
 Abstract—Societal information systems are intended to assist 
the members of  a  society  in dealing with the complexities  of 
their  interactions  with  each  other,  especially  regarding  the 
resources they share. Because the members are distributed and 
autonomous, we believe that software agents, having these same 
characteristics,  are  a  natural  basis  for  representing  the 
members and their interests in a societal information system. 
This  paper  describes  a  simulation of  an agent-based societal 
information system for healthcare.  Our design methodology is 
based on agent-oriented modeling, which we apply to analyze 
and  design  the  system  and  its  simulation.  We  execute  the 
simulation to investigate four different strategies for assisting a 
person in choosing a physician,  combined with three waiting 
strategies in three common social network models. The results 
show  that  the  societal  information  system  can  decrease  the 
number  of  annual  sick  days  per  person  by  0.42-1.84  days 
compared with choosing a physician randomly.

I. INTRODUCTION

HIS article  concerns  the  simulation  of  a  societal 
information  system  in  the  domain  of  healthcare.  A 

societal  information  system  is  a  large-scale  information 
system that gathers information from hundreds or thousands 
of  individual  entities.  Such  systems  can  be  abstracted  as 
graphs with nodes representing individual entities and edges 
representing relationships between them. The purpose of a 
societal  information  system is  to  affect  the  behavior  of  a 
node by means of information retrieved from other  nodes. 
Nowadays,  a  person’s  behavior  is  influenced  by  social 
networking  services,  such  as  Facebook.  However,  the 
amount of information to be comprehended and utilized in 
such  services  can  be  overwhelming for  users.  To  further 
automate  sharing  and  processing  of  information  within  a 
large social network or a societal information system, we are 
investigating  supporting  each  node  in  the  network  by  a 
software  agent.  Software  agents  are  autonomous 
computational entities that can be viewed as perceiving their 
environment  through  sensors  and  acting  upon  their 
environment  through  effectors.  To  say  that  agents  are 
computational  entities  simply  means  that  they  physically 
exist in the form of programs that run on computing devices. 
To say that they are autonomous entities means that to some 
extent  they have  control  over  their  behavior  and  can  act 
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without the intervention of humans or other systems. Agents 
pursue goals or carry out tasks in order to meet their design 
objectives,  and  in  general  these  goals  and  tasks  can  be 
supplementary as  well  as  conflicting  [1],  [2].  Agents  can 
form commitments and act on behalf of individuals and form 
multiagent  systems (MAS).  We view agent-based  societal 
information systems as multiagent systems.

Societal  information systems are  appropriate  for  a  wide 
variety  of  problems,  including  regulation  (e.g.,  banking), 
allocation  of  scarce  resources  (e.g.,  electric  power  and 
parking spaces), distributed situation assessment (e.g., urban 
air quality),  system control  (e.g.,  traffic management, both 
vehicular  and  telecommunication),  and  decentralized 
decision-making (e.g.,  choosing medical  care).  This article 
addresses  simulating  a  societal  information  system in  the 
area of decentralized decision-making for healthcare. 

Healthcare  decision-making is  done  in  many developed 
countries  in  the  context  of  a  healthcare  quadruple,  which 
consists of (1) patients, (2) healthcare providers (hospitals, 
health  centers,  labs,  etc.)  and  provider  networks,  (3) 
insurance  companies,  and  (4)  the  government.  There  is  a 
variety  of  information  systems  available  to  support 
healthcare  providers,  provider  networks,  government 
healthcare agencies, and insurance companies, but  none to 
support  patients.  Because patients  are  naturally distributed 
and are typically willing to assist each other, societal agent-
based information systems instead of centralized information 
systems  would  be  appropriate  for  fostering  this  mutual 
assistance.  In  such  systems,  each  patient  would  be 
represented by a software agent. The agent would assist its 
principal  in health-related activities,  such as understanding 
and  interpreting  insurance  rules,  finding  the  most  cost-
effective  insurer,  finding  a  good  healthcare  provider, 
providing  advice  on  cost-effective  drugs  and  care,  and 
monitoring  the  spread  of  disease  symptoms  and  their 
treatments.  Feedback  and  information  sharing  among 
patients would be used extensively in such systems.

