decision support at East-
man Chemical Company (ECC). ECC maintains infor-
mation about chemical research, development, manu-
facturing, marketing, and customer contacts in several
large, incompatible databases.

Queries to these databases have been very diffi-
cult, requiring an expert to assist in retrieving infor-
mation and taking days to weeks to satisfy a single
query. This delay proves particularly expensive to re-
search chemists, who must repeat experiments if the
information produced in previous experiments cannot
be found. Redoing an experiment is not only time-
consuming, but also can cost several thousand dollars.

We briefly describe the domain in order to bet-
ter motivate our approach. The domain consists of
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Figure 2: Schematic Carnot Configuration

chemical compounds, which are identified by unique
names and defined as compositions of other chemicals.
Roughly about 100 different chemical and physical
tests are performed on different compounds to mea-
sure their properties of interest to various applications
(the details of these tests are proprietary and, in any
case, not of interest to our readers). The composition
table represents the main entity; there is a table for
each experiment recording (few to several) values in
different columns. Since the number of chemicals in a
compound is not limited, the ECC database designers
used a flattening representation in which each com-
pound may be represented through a set of tuples in
the composition table, each tuple carrying the iden-
tifier of the compound and the given chemical and its
amount. The above database is primarily of interest
to scientists; another database contains information of
interest to marketers, and uses a different key, but we
shall not discuss in any detail that here.

Several of the Carnot components were used to im-
plement the solution shown in Figure 3. The system is
in operation and being extended. When it is set up, a
knowledge base is created containing representations
of all the logical views of interest. In addition, dic-
tionaries are created that relate the logical views to
the physical tables and columns in a polymer research

database (PDRS).

Our implementation includes two user interfaces,
one that is forms-based and uses LDL++, and the
other natural-language based and provided by MCC’s
Knowledge-Based Natural Language project (KBNL)
[2, 3]. LDL++ supports the formulation of complex
queries as logical rules. The LDL++ compiler gathers

the rules for each query, generates compact SQL state-
ments, and dispatches them to the database server via
the ESS. LDL-++ represents composition and the ex-
perimental result tables as predicates, as for example

composition(Id: int, Code: string, quantity: float)

One interface is a form by which scientists can find
compounds that satisfy some range conditions on the
chemicals that compose them. For example, one might
ask for all compounds that contain 5-10% of 4 and 50-
67% of B, yielding the following constraints:

[compositionC(Id,’A’ ,range(5.0,10.0)),
compositionC{Id, B’ ,range(50.0,67.0))]

From the input range values and domain knowl-
edge, the LDL++ application validates the constraints
and possibly augments them. If successfully validated,
the augmented constraints are converted to SQL and
executed on the database.

SELECT DISTINCT TB_COMPOSIT_1i.PEL_ID
FROM TB_COMPOSIT TB_COMPOSIT.1, TB_COMPOSIT TB_COMPOSIT
WHERE TB_COMPOSIT_i.PEL_ID = TB_COMPOSIT.PEL_ID

AND TB_COMPOSIT_1.AMO_CODE = °’A?

AND TB_COMPOSIT_1.AMOUNT >= 5

AND TB_COMPOSIT_1.AMOURT <= 10

AND TB_COMPOSIT_2.AMO_CODE = °’B’

AND TB_COMPOSIT_2.AMOUET >= 50

AND TB_COMPOSIT_2.AMOUNT <= 67

The KBNL system takes English inputs and,
after appropriate interactions with the user, pro-
duces a high-level SQL query, and hands it over
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to Carnot for processing. Example English in-
puts include (i) Find polymers with elongation
of 3.3 and creep of 4.4, (ii) What is the creep
for polymer A7 and so on. KBNL interacts with the
user to disambiguate their information request to the
level of the conceptual schema, e.g., to determine that
the user cares about chemical resistance break
elongation and adhesive creep at time 50, mak-
ing the query effectively be:

