Argo: A System for Design by Analogy

Michael N. Huhns and Ramén D. Acosta

Microelectronics and Computer Technology Corporation
Artificial Intelligence Laboratory
3500 West Balcones Center Drive
Austin, TX 78759

Abstract

The static and predetermined capabilities of many knowledge-
based design systems prevent them from acquiring design expe-
rience for future use. To overcome this limitation, techniques
for reasoning and learning by analogy that can aid the design
process have been developed. These techniques, along with a
nonmonotonic reasoning capability, have been incorporated into
Argo, a tool for building knowledge-based systems that improve
with use. Argo acquires problem-solving experience in the form
of problem-solving plans represented by rule-dependency graphs.
From increasingly abstract versions of these graphs, Argo calcu-
lates sets of macrorules. These macrorules are organized accord-
ing to an abstraction relation for plans into a partial order, from
which the system can efficiently retrieve the most specific plan
applicable for solving a new problem. Knowledge-based appli-
cations written in Argo can use these plan abstractions to solve
problems that are not necessarily identical, but just analogous
to those solved previously. Experiments with an application for
designing VLSI digital circuits demonstrate how design tools can
improve their capabilities as they are used.

1 Introduction and Background

A number of knowledge-based systems for design have been devel-
oped recently [2,12,18,19]. These systems are particularly suited
to situations in which heuristic expert knowledge must be em-
ployed because algorithmic techniques are unavailable or pro-
hibitively expensive. Unfortunately, the knowledge embodied in
many of these systems is static: it fails to capture the iterative
aspects of the design process that involve solving new problems
by building upon the experience of previous design efforts. Given
the same problem ten times, these systems will solve it the same
way each time, taking as long for the tenth as for the first.

The work reported here is based on the contention that a
truly intelligent design system should improve as it is used, i.e.,
it should have a means for remembering the relevant parts of
previous design efforts and be able to employ this accumulated
experience in solving future design problems. For a design tool,
the remembered experience should consist of 1) design results,
2) design plans, and 3) preferences among these results and plans.
‘These constitute different aspects of previous design efforts that
the design tool can use as training examples.

1.1 Learning from Experience

Existing approaches to learning from experience attempt to gen-
eralize training examples in order to obtain more widely appli-
cable results. The STRIPS [6] problem-solving system incor-
porates a technique for generalizing plans and their precondi-
tions based on the formation of macro-operators (MACROPs).
A better procedure for generalization, developed in the context of

CH2552-8/88/0000/0146%01.00 © 1988 |EEE

learning from examples, uses a proof-based explanation mecha-
nism [5,13,16,17], often termed explanation-based generalization
(EBG). It is an improvement over MACROPs in that it does not
require any heuristics to compensate for possible overgeneraliza-
tions. For design problems, however, EBG-like generalizations
are limited in that they arbitrarily give equal weight to all por-
tions of the examples, without regard to whether each portion
is relevant or important to solving future problems. More ab-
stract generalizations can be obtained by taking this factor into
account. Abstract planning, i.e., choosing a partial sequence of
operators to reach a goal, is accomplished in ABSTRIPS [22] by
ignoring operator preconditions considered to be details. Only if
a plan succeeds at an abstract level is it expanded by the addition
of subplans to handle the details at a subsequent level.

Another technique for reusing past design experience is to
replay a previously recorded plan, or design history [20,23]. This
approach is interesting in its flexibility with respect to replaying
portions of a stored plan to solve, or at least partially solve,
a new problem. Unfortunately, the correspondence between a
stored plan and subproblems of a design is difficult to establish
automatically.

1.2 Analogical Reasoning and Learning

The transfer of experience from previous problem-solving efforts
to new problems has also been accomplished via analogical rea-
soning methods. Analogical reasoning is a mapping from a base
domain to a target domain that allows the sharing of features be-
tween these domains. The two problems that arise in this map-
ping are 1) analogy recognition: finding the most similar past
experience, and 2) enalogical transformation: adapting this ex-
perience to the new problem situation.

Aside from user guidance, several techniques have been sug-
gested for automatically recognizing the most similar past expe-
rience.

e Develop an analytical similarity measure [3]

e Find a past experience whose first stage is identical to the
current problem situation [4]

¢ Find a past experience that has the same causal connections
among its components as does the current problem [7,25)

¢ Find a past experience that has the same purpose as does
the current problem situation [11].