Investigating societal information systems for healthcare is 
a broad research area. Moreover, it is difficult to experiment 
with  such  information  systems  in  a  society,  especially 
because  patients’  health,  privacy,  and  rights  must  be 
considered.  We  therefore  have  relied  on  simulations  for 
prototyping and evaluating. 
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This article is organized as follows. First, we explain the 
method  we  use  for  prototyping  the  societal  healthcare 
information system – agent-oriented modeling. Second, we 
describe briefly how agent-oriented modeling is applied to 
design  a  simulation  of  a  societal  information  system  for 
healthcare running on the NetLogo platform [3]. Third, we 
analyze and explain the simulation results. We conclude by 
comparing the outcomes of using different strategies in the 
healthcare system and discussing the benefits of a societal 
information system for healthcare.

II. RELATED WORK

Multiagent  systems  are  widely  used  in  different  areas, 
such as tracking goods, traffic control, consensus knowledge, 
and  decision-making [4].  One of  the  interesting areas  for 
applying a MAS is healthcare. 

Nealon  and  Moreno  [5]  analyze  features  of  healthcare 
problems, including the distributed nature of the knowledge 
that is needed to solve a problem, coordination, complexity, 
and  so  on.  They  claim  that  a  MAS  is  an  appropriate 
approach to tackle healthcare problems and could be used 
for  patient  scheduling,  organ  and  tissue  transplant 
management,  community  care,  information  access,  and 
decision  support  systems.  Isern  et  al.  [6]  compare  the 
internal architecture and communication-based coordination 
techniques of fifteen healthcare-related agent-based systems 
and  claim  that  agent-based  systems  increase  reusability, 
flexibility,  and other  beneficial  qualities as compared  with 
centralized software systems, such as client-server systems. 

MASs  are  also  broadly  used  in  home-care  systems. 
Koutkias  et  al.  [7]  present  a  MAS  for  monitoring  and 
detecting important cases for disease management. Isern et 
al. [8] describe the K4Care Home Care model, which uses an 
agent-based platform. Grund et al. [9] describe a multiagent 
monitoring  system  that  uses  data  mining  techniques  to 
determine the status of a patient. Charfeddine [10] introduces 
an agent-oriented framework to simulate the population of a 
chronic disease.

In the work most closely related to ours, Udupi and Singh 
[11] use conceptual models in a societal information system 
to  implement  a  peer-to-peer  network  in  which  an  agent 
contacts other agents to discover suitable service providers. 
It  uses InterPol,  a  language and framework for  supporting 
different  kinds  of  interaction  policies  between  agents.  In 
[12],  we  described  the  modeling  method  of  our  societal 
information system. 

There  are  several  websites,  similar  to  RateMDs  [13], 
where people rate doctors according to punctuality, medical 
knowledge, and other characteristics, and add comments. As 
we explain later,  our  approach  differs  from such websites 
and has advantages.

III. METHODOLOGY

This  article  focuses  on  designing  societal  information 
systems of a particular kind – societal information systems 
for  finding  an  appropriate  physician  and  finding  out  the 
benefits to do so. We use the case study method [12] and 
explore by rapid prototyping the design of a simulation of a 
societal  information  system  for  healthcare.  Rapid 
prototyping  stands  for  implementing  a  proof-of-concept 
prototype in an agile way by directly mapping the modeling 
constructs to the constructs of a scripting environment like 
Netlogo or some agent-oriented environment like JADE. The 
method we use for prototyping is agent-oriented modeling. 
Agent-oriented modeling as  described  in [14]  is  a  holistic 
approach for analyzing, designing, and rapid prototyping of 
societal  information  systems  consisting  of  humans  and 
technical  components.  We  have  chosen  agent-oriented 
modeling  because  it  is  geared  towards  prototyping 
distributed systems that are open, adaptive, and intelligent. 
Societal  information  systems  are  open systems  because 
members  of  the  society  (e.g.,  commuters,  patients,  or 
shoppers)  may  join  and  leave  the  system  at  any  time. 
Societal information systems are  adaptive systems, because 
they should react to their constantly changing environment, 
which for example can take the form of changes in traffic 
infrastructure, health insurance coverage, and product prices. 
We  also  term  societal  information  systems  as  intelligent 
systems, because they reflect the “wisdom of crowds” when 
recommending a patient, for example, a healthcare provider. 
In  addition,  agent-oriented  modeling  meets  well  the 
requirements for purposefulness and understandability of the 
design.