Find polymers with
chemical resistance break elongation of 3.3
and adhesive creep at time 50 of 4.4

KBNL then produces an SQL query, involving log-
ical tables and columns, and forwards it to Carnot:

SELECT =*

FROM POLYMERS

WHERE POLYMERS.PEL_ID = CHEMICAL_RESISTANCE.PEL_ID
AND POLYMERS.PEL_ID = ADHESIVE_CREEP.PEL_ID

AND CHEMICAL_RESISTANCE.ELONGATION_AT_BREAK = 3.3
AND ADHESIVE_CREEP.TIME_O50 = 4.4

The above SQL query is received and processed by
the DSQTM. The DSQTM generates and the executes
the following low-level SQL query:

SELECT DISTINCT TB_COMPOSIT.PEL_ID

FROM TB_COMPOSIT , TB_CHEM_RES , TB_ADH_CREP

WHERE TB_CHEM_RES.BRK_ELNG = 3.3
AND TB_COMPOSIT.PEL_ID = TB_CHEM_RES.PEL_ID
AND TB_COMPOSIT.PEL_ID = TB_ADH_CREP.PEL_ID
AND TB_ADH_CREP.TIME_050 = 4.4

In order to produce the above query, the DSQTM
uses knowledge about KBNL’s logical view, and its
mapping to the physical view. The interesting part of
this knowledge is in the form of articulation axioms.
In this application, most of the axioms give a straight
one-to-one mapping. However, some axioms encode
that the objects of the logical view are represented as
split across multiple rows in the physical table-these
are the id convention axioms below. These axioms are
used in a queries similar to the one we showed above
using LDL++, so we shall not discuss them again.

# Mapping KBEL and PDRS views to common (ECC) view

KBHL ADHESIVE_CREEP TIME_05Q <==
ECC_ADHESIVE_CREEP TIME_050

KBEL ADHESIVE_CREEP TIME_150 <==>
ECC_ADHESIVE_CREEP TIME_150

KBNL CHEMICAL_RESISTANCE ELONGATION_AT_BREAK <==>
ECC_CHEMICAL_RESISTANCE ELONGATION_AT_BREAK

KBHL ADHESIVE_CREEP POLYMERS <==

ECC ECC_ID_CONVENTION ECC_NAME
KBEL CHEMICAL_RESISTANCE POLYMERS <==

ECC ECC_ID_CONVENTION ECC_NAME
PDRS TB_ADH_CREP PEL_ID <==

ECC ECC_ID_CONVENTION PEL_NAME
PDRS TB_CHEM_RES PEL_ID <==

ECC ECC_ID_CONVENTION PEL_NAME

# ECC_NAME is represented as multiple columns
in TB_COMPOSIT
PDRS TB_COMPOSIT PEL_ID <==
ECC_ID_CONVENTION ECC_NAME
PDRS TB_COMPOSIT AMP_CODE <==
ECC_ID_CONVENTION ECC_NAME
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PDRS TB_COMPOSIT AMOUNT  <==>
ECC_ID_CONVENTION ECC_NAME

PDRS TB_COMPOSIT. AMO_CODE <==>
ECC_ID_CONVERTION ECC_EAME

# TB_COMPOSIT joins with every table that has
a PEL_EAME column .
PDRS TB_COMPOSIT PEL_ID <==
ECC_ID_CONVEETION PEL_NAME

Our implementation at ECC involved a commercial
implementation of the RDA protocol, which enables
access to backend nonrelational and older relational
databases.

For the above architectural framework to be effec-
tive,. the logical view of the database taken by the
interfaces must agree with the logical view supported
by the DSQTM. Since there are more than 100 ta-
bles, many involving concepts that were arcane to us,
we formulated a shared representation of the database
schemas. We defined a number of scripts to map these
shared schemas into the knowledge base used by the
natural-language interface to understand and disam-
biguate English queries, by LDL++ to form predicate
descriptions, and by the DSQTM to build its dictio-
naries.