The disadvantages of these techniques are described in [10].
The second problem, analogical transformation, has been at-
tempted previously by employing heuristically-guided, incremen-
tal perturbations according to primitive transformation steps [3].
These steps are generally problem and domain specific and are
not amenable to automation. If used properly, however, differ-
ences between the old and new situations can guide the analogical
transformation. Other approaches to analogical transformation

include heuristic-based analogical inference {9] and user interven-
tion [20].

2 Argo

The primary objective of the work reported here has been to
develop a robust and domain-independent system, Argo, for ap-
plying analogical reasoning to solving search-intensive problems,
such as those in the domain of design [1,10]. This section de-
scribes the functional characteristics of Argo, as well as an ap-
plication to VLSI digital circuit synthesis. Descriptions of the
mechanisms in Argo that allow it to reason and learn efficiently
are presented in Section 3. Section 4 lists and discusses some ex-
perimental results obtained using the Argo-V application. Con-
clusions are presented in Section 5.

2.1 Knowledge Representation and Inference

Argo is a generic development environment, derived from the
Proteus expert system tool [21]. Knowledge is represented
in Argo using a combination of predicate logic and frames.
Data consist of ground assertions, general assertions, forward
rules, backward rules, and slot values in frames. Each datum
is included in a justification-based truth-maintenance system
(JTMS). Frames are organized into an inheritance lattice, en-
abling multiple inheritance for slot values. The slots may be
single-valued or multiple-valued. Rules primarily deal with rela-
tions, which may be either predicates or slots. In addition, rules
allow Lisp functions in their antecedents and consequents.

The inference mechanisms available to Argo are forward
chaining, backward chaining, inheritance through the frame sys-
tem, truth maintenance, and contradiction resolution. Forward
chaining is typically used as the strategy for design: the system
applies forward rules deductively to hierarchically transform and
decompose specifications or partial designs. In order for a for-
ward rule to be eligible for firing as an action, its antecedents
must either explicitly exist as assertions or slot values in the
database, or implicitly be provable through backward chaining.

2.2 Argo Control Strategy for Design

Argo executes the problem-solving strategy depicted in Figure 1.
This algorithm has two major phases: a problem-solving design
phase followed by a learning phase. The basic control strategy
for the design phase conforms to that of a standard production-
system interpreter (¢f. OPS5). It is modified for analogical rea-
soning by requiring that only the most specific rules from a partial
order of forward rules (based on the abstraction relation defined
in Section 3.4) be matched and considered for execution. A new
cycle can be triggered interactively by a user or automatically by
any JTMS adjustments to the database.

During each cycle, forward rules are considered for execution
by attempting to prove their antecedents using all available data
(assertions and backward rules). The least abstract (see Sections
3.4 and 3.5) valid rule instances are then placed in a conflict set.
At this point, a user may interact with the system by ordering
rule instances in the conflict set, firing instances, asserting new
data, or initiating dependency-directed backtracking.

The learning phase is outside of the control loop of Argo’s
production-system interpreter, and as such, can be executed as
a background task of the problem-solving system. This improves
the system’s problem-solving efficiency; it does not have to pause
to learn in the middle of a design session. It also prevents the
learning of results that might be subsequently invalidated due to
nonmonotonic reasoning triggered by dependency-directed back-
tracking. Further, the plans that are learned do not incorporate
failed lines of reasoning.

147

Read a database of domain knowledge, consisting of
rules, frames, and assertions;
Partially order forward rules by "abstraction";
Read problem specification into memory;
Compute initial conflict set, CS;
Design: Loop until CS empty or Halt asserted
Resolve Conflicts - Select a forward rule
instance, Ri, from CS;
Act - Perform the consequents of Ri and
update the JTMS justification network;
Match - Find CS of most specific applicable
rule instances that have not previously
fired on the same data;
Evaluate design - If unacceptable,
Asgert contradiction;
Do dependency~directed backtracking;
Go design loop;
Construct rule-dependency graph (RDG);
Learn: Loop while nodes(RDG) > 1
Compute macrorules from subgraphs of RDG;
Insert macrorules into partial order;
Abstract RDG (by deleting leaf rules);
Store updated database.