A set of canonical models are introduced in agent-oriented 
modeling, whose types are shown in Table I. In addition to 
representing each model with an abstraction layer (analysis, 
design,  or  prototyping),  Table  I  maps  each  model  to  the 
vertical  viewpoint  aspect  of  interaction,  information,  or 
behavior.  Each  cell  in  the  table  represents  a  specific 
viewpoint.  We  explain  these  viewpoints  in  the  following 
paragraphs.

From the viewpoint of  interaction analysis,  role models 
represent  the  properties  of  roles  and  the  relationships 
between the roles are represented by an organization model. 
From the viewpoint of information analysis, a domain model 
represents  the  knowledge  to  be  handled  by  the  societal 
information  system.  From  the  viewpoint  of  behavior  
analysis, a  goal model is a container of three components: 
goals, quality goals, and roles.  

From the viewpoint of  interaction design,  agent  models 
transform the  abstract  constructs  from the  analysis  stage, 
roles,  to  design  constructs,  agent  types,  which  will  be 
realized in the implementation process.  Interaction models 
are  used  to  express  interaction  patterns  between  agents. 
From  the  viewpoint  of  information  design,  knowledge  
models represent  both  private  and  shared  knowledge  of 
agents. From the viewpoint of  behavior design,  behavioral  



scenarios are used to show how agents make decisions and 
perform activities [15]. 

Modeling  at  the  abstraction  layer  of  prototyping  is 
explained in Section IV. 

Fig. 1 shows the goal model of our societal information 
system  for  healthcare,  in  which  rectangles  stand  for 
functional goals and clouds stand for quality goals. The stick 
figures  represent  roles  that  are  required  for  achieving the 
goals.  As can be seen from Fig. 1,  from the viewpoint  of 
behavior  analysis,  our  societal  healthcare  information 
system  focuses  on  the  purpose  of  “Allocate  Healthcare 
Resources” among the members of the society. Specifically, 
we study the  allocation  of  physicians  –  a  special  kind  of 
healthcare resource. Achieving the functional goal “Allocate 
Healthcare Resources” is characterized by the quality goal 
“Maximal  Societal  Health”,  which  determines  the  quality 
criterion according to which healthcare resources should be 
allocated in a society. 

To  accomplish  the  purpose  “Allocate  Healthcare 
Resources”  of  the  societal  information  system,  its  four 
subgoals need to be achieved: finding a healthcare provider, 
being  provided  with  care,  evaluating  the  care,  and 
recommending healthcare providers to other patients. As we 
demonstrate  below,  to  fulfill  the  goal  “Find  Healthcare 
Provider”,  a  patient  recursively  asks  her  friends,  friends’ 
friends, and so forth for recommendations and chooses the 
best  physician  recommended.  This  is  represented  as  two 
subgoals of “Find Healthcare Provider:” “Ask Friends” and 
“Choose.” 

We  attach  a  number  of  quality  goals  to  the  functional 
goals in the goal model. The meanings of the quality goals 
are  easy  to  understand.  For  example,  “Quickly”  means  a 
patient  wants  to  find  a  healthcare  provider  as  soon  as 
possible.  The “Anonymous” quality goal  expresses that no 
evaluation by a patient should identify the patient. It should 
be noted that the quality goal “In the Context” attached to 
the functional goal “Evaluate” represents that evaluation has 
to occur in the context of receiving the service,  preferably 
before leaving the facilities of the healthcare provider or at 
least on the same day. The “Processable” quality goal means 
that the evaluation should be presented in a form amenable 
to computer  processing. In  our simulation, we use a scale 
from 1 to 5 to measure the evaluations. 