4 Workflow Automation

Workflows, especially database-oriented workflows,
have emerged as the leading paradigm for structur-
ing complex computations in heterogeneous informa-
tion environments [5]. Carnot was one of the pioneers
in workflow management from a database perspec-

tive (as opposed to the more traditional organizational
or groupware perspective). Workflows are important
wherever there are complex, long-running, flexible, in-
teractive flows of information and control.

Carnot was applied to the DS-1 service provisioning
activities of Ameritech, a telecommunications com-
pany. Service provisioning refers to the task of con-
necting a customer to the system—assigning a connec-
tion to them, makirg sure the physical infrastructure
exists, and updating the various databases. This task
could take up to two weeks, involving tens of oper-
ations on over a dozen operational (legacy) systems.
Our aim was to prototype a system through which the
throughput and delay could be improved.

Our system consists of four DCA agents—a user in-
terface agent and three RAD knowledge-based agents.
The user agent assists the user in ensuring that the
service request is valid. When it completes, it sends
a message to the scheduling agent. The scheduling
agent determines a workflow schedule—initially, this
is the normal case of the execution of the activity.
The schedule processing agent executes the tasks in
this schedule by invoking operations on the backend
systems concurrently. Some of these operations re-
quire significant protocol conversion, e.g., in generat-
ing messages that can be sent via custom interfaces to
legacy systems or mainframes. Exception conditions
are captured declaratively in the schedule repair agent.
These conditions determine when the composite activ-
ity should be aborted and when different component
transactions should be retried or compensated. Addi-
tional details of this application are available in [15].
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The success of this application derives from its tak-
ing into account an entire run through the system, not
Just focusing on some of the pieces. The expert sys-
tem technology that we used here was key to rapid
prototyping, but is by no means essential. However,
capturing execution conditions is a challenge for con-
ventional programming, and is eased by a rule-based
language that includes support for maintaining depen-
dencies among decisions.

5 Data Purification

Data is considered a vital business asset and the
quality of data plays a critical role in the quality and
efficiency of business operations. Bellcore began a
data quality project in partnership with the Carnot
project. Poor data quality (1) impedes workflow au-
tomation because of more frequent and unnecessary
exceptions during processing, and (2) makes it harder
to provide good customer service due to the incon-
sistency and incompleteness of data [14]. To perform
data validation and cleaning, we determined that three
capabilities are required:

o Database Access. Telephone companies have a
wide range of heterogeneous databases, which
must be accessed before any data can be validated
and cleaned.

e Specification of Complex Validation Rules and
Quertes. Data is validated based on the rules that
define whether the given data is correct or is sus-
pected to be incorrect.

e Rapid Refinement of Validation Specification.
The system might take several iterations to verify
correctness and cleanliness of data with respect to
the specifications.

LDL++ and ESS were identified as the core Carnot
technologies to fulfill the above requirements. As

shown in Figure 5, the ESS provides access to the
Oracle database. LDL++’s declarative nature facil-
itates specification of the validation conditions as a
set of LDL++ rules. A graphical user interface allows
users to dispatch different validation queries, review
the results, and take corrective actions. Just as for
ECC, LDL++ generates SQL, which is executed via
the ESS. Databases can be validated for different types
of constraints, including

e Domain Value Constraints—column values must
be from a certain range.

channel (length,range(0.0,10.0))
channel(conductivity,range(50.0,117.0))

o Quantitative Constraints—values in different
columns must satisfy certain numerical con-
straints, such as the two below. Violations of the
first constraint—if a channel connects to a piece
of equipment, then the channel must terminate
at that equipment—are obviously errors. Con-
versely, data that satisfies the second constraint—
if aloop links to a cable, then the start location of
the loop equals the end location of the cable—is
also likely to be erroneous.

link(channel,equipment) =>
equal(endLoc(channel), loc(equipment))
link(loop,cable) =>
equal(startLoc(loop), endLoc(cable))

o Uniqueness Constrainis—some column values
must be unique, e.g., a cable only links to one
loop.