Figure 1: Argo Control Strategy

2.3 Application to VLSI Circuit Design

Argo is customized for a particular application by building a
knowledge base of rules, assertions, and frames. The primary
application that has been used for testing Argo is a system for
VLSI digital circuit design. Design problems have been a moti-
vation and justification for the approach to analogical reasoning
described above because of the large search space by which they
are typically characterized—a space consisting of both incom-
plete and complete design solutions.

The Argo VLSI design application, Argo-V, refines circuit
specifications to synthesize circuits in terms of elementary digital
components. A design problem specification is a set of assertions
in first-order logic describing the behavior of a digital logic circuit.
This set of assertions is organized into a lattice of frames. A
solution to a design problem is also a set of assertions in first-
order logic that describes the siructure of the digital logic circuit
and is less “abstract” than the set describing the specification.

The assertions and frames are based on VHDL (VHSIC Hard-
ware Description Language) [24]. Since VHDL is designed to
deal with abstraction, its declarative facilities provide a natural
medium for describing design hierarchies. An entity in VADL
corresponds to a component that is described by an interface
body and one or more architectural bodies. The interface body
is used to define externally visible ports and parameters of an
entity. The architectural bodies are used for describing entities in
terms of behavior and/or structure. The two primary types of
statements used in architectural bodies are 1) signal assignment
statements (behavioral), which assign waveforms to signals, and
2) component instantiation statements (structural), which instan-
tiate substructure components.

The design knowledge base in Argo-V is structured as follows:

Frames: VHDL modules(e.g., interface bodies).

Frame Instances: primitive library components (e.g., logic
gates, transistors, and inverter loop memory cells).

Assertions: component slot values and general knowledge.

Forward Rules: design rules.

Backward Rules: rules for parsing signal assignments and
computing ports.

A design problem’s specification is entered into the system by
instantiating frames for its top level VHDL modules and asserting
slot values for its internal features, including signal assignment
statements and signal declarations.

The design rules in Argo-V either transform, instantiate, or
decompose. A transformation rule is used to convert one or more
signal assignment statements into other signal assignment state-
ments having a simpler or more convenient form. An instantia-
tion rule converts one or more signal assignment statements into
statements specifying library components. A decomposition rule
removes one or more signal assignment statements from an ar-
chitectural body and associates them with newly-built entities
that are instantiated from the architectural body. Decomposi-
tion rules allow groups of logically-related signal assignments to
be treated as independent subproblems.

Figure 2 contains an example of a rule for instantiating a pass-
transistor component. In this rule, a signal assignment statement
is matched with an antecedent of the form

(signal-assignment 7body
(?1hs (?signal ?delay 7conditiomn)
(?signal2 ?delay2)))

where ?body is the architectural body of an entity and ?1hs is as-
signed the value of ?signal after a delay of 7delay if Zcondition
is satisfied, or ?8ignal2 after 7delay2 if 7condition is not sat-
isfied.

;333 Rule for Instantiating a Pass Tramnsistor
((architecture ?e:entity ?b:architectural-body)
(unless (type 7e hardware-module))
(signal-assignment

?b (7lhs (?s:signal ?delayl ?c:signal)

(hi-z ?delay2)))
-45->
(erase (signal-assignment
?b (?1hs (73 ?7delayl 7c)
(hi-z ?delay2))))

(component ?b (PASS-TRANSISTOR (?s 7c 71hs))))

Figure 2: Example of a component instantiation rule

3 Analogy Mechanisms in Argo

This section presents the representations and techniques used in
Argo for analogical reasoning. These enable Argo to improve its
problem-solving performance with repeated use.

3.1 Rule-Dependency Graphs

To implement the problem-solving strategy of Section 2.2, Argo
must be capable of formulating, remembering, and executing
problem-solving plans. A plan in Argo is a directed acyclic graph
having nodes corresponding to forward rules and edges indicating
dependencies between the rules. Thus, the terms plan and rule
dependency graph (RDG) are used interchangeably throughout
this paper. Because a plan is implicitly represented by the jus-
tifications maintained by the JTMS, no overhead is incurred by
Argo’s inference engine for plan maintenance.