According  to  Fig.  1,  we  model  two  roles  for  our 
simulation – Patient and Healthcare Provider. There is also a 
third  role  –  Government.  Since  our  work  focuses  on  the 
particular aspect of the U.S. healthcare domain dealing with 
how a  patient  finds a  physician,  rather  than modeling the 
healthcare  domain  in  its  full  complexity,  the  Government 
role’s  modeling  is  not  relevant  to  the  simulation  system 
being designed and we ignore the Government role in our 
system. Additionally,  we complement the goal  model with 
the new Assistant role,  which is not shown in Fig.  1.  The 
Assistant role is the assistant of a person and is responsible 
for  asking  friends  for  recommendations,  choosing  a 
healthcare provider, and assisting in evaluating the care. In 
the prototypical system being designed, the role of Assistant 
should obviously be mapped to the Assistant Agent software 
agent type. Since a patient is a real human that is treated by 
another real human – a physician – we map both the roles 
Patient and Healthcare Provider to the Human Agent type. 
The  software  system boundary of  the  societal  information 
system is obviously between the roles Patient and Assistant. 

From  the  viewpoint  of  interaction  analysis,  the 
organization model of the societal information system being 
designed is decided based on the three kinds of networks that 
are  used  for  representing  the  relationships  among  the 
members of the society:

- Random network:  the  relationships  between  pairs  of 
patients are created randomly.

TABLE I.
THE MODEL TYPES OF AGENT-ORIENTED MODELING

Viewpoint aspect

Abstraction  
layer

Interaction Information Behavior

Analysis Role models and 
organization 
model

Domain model Goal models 

Design Agent models 
and interaction 
models

Knowledge 
models

Behavioral 
scenarios

Prototyping Interaction 
prototyping

Information 
prototyping

Behavior 
prototyping

Patient

Allocate
Healthcare 
Resources

Healthcare
Provider

Maximal
Societal Health

GovernmentQuickly

Find 
Healthcare
Provider

Ask Friends Choose

Good Quality 
Provider

Provide Care Evaluate

Discrete Easy

Recommend

Being Good 
Citizen

Anonymous

Appropriate

ProcessableIn the Context

Fig. 1 The goal model of the societal information system



- Small-world network: most nodes are not neighbors to 
one another, but most nodes can be reached from any other 
node by a small number of hops [16].

- Scale-free  network:  the  shortest  paths  between nodes 
flow through hubs, and if a peripheral node is deleted, it is 
unlikely  that  this  will  interfere  with  passing  a  message 
between other peripheral nodes. 

We use  the  Barabási–Albert  model  [17]  to  construct  a 
scale-free network for our simulation. A scale-free network 
is a common model for a collaboration network.

After  covering  the  viewpoints  of  behavior  analysis  and 
interaction  analysis,  we next  proceed  to  the  viewpoint  of 
information  analysis by  addressing  the  knowledge  to  be 
represented within the system. We do this by identifying the 
types  of  knowledge  entities  related  to  the  roles.  As  each 
healthcare provider has predefined capacity and efficiency, 
which are explained in Section IV, we attach the Capacity 
and  Efficiency  knowledge  entity  types  to  the  Healthcare 
Provider role. 

We now proceed to the viewpoint of  interaction design. 
Finding a physician involves interactions between Assistant 
Agents representing patients. We represent these interactions 
as  an  interaction  protocol  between  agents  of  the  type 
Assistant  Agent.  It  is  appropriate  to  remind here  that  the 
difference between an interaction protocol and other kinds of 
interaction  models  is  that  an  interaction  protocol  models 
some  aspects  of  the  agent  behaviors  along  with  their 
interactions [14]. 

Representing  the  interaction  protocol  of  the  societal 
healthcare information system is very important, because it 
describes the patient’s strategy of choosing a physician. We 
explored the following four possible strategies:

- Random  strategy.  The  patient’s  Assistant  Agent 
randomly chooses a physician.