link(loopi,cable), link(loop2,cable) =>
equal(loopl,loop2)
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o Referential Integrity Constraints—the existence
of a value in one place may presuppose its exis-
tence elsewhere in the system, possibly in another
database.

link(loop,cable) => loopInfo(loop, \_, \_)

6 Combining Structured Data and

Text

The U.S. Department of Defense (DoD) has several
text as well as traditional structured databases that
must be used in concert. The Verity Topic system
is used for text retrieval. A Topic query takes the
form of a weighted tree of concepts, including target
words and phrases. Verity processes the query against
text databases and presents a ranked list of matching
documents.

The structured databases are often maintained by
different individuals, and employ different designs,
database software, and platforms. Ideally, users
should corroborate their findings from documents with
information from these databases. But this requires
them to learn about different schemas, to master mul-
tiple database query languages, and to be able to in-
terpret the results. '

Carnot was applied to this case as shown in Fig-
ure 6. At compile-time, textual and relational data
sources were integrated via a common conceptual
model [9]. At run-time, database queries were man-
aged by a distributed network of database agents [16].

A simplified Topic tree capturing the concept of a
MiG29 airplane is shown in the top left of Figure 7. In-
tuitively, an article might be about MiG29s if it men-
tions enough of the terms associated with MiG29 in
the tree. The top right of Figure 7 shows a simple
ontology with concepts pertaining to weapons, fighter

aircraft, and the human designers of weapons. The
bottom right shows two database tables with informa-
tion about fighter aircraft and persons. There might
be an entry for MiG29 in the first table, and for its
designer, Mikoyan, in the second table.

The Topic tree and database tables are related
through the ontology. First, a Topic concept tree
parser is used to create internal representations of
Topic trees that can be used by MIST. Second, MIST
is then used to map each concept in the trees to corre-
sponding concepts in a common ontology, providing a
semantic interpretation for each tree, and identifying
concepts from different trees having the same mean-
mg. Relational database schemas are also mapped
to the common ontology, yielding executable linkages
among the Topic trees and structured databases.

When a user issues a Topic query, the DSQTM uses
the above mappings to produce a corresponding set
of SQL queries. The original query is executed on
the text engine, the SQL queries are executed on the
structured databases, and the DSQTM fuses the re-
sults. One effective fusion method was to produce a
hypertext document from the articles returned by the
text search. Selected words, e.g., “Mi1G29,” are given
hypertext links to results of queries from the struc-
tured databases.

7 Conclusions

The above applications include some of the ma-
jor and common business needs that heterogeneous
database systems must address: (1) accessing data
from a high-level view, coordinating transactions
across systems, data cleaning, and fusing traditional
data with nonstandard data. Carnot addressed these
different problems through a uniform framework. The
problem of accessing data through high-level views
was well-known before Carnot, although few commer-

1
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cial solutions are available even today. The growth
of the workflow and data cleaning industries over the
past few years is phenomenal, but these problems
were just barely being understood when Carnot im-
plemented the corresponding applications. Nontradi-
tional, unstructured data such as text is common in
many practical applications of computing, yet, a few
years ago, unstructured data was not given its due
importance within the database community.

Carnot contributed a number of interesting ideas to
database research, including

e Development of tools to perform resource integra-
tion, even among resources of different models.

o Use of intelligent agent technology to coordinate
transactions and workflows, in particular encap-
sulating exception conditions for workflows.

e Use of actor technology with scripting languages
to coordinate distributed activities.

e Use of deductive database technology to provide
natural access to data, especially for data inten-
sive applications such as knowledge discovery and
data purification.

Carnot addressed some of the most challenging
problems in making heterogeneous information sys-
tems function effectively. It developed new theories,
prototyped them, and deployed them. However, de-
spite the “success” of the applications, they are still
prototypes, and more effort is required before they can
be considered commercial quality.
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