One example from Argo-V involves the design of a content-
addressable-memory (CAM) cell, similar to the one used in [18].
The specification for the CAM-cell design problem can be seen
in Figure 3. Note that the entity CAM-Cell has one interface,
CAM-Inierface, and one architectural body, CAM-Architecture.
CAM-Architecture is a behavioral problem specification because
it only makes use of signal assignment statements.

148

CAM-Cellis an instance of ENTITY

Type: ABSTRACT-MODULE
Interface: CAM-INTERFACE
Architecture: CAM-ARCHITECTURE

CAM-Interface is an instance of INTERFACE-BODY
Input-Port: COMPARE, PHII, PHI2, LOAD,
ENABLE, DATA-IN
Qutput-Port: MATCH
CAM-Architecture is an instance of ARCHITECTURAL-BODY
Signal-Declaration: PHII-LOAD, STATE
Component: no known values
Signal-Assignment:
{MATCH (PASSED-LOW 33NS
(BIT-AND (BIT-EQUAL ENABLE HIGH)
(BIT-NOTEQUAL STATE COMPARE)))
(HI-Z ONS)),
(STATE (DATA-IN 50NS (BIT-EQUAL PHII-LOAD HIGHY))
(STATE ONS)),
(PHII-LOAD ((BIT-AND PHI1 LOAD) 15NS))

Figure 3: Behavioral specification for the CAM-cell problem

Argo-V solves circuit design problems by deductively apply-
ing rules that hierarchically refine behavioral specifications. In
the process, Argo-V constructs a hierarchical design tree rep-
resenting a partial solution. FEach node of this design tree is
an entity, or component, that is described in terms of its inter-
face and one architectural body. A design is completed when
all the statements in the design tree are instantiations of library
components. The hierarchical design tree for the solution of the
CAM-cell problem appears in Figure 4.

Once a design, or partial design, has been completed, the
learning phase of Argo can be invoked. Its first task is to build
an explicit plan representation according to the justifications for
fired actions. The design plan for solving the CAM-cell problem,
consisting of 19 forward rule instances, is shown in Figure 5.

3.2 Abstract Plans

The analogical reasoning model used by Argo comprises solving
new problems by making use of plans for previous design expe-
riences at appropriate levels of abstraction. In this vein, the pri-
mary function of the system’s learning phase is to compute and
store abstractions for the plan of a solved problem. This task is
accomplished by computing macrorules for increasingly abstract
versions of the plan and inserting these rules into a partial order.

A number of domain-dependent and domain-independent
techniques for automatically generating plan abstractions are
possible. These include deleting rules from the plan, replacing
a rule by a more general rule that refers to fewer details of a
problem (such as is done in ABSTRIPS [22]), and computing
and generalizing a macrorule for the plan without reference to
the components of the original plan.

Currently, Argo abstracts a plan by deleting all of its leaf
rules, which are those having no outgoing dependency edges. For
many design domains, the leaf rules trimmed from a plan tend
to be those that deal with design details at the plan’s level of ab-
straction. Increasingly abstract versions of a plan are obtained by
iteratively trimming it (see Figure 1). A sequence of abstractions
for the CAM-cell example, generated by this technique, appears
in Figure 5. Note that all of the rules deleted by trimming one
level from the original plan are rules that handle the details of
instantiating library components.

A possible drawback of Argo’s automatic abstraction scheme
is that deleting all leaf rules might eliminate useful abstract plans
in which only some of the leaf rules should be deleted. Except for
small plans, however, it is not practicable to generate macrorules

CAM-CELL
Input-Ports:
ata-in, Load,
Phi1, Phi2,
Compare
Output-Ports:
Phi1-Load,
Match

\

WIRE

ut-Ports:

ab 8
Output—Ports

lgnal—27

XOR-NET

Ingut—Ports

tate, Compare,
Signal-38

Output—Pons

|

ASS—TRANSISTOR ENTITY-2 l AND2
Input-Ports: input-Ports: | Input-Ports:
assed-Low, ata-In, Phi2, hil, Load
Signal-27 Phit-Load
Output-Ports:
Output-Ports: Output-Ports: | 3
| Signal-38 State Pali=Logd

| 4

[InvErTER-LOOP

PASS-TRANSISTOR

| Ingut-Ports: InBut-Ports:
ignal-40, Phi2 ata-In,
Phi1-Load
Output-Ports: | Output-Ports:
| State | Signai-40