- The  “Choose  one”  strategy.  The  patient’s  Assistant 
Agent chooses the best physician according to the patient’s 
evaluations for physicians. If the patient has no evaluations, 
his/her Assistant Agent asks his/her friends’ Assistant Agents 
for recommendations.  The Assistant Agent acting on behalf 
of the patient’s friend may deal with the request in one of the 
following ways:

o Reply with a recommendation.
o Provide  the  requesting agent  with the  address  of  the 

Assistant Agent of one of its principal’s friends if there is no 
recommendation to give. This process continues recursively 
until  the  first  recommendation  is  received  or  until  all  the 
friends down to the maximum forwarding depth have been 
asked.  The  forwarding  depth  is  defined  as  follows:  the 
originator’s friends are at depth 1; the originator’s friends’ 
friends at depth 2, and so on.

Fig.  2  presents  the interaction protocol  among patients’ 
Assistant  Agents for  the “Choose one” strategy.  It  models 
that  the Assistant Agent of a patient’s friend may respond 
with a recommendation or recommend the Assistant Agent of 
the  friend’s  friend.  This  means the  interaction  protocol  is 

recursive,  which  is  represented  by the  “Loop”  behavioral 
construct.  A  friend’s  Assistant  Agent  may  also  ignore  a 
request, which is not shown in the figure.

In addition to the random and “Choose one” strategies, we 
have  included  in  our  simulations  the  “Borda  voting”  and 
“Add and minimize” strategies. These strategies are briefly 
described as follows:

- The  “Borda  voting”  strategy.  The  patient’s  Assistant 
Agent asks his/her friends’ Assistant Agents, who are closer 
than  a  specified  limit,  for  recommendations.  A  friend’s 
Assistant  Agent  may  choose  to  answer  or  refrain  from 
answering just like with the “Choose one” strategy. After the 
patient’s Assistant Agent has received all  the responses, it 
calculates  for  each  physician  the  Borda  count  [a  single-
winner election method in which voters rank candidates in 
order  of  preference,  named  for  the  18th-century  French 
mathematician and political scientist Jean-Charles de Borda, 
who  devised  the  system  in  1770],  according  to  which  a 
physician is given a number of points equal to the number of 
physicians whose evaluations are worse than the evaluations 
of the given physician. Thereafter the agent adds up all the 
points  gained  by the physician in question.  The physician 
with the highest score is chosen.
  - The “Add and minimize” strategy, which has the same 
procedure  for  getting  recommendations  as  the  “Borda 
voting”  strategy.  After  the  patient’s  Assistant  Agent  has 
received  all  the  responses,  it  adds  up  all  the  non-zero 
evaluations and calculates the mean value of them for each 
physician. Then the Assistant Agent chooses the physician 
with the minimum mean evaluation. Choosing the physician 
with the minimum value is  due  to  the way we define the 
evaluation, as described in Section IV.

From  the  viewpoint  of  behavior  design,  to  model  the 
behaviors  of  agents  of  the  decided  types,  we  transform 
responsibilities  of  the  roles  into  activities  attached  to  the 
agent types. As a result, we obtain behavioral scenarios for 
agents  playing  the  roles  Patient,  Assistant,  and  Physician. 

Assistant Agent 
of Person A

Assistant Agent 
of Person X

Loop
[i=0; i<=depth-1; X=Y]

Option A

Option B

Can you recommend a physician?

I recommend Physician P.
Exit the loop.

I don’t have a recommendation.
Please ask Assistant Agent of Person Y.

Interaction 
Protocol

Fig. 2 The interaction protocol for “Choose one” strategy



For example, the behavioral scenario of an agent of the type 
Assistant  Agent playing the role Assistant models that  the 
activities “Find a physician” and “Evaluate” are performed 
sequentially.  In  societal  information  system for  healthcare 
this is always the case, because the Assistant Agent does not 
perform  any  activities  between  these  activities  while  a 
patient is attended by a physician. 

Another  aspect  of  the  Assistant  Agent’s  behavior  in 
choosing a physician deals with what the agent should do if 
the physician is not  available  on the given day.  We have 
decided to consider the following three waiting strategies of 
a patient:

- Waiting. The patient’s Assistant Agent chooses the best 
physician by adopting one of  the strategies  of  choosing a 
physician explained above and sticks to this choice.  If  the 
physician is busy, the patient will still make an appointment 
with the physician and will wait until the physician becomes 
available.

- No  waiting.  If  the  physician  chosen  is  busy,  the 
patient’s Assistant Agent will choose a physician randomly 
according  to  the  “Random”  strategy  or  the  next  best 
physician  according  to  the  other  physician-choosing 
strategies until it finds an available physician.

- Waiting  with  limit.  If  the  physician  chosen  is  not 
available,  the patient’s Assistant Agent will check whether 
the physician could be reached in a certain number of days. 
If  it  is possible,  the patient will make an appointment and 
wait.  If  not,  the  Assistant  Agent  will  choose  another 
physician according to the rules of the same waiting strategy. 
If no physician is available in a certain number of days, the 
Assistant Agent will choose a physician who has the smallest 
number of days required for waiting.

Finally,  distinguishing  between  private  and  public 
knowledge entities from the viewpoint of information design 
is straightforward, because the knowledge entity Evaluation 
is private to the patient and Assistant Agent helping him/her, 
while  the  knowledge  entity  Recommendation  is  shared 
between different patients and instances of Assistant Agent. 
Similarly, the knowledge entity Efficiency is private to each 
Healthcare Provider, but at the same time naturally forms a 
basis for how patients evaluate healthcare providers.

We  describe  models  including  role  models,  the 
organization model, and the domain model in detail in [12].

IV. EVALUATION

A. Simulation Settings

We next describe from the three viewpoints introduced in 
Section  III  how we mapped agent-oriented  models  of  the 
societal information system to the programming constructs of 
the simulation environment – NetLogo.

From  the  viewpoint  of  information  prototyping,  we 
represented the knowledge entities decided by agent-oriented 
modeling as described in Section III as follows:

- The  Capacity  knowledge  entity  –  in  terms  of  the 
number of patients per day that a given physician can handle.

- The  Efficiency  knowledge  entity  –  in  terms  of  the 
number of days that it takes for a given physician to cure a 
patient. This number of days is generated for each physician 
according to a normal distribution whose mean and standard 
deviation can be adjusted in the user interface.

- The  Evaluation  knowledge  entity  –  in  terms  of  the 
following variables:

o The number of days the physician in question failed to 
handle  a  given  patient.  How  this  value  is  determined  is 
explained below.

o The number of days that the physician needed to cure a 
patient. This is determined by the Efficiency knowledge item 
pertaining to the physician.

o A  random  component  representing  that  different 
patients evaluate the same physician differently.

A  patient’s  evaluation  for  a  specific  physician  is 
calculated by adding these three factors. For example, let us 
assume that a patient gets sick today and decides to visit a 
physician chosen by her Assistant Agent, but the physician is 
busy and cannot see the patient until tomorrow. In this case, 
the  value  of  the  first  factor  –  the  number  of  days  the 
physician in question failed to handle a given patient – is 1, 
because the patient had to wait for 1 day to see the physician. 
The second factor – the number of days that the physician 
requires to cure the patient – is a fixed number related to the 
physician  in  question.  The  third  factor  –  the  random 
component expressing the subjective factor  – is  a  random 
value that varies between -0.5 and 0.5.

The  viewpoint  of  behavior  prototyping covers  the 
behaviors  of  software  agents  representing  patients  and 
physicians.  In  accordance  with  the  behavioral  scenarios 
modeled  as  a  part  of  the  design  described  in  Section  III,  
every day the patients each try to decide which physician to 
visit. For each patient, the Assistant Agent acting on behalf 
of its principal may ask Assistant Agents of the principal’s 
friends for recommendations and then makes a decision as to 
which physician the principal should visit. 

From  the  viewpoint  of  interaction  prototyping,  the 
exchange  of  messages  to  be  implemented  is  modeled 
according to interaction diagrams, such as the one in Fig. 2 
for  the  case  of  choosing  a  physician  according  to  the 
“Choose  one”  strategy.  To  make  our  simulations  more 
realistic,  we have  chosen  a  20% probability that  a  friend 
would ignore the patient’s request.