Figure 4: Hierarchical description of the final design for the
CAM-cell

MACRORULE-9 & MACRORULE-10
ACRORULE-E
MACRORULE-C
MACRORULE-}
MACRORULE- ’j

MACRORULE-11_

MACRORULE-7

MACRORULE-£_
MACRORULE-4_

DC: D P ditional-signal ignment statements

NEW: Construct new signal from decomp

DU: D p ditional-signal ignment

EQ: Transform a ining an equality into a simpler statement

WIRE: I iate a i ™wo

FP: Transform a set of signal assignments to represent a cascade of pass-transistor nets
XTN: 1 iate an lusive-OR p network

PASS: Instantiate a pass transistor

MD: Decompose an entity into ones containing memoried and combinational logic

MsS: Complete the specification of an entity memoried

MEM: Instantiate an inverter Joop for a one-bit memory

AND: Instantiate an AND gate

Figure 5: Design plan (rule-dependency graph) for the CAM-cell

for all possible subgraphs of the RDG, even though these would
be valid and potentially useful. Instead, Argo begins with a plan’s
precomputed abstraction, followed by instantiations of some of
its trimmed rules, to obtain an appropriate plan for solving a
new problem.

3.3 Macrorules

During the learning phase, the design plan or abstract plans for
a solved problem are not explicitly learned by the system. In-
stead, the rule instances of each plan are compiled into a set
of macrorules that embody the relevant preconditions and post-
conditions of the plan. These macrorules are built by regress-
ing through the component rules of the plan using a variant
of explanation-based generalization [5,16]. This scheme involves
computing macrorules for each edge in the plan, followed by a
merging operation in which macrorules for connected subgraphs
of each abstraction level of the plan are calculated for all sets of
compatible edge macrorules. The antecedents and consequents
of these macrorules can be viewed, respectively, as “variabilized”
problem specifications and design solutions.

Using this scheme for compiling and storing plans has some
important advantages:

e only relevant antecedents and consequents of the RDG are
preserved,

o because macrorules are independently computed for con-
nected subgraphs of the RDG, which correspond to inde-
pendent subproblems of a design solution, greater flexibility
is available in applying subplans to future design problems,

o greater efficiency is obtained by applying a single macrorule
for a given plan than by md1v1dua]ly applying each of its
component rules,

e correspondence between the parts of a problem and a can-
didate plan for solving it is automatically maintained by
the variable bindings of the plan’s macrorule,!

e as long as the original domain theory is correct, the resul-
tant macrorules are provably correct because they lie within
the deductive closure of the system, and

e increasingly abstract macrorules, obtained by deleting leaf
rules from an RDG, satisfy the abstraction relation, so they
can be organized into a partial order which can be efficiently
searched during problem-solving.

Argo’s use of rule-dependency graphs contrasts with the
explanation-based learning mechanism in [16], which uses proof
trees having edges between individual antecedents and conse-
quents of dependent rules. While only one macrorule is com-
puted for the technique presented in [16], Argo computes a set
of one or more macrorules for a given explanation. Although
the macrorules are harder to compute, they can be applied to
situations differing structurally from the original problem.

The justification for a macrorule in Argo’s truth-maintenance
system is a list of its component rules. If any of these component
rules is invalidated by being given an OUT status, the macrorule
is also invalidated. This, in effect, gives Argo a nonmonotonic
learning capability [14].

In the CAM-cell example discussed previously, a total of ten
macrorules are generated for the various abstract plans in Fig-
ure 5. These are then inserted into the system’s partial order of
forward rules.

Tn some systems for design, a design plan is a tree of rules that have been
applied chronologically to a design component in order to yield a design
for it. Because some rules decompose components into subcomponents, a
problem arises in determining correspondence between parts of the plan and
the subcomponents to which they should apply [20].

3.4 Abstraction

A collection of plans, which are represented by their correspond-
ing macrorules, can be organized into a partial order based on a
relation called abstraction. A plan F; is a mapping from a do-
main D;, determined by the antecedents of the macrorule for P;,
to a range R;, determined by the consequents of the macrorule
for P;. Intuitively, one plan is more abstract than another if it
applies to more situations and if its execution results in fewer
commitments. More precisely,

P, 3 P; & (D; > D;)A(R; > R;)

where 71, the abstraction relation, is to be read “is an abstraction
of,” and where

Definition 1 S$; > §; < the set of possible worlds in which S;
is true is a subset of the set of possible worlds in which S; is true.