Back  to  the  viewpoint  of  behavior  prototyping,  the 
software  agent  corresponding  to  the  Assistant  Agent 
recommends physicians based on evaluations. The agent can 
recommend  only  those  physicians  that  its  principal  has 
actually visited in the simulation. The number of days the 
physician  in  question  could  not  handle  the  given  patient, 
because of the physician’s exceeded capacity, accumulates in 
the patient’s evaluation until  the patient  actually visits  the 
given physician. On each new visit the agent “forgets” its 



previous evaluation and updates its knowledge base with the 
new  evaluation.  The  reason  why  the  agent  forgets  its 
previous evaluation is that during the time period between 
the previous evaluation and the new evaluation, factors that 
influence the evaluation may have occurred.  For  example, 
the physician may have become more skilled. Therefore it is 
fairer to use the latest evaluation.

To make our simulations as realistic as possible, we used 
the  following  statistical  data  by  the  Centers  for  Disease 
Control and Prevention (CDC) from the year 2008 [18]:

- The number of physician office visits per  100 people 
per year: 320.1.

- The number of physicians per 10,000 people: 26.
Based on the above data, we obtained the average number 

of people who get sick every day by dividing the number of 
visits  per  10,000  people  by  250,  which  is  the  standard 
number of working days in a calendar year in the U.S. As a 
result,  128  people  out  of  a  population of  10,000 get  sick 
every day.

B. Results and Evaluation

We  simulated  365  days  with  5,000  patients  and  13 
physicians.  In  our  simulation,  64  random people  get  sick 
every day. The value of the local variable of each physician’s 
software  agent  corresponding  to  the  Capacity  knowledge 
entity was set to 8 patients per day. The value of the local 
variable of each physician’s software agent corresponding to 
the Efficiency knowledge entity was determined randomly 
according to a normal distribution with mean value 3 days 
and with the value of deviation as 2.0.

Fig. 3 describes the number of days needed for curing by 
different physicians in our simulations.

We  performed  simulations  by  combining  the  types  of 
social  networks  explained  in  Section  III  with  different 
strategies  of  choosing  a  physician  and  waiting  strategies, 
which are  both described  in Section III.  The results  from 
simulations in terms of the annual sick days per person and 
leftover patients who were not taken care of by the end of the 
last day simulated are represented in Tables II - VII. 

Fig. 3 Days needed to be cured by different physicians

TABLE III.
LEFTOVER PATIENTS FOR RANDOM NETWORK

Waiting No-waiting Waiting-with-limit

Random 0 0 0

Choose one 427 0 80

Borda voting 4569 0 96

Add and minimize 155 0 94

TABLE IV.
AVERAGE SICK DAYS FOR SMALL-WORLD NETWORK

Waiting No-waiting Waiting-with-limit

Random 6.79 6.78 6.79

Choose one 10.31 5.22 6.31

Borda voting 7.63 6.58 6.83

Add and minimize 9.59 4.96 6.34

TABLE II.
AVERAGE SICK DAYS FOR RANDOM NETWORK

Waiting No-waiting Waiting-with-limit

Random 6.8 6.78 6.80

Choose one 12.18 5.21 6.34

Borda voting 34.75 6.01 8.31

Add and minimize 10.17 4.94 6.37

TABLE V.
LEFTOVER PATIENTS FOR SMALL-WORLD NETWORK

Waiting No-waiting Waiting-with-limit

Random 0 0 0

Choose one 407 0 71

Borda voting 76 0 25

Add and minimize 239 0 93

TABLE VI.
AVERAGE SICK DAYS FOR SCALE-FREE NETWORK

Waiting No-waiting Waiting-with-limit

Random 6.79 6.74 6.77

Choose one 13.72 5.29 6.33

Borda voting 38.56 6.49 9.92

Add and minimize 9.41 4.92 6.35

TABLE VII.
LEFTOVER PATIENTS FOR SCALE-FREE NETWORK

Waiting No-waiting Waiting-with-limit

Random 1 0 2

Choose one 686 0 78

Borda voting 4449 0 110

Add and minimize 255 0 96



We can see from Tables II - VII that if a patient adopts the 
“Waiting” strategy, the “Random” strategy will outperform 
all  the  other  strategies  of  choosing  a  physician  in  social 
networks  of  all  three  kinds  addressed.  This  is  the  case 
because in all the other strategies, a patient always waits for 
the  best  physician  chosen  by  her  Assistant  Agent,  which 
increases the waiting days and accordingly sick days. Also, 
because  the  Random  strategy  leads  to  even  visiting  of 
physicians, it has no leftover patients, but there are leftover 
patients in the other three strategies.  