This is not a computational definition because of the large num-
ber of possible worlds which would exist in a typical application.
A simpler and sufficient definition that has been implemented in
Argo is

Definition 2 §; > S; & (one-way-unify S; S;).

As defined here, abstraction is a transitive, reflexive, and anti-
symmetric relation: it thus induces a partial order on a set of

rules.

3.5 Redesign

After incorporating learned macrorules into its partial order of
forward rules, the system is ready for solving a new problem. If a
specification is given to the system that is analogous to the CAM-
cell specification, then the system follows specialization paths in
the partial order of forward rules in order to choose the least
abstract macrorule that is applicable, i.e., one that instantiates
the largest number of details without making incorrect design
commitments. By successively selecting the least abstract rules,
the system will typically find the shortest path to a valid design.

4 Results

Table 1 shows measurements of the effort expended in design-
ing several circuits similar to the CAM-cell example, both with
and without the experience of designing the original CAM-cell.
Circuit 3 and Circuit 6 are exactly analogous to the original prob-
lem, differing only in the values for several constants. Thus, the
same design plan applies to all three. After the system has been
trained on the CAM-cell example, these three circuits can each be
solved by executing just three rules, the least abstract macrorules
learned by designing the CAM-cell. Circuit 2 utilizes Macrorule-4
and Macrorule-10, Circuit 4 utilizes Macrorule-1 and Macrorule-
10, and Circuit 5 utilizes Macrorule-3 and Macrorule-10: these
design problems are inexactly analogous to the original example
and so use abstractions of the original design plan. Additional
rules, which primarily instantiate details, have been located and
fired to complete their designs. Circuit 7 is exactly analogous
to a subproblem of the CAM-cell, so just one of the calculated
macrorules, Macrorule-10, is needed to solve it completely. In all
cases, learning resulted in improved design times.

Although the designs generated before learning occurred are
correct, they are not optimal in terms of a minimum number of
transistors. After being trained by a designer to find an optimal
design for the CAM-cell, Argo is able to apply this knowledge
to the other circuit design problems and derive better quality
designs for them. The improvements, shown as Design Quality
in Table 1, are substantial.

150

Table 1: Effects of Learning on VLST Design

Before Learning/After Learning |
Design Time Rules Fired Design Quality |
| (seconds) (transistors)

CAM-cell | 66.5/59.6 17/3 30/20
Circuit 2 | 68.8/51.6 17/7 30/26
Circuit 3 | 66.1/34.9 17/3 30/20
Circuit 4 | 48.7/33.3 11/5 25/22
Circuit 5 | 61.7/45.6 15/5 32/17
Circuit 6 | 64.3/43.2 17/3 30/20

Circuit 7 | 23.3/19.6 10/1 16/9 |

Note: Timings were made on a Symbolics 3600.

In this experiment, Argo possessed sufficient metaknowledge,
in the form of static priorities on rules, dynamic preferences about
rules, and selective erases of assertions, to achieve a correct de-
sign without ever having to backtrack. It is unrealistic to ex-
pect that for large applications a design system will have enough
metaknowledge to guarantee correct designs without search. If
Argo possessed none of the above metaknowledge, then it would
have to explore many possible paths leading to a design solution
in order to locate a correct and complete design. Exhaustively
exploring these paths is also unrealistic, but it emphasizes the im-
portance of finding ways to reduce the size of the design space.
Macrorules and their abstractions provide just such a capability.

Macrorules, however, are a supplement to, not a replacement
for, the initial rules in an application. The initial rules apply in
many situations when macrorules do not. For applications requir-
ing little or no search, the presence of macrorules may actually
cause slower execution because more possibilities are considered
at each problem-solving step [15]. However, when an application
requires a search through many alternative paths, macrorules,
constituting compiled paths that have proven to be successful in
the past, provide dramatic improvements in efficiency.

5 Conclusions

The work reported here is based on developing the fundamental
methodology for a system, Argo [1,10], that reasons and learns
by analogy for solving search-intensive problems, such as those
in design. This methodology includes the use of design plans to
effect the analogical transfer of knowledge from a base problem to
a target problem, the use of abstract plans to allow the transfer of
experience to inexactly analogous target problems, an algorithm
for calculating macrorules for a design plan that allows the plan
to be retrieved and applied efficiently, and the definition of an
abstraction relation for partially ordering plans. A fundamental
hypothesis employed is that inexact analogies at one level of ab-
straction become exact analogies at a higher level of abstraction.

If design is viewed as state-space problem solving, then the
knowledge in any knowledge-based system for design can be cat-
egorized into three fundamental types: design knowledge, control
knowledge, and patching knowledge. Based on these categoriza-
tions, Argo learns control knowledge. This knowledge is implicit
in the design plans and their corresponding macrorules. It is bi-
ased by user preferences when Argo is guided interactively to a so-
lution and by rule priorities and preferences when Argo searches
automatically. Because Argo stores plans as rule-dependency
graphs, the control knowledge preserves user and system choices
based on logical, not temporal, precedence.

Argo is typically used as follows: a designer trains an applica-
tion system on a set of representative examples by making choices
as to which solution paths to pursue and manually controlling its
backtracking, essentially producing acceptable plans for achiev-
ing correct designs. Argo compiles these plans, at various lev-
els of abstraction, into a set of macrorules and maintains these
macrorules in the justification network of its JTMS. A knowledge-
based contradiction-resolution mechanism is used to revise and

update this network. Given a specification for a new design, Argo
attempts to find and apply the least abstract macrorule that is
appropriate. Note that less abstract macrorules require fewer ad-
ditional rules in order to complete a design. Using macrorules in
this manner, Argo drastically reduces the amount of automatic
search required for new design problems while still producing a
correct design.

Argo’s use of automatic-but-rigid versus manual-but-flexible
mechanisms limits it in several ways. As with other systems
employing explanation-based generalization, it cannot learn to
design anything outside of the deductive closure of its rule base,
because plans are built from an application’s domain rules. Its
scheme for abstracting plans is inflexible not only in its uniform
deletion of all leaf rules, but in preventing Argo from making
use of arbitrary parts of a plan. The system does, however, gain
leverage by independently computing macrorules for connected
subgraphs of the rule-dependency graph (corresponding to design
solutions for independent subproblems). Also, alternative pro-
cedures for formulating plan abstractions and constructing plan
hierarchies are being considered. Other work in progress includes
studying and implementing design system architectures embody-
ing analogical reasoning along with more explicit representations
of goals, plans, constraints, and contradictions [8].

References

[1] R. D. Acosta, M. N. Huhns, and S. Liuh, “Analogical Rea-
soning for Digital System Synthesis,” Proceedings of the
IEEE International Conference on Computer-Aided Design,
Santa Clara, CA, November 1986, pp. 173-176.

[2] D. C. Brown, Ezpert Systems for Design Problem-Solving
Using Design Refinement with Plan Selection and Redesign,
Ph.D. Dissertation, Department of Computer Science, The
Ohio State University, Columbus, OH, 1984.

[3] J. G. Carbonell, “Learning by Analogy: Formulating and
Generalizing Plans from Past Experience,” in Machine
Learning, An Artificial Intelligence Approach, Vol. I, R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, eds., Tioga
Press, Palo Alto, CA, 1983, pp. 137-161.

[4] J. G. Carbonell, “Derivational Analogy: A Theory of Re-

constructive Problem Solving agd Expertise Acquisition,”

in Machine Learning: An Artificial Intelligence Approach,

Vol. IL R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,

eds., Morgan Kaufmann, Los Altos, CA, 1986, pp. 371-392.

[5] G. DeJong and R. Mooney, “Explanation-Based Learning:

An Alternative View,” Machine Learning, vol. 1, no. 2, 1986,

pp. 145-176.

R. E. Fikes, P. Hart, and N. J. Nilsson, “Learning and Ex-
ecuting Generalized Robot Plans,” Artificial Intelligence,
vol. 3, 1972, pp. 251-288.

(6]

[7] D. Gentner, “Structure Mapping: A Theoretical Framework
for Analogy,” Cognitive Science, vol. 7, no. 2, April 1983,
pp. 155-170.

[8] M. A. Gray, “Implementing an Intelligent Design Machine
in a TMS-Based Inferencing System,” Proc. 1987 IEEE In-
ternational Conference on Systems, Man, and Cybernetics,
Alexandria, VA, October 1987, pp. 163-172.

[9] R. Greiner, Learning by Understanding Analogies,
Ph.D. Dissertation, Stanford University, Technical Report
STAN-CS-1071, Palo Alto, CA, September 1985.

151

[10] M. N. Huhns and R. D. Acosta, “Argo: An Analogical Rea-
soning System for Solving Design Problems,” MCC Techni-
cal Report No. AI/CAD-092-87, Microelectronics and Com-
puter Technology Corporation, Austin, TX, April 1987.

(11] S. Kedar-Cabelli, “Purpose-Directed Analogy,” Technical
Report ML-TR-1, Laboratory for Computer Science Re-
search, Rutgers University, New Brunswick, NJ, August
1985.

[12] T. J. Kowalski, An Artificial Intelligence Approach to VLSI
Design, Kluwer Academic Publishers, Hingam, MA, 1985.

(13] J. E. Laird, P. S. Rosenbloom, and A. Newell, “Chunking
in Soar: The Anatomy of a General Learning Mechanism,”
Machine Learning, vol. 1, no. 1, 1986, pp. 11-46.

[14] S. Liuh and M. N. Huhns, “Using a TMS for EBG,” MCC

Technical Report No. AI-445-86, Microelectronics and Com-

puter Technology Corporation, Austin, TX, December 1986.

[15] S. Minton, “Selectively Generalizing Plans for Problem-

Solving,” Proceedings of the Ninth International Joint Con-

ference on Artificial Intelligence, Los Angeles, CA, August

1985, pp. 596-599.

T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli,
“Explanation-Based Generalization: A Unifying View,” Ma-
chine Learning, vol. 1, no. 1, 1986, pp. 47-80.

[16]

[17] T. M. Mitchell, S. Mahadevan, and L. I. Steinberg, “LEAP:
A Learning Apprentice for VLSI Design,” Proceedings of the
Ninth International Joint Conference on Artificial Intelli-
gence, Los Angeles, CA, August 1985, pp. 573-580.

[18) T. M. Mitchell, L. I Steinberg, and J. S. Shulman, “A
Knowledge-Based Approach to Design,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-7,
no. 5, September 1985, pp. 502-510.

[19] 5. Mittal and A. Araya, “A Knowledge-Based Framework for
Design,” Proceedings AAAILSE, Philadelphia, PA, August
1986, pp. 856-865.

[20] J. Mostow and M. Barley, “Automated Reuse of Design
Plans,” International Conference on Engineering Design,
Boston, MA, August 1987,

[21] C. J. Petrie, D. M. Russinoff, and D. D. Steiner, “PRO-
TEUS: A Default Reasoning Perspective,” Proceedings of the
5th Generation Computer Conference, National Institute for
Software, Washington, D.C., October 1986.

[22] E. D. Sacerdoti, “Planning in a Hierarchy of Abstraction
Spaces,” Artificial Intelligence, vol. 5, no. 2, 1974, pp. 115-
135.

(23] L. I Steinberg and T. M. Mitchell, “The Redesign System:
A Knowledge-Based Approach to VLSI CAD,” IEEF Design
and Test, vol. 2, no. 1, February 1985, pp- 45-54.

[24

o

“VHDL: The VHSIC Hardware Description Language,”

IEEE Design and Test of Computers, vol. 3, no. 2, April

1986.

[25] P. H. Winston, “Learning by Augmenting Rules and Accu-

mulating Censors,” in Machine Learning, An Artificial In-

gagigfgge Approach, Vol. II, Morgan Kaufman, Los Altos,
s 5.

. | /\/< (chae f /\) rt-(u[m.s

Proceedings

The Fourth Conference
on Artificial Intelligence
Applications

Sponsored by the Computer Soclety of the IEEE
in cooperation with the American Association of Artificial Intelligence

Sheraton Harbor Isiand Hotel, San Diego, California - March 14-18, 1988

THE COMPUTER SOCIETY C §8‘l\:/:pu\'{rEn
OF THE IEEE IEEE THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC. ansEsT)