The  performance  of  the  “Borda  voting”  strategy is  the 
worst in all three kinds of social networks addressed, except 
for  the  combination  of  the  “Borda  voting”  strategy  and 
“Waiting” strategy in  the small  world network, because it 
uses  more evaluation information than the other  strategies 
due to its method for calculating the votes for physicians. 

Differently from the  “Borda  voting”  strategy,  the  “Add 
and minimize” strategy uses less information because it does 
not  consider  the physicians who have not  been evaluated. 
The patients whose Assistant Agents follow the “Add and 
minimize” strategy therefore tend to choose physicians with 
fewer  days  required  for  curing,  as  compared  with  other 
physician  choosing  strategies,  and  then  wait  for  that 
physician chosen, which increases the number of sick days.

If  the  “No  waiting”  strategy  is  adopted,  all  the  other 
strategies  will  outperform the  “Random” strategy.  This  is 
because  the  patients’  Assistant  Agents  consider  the 
evaluations by their principals’ friends and choose the best 
physicians, and there is no problem of waiting.

If  the  “Waiting  with  limit”  strategy  is  adopted,  the 
“Choose  one”  and  “Add  and  minimize”  strategies  of 
choosing a physician show the best performance. However, 
these  strategies  result  in  more  leftover  patients  than  the 
random  strategy.  This  is  reasonable,  since  according  to 
“Choose one” and “Add and minimize” strategies a patient 
may be willing to wait for a good physician if the waiting 
time is less than 2 days, leading to just a few leftover patients 
and less average annual sick days.

According  to  the  “Random”  strategy  of  choosing  a 
physician, patients’ Assistant Agents just choose physicians 
randomly and each physician has almost the same number of 
patients in total. For the other three strategies, as time passes, 
Assistant agents gradually gather enough information about 
physicians,  evaluate them, and recommend to their  friends 
the  best  physicians  they  are  aware  of.  As  a  result,  after 
patients  have  formed  their  opinions  about  the  physicians, 
good physicians get full capacity of patients every day and 
bad  physicians  get  only  a  few  patients.  Due  to  space 
limitations, the graphs showing this trend are not shown here.

We also performed simulations with fewer physicians to 
check whether the claims stated above still hold. We adopted 
the  “Choose  one”  and  “Add  and  minimize”  strategies  of 
choosing a physician and “No waiting” and “Waiting with 
limit” strategies for conducting simulation experiments with 
7  physicians.  Table  VIII  shows  the  results  in  terms  of 

average  sick  days.  We can  see  that  for  the  “No waiting” 
strategy,  the  “Choose  one”  and  “Add  and  minimize” 
strategies of choosing a physician still  perform better than 
the combination of “Random” and “No waiting” strategies. 
This is because a patient’s Assistant Agent first chooses a 
physician who requires less days for curing and only then 
randomly chooses a physician if the patient has to wait. 

Table  VIII  also  shows  that  the  combination  of  the 
“Waiting with limit” strategy and all strategies for choosing a 
physician yields almost the same result.

TABLE VIII.
AVERAGE SICK DAYS WITH SEVEN PHYSICIANS

No-waiting Waiting-with-limit

Random 28.01 19.23

Chose one 26.15 19.24

Add and minimize 18.33 19.24

In addition, we investigated the performance of a system 
having a lower probability that  the friends of a  patient  in 
small world network will answer a request, which are shown 
in the following two tables. The “Random” strategy is shown 
here because it is not influenced by the probability.

Comparing Table IV with these two tables, we discovered 
that  the  conclusions  before  still  hold.  To  clarify this,  we 
include Table XI, which denotes the changing trend of the 
average sick days while the probability is decreasing. In the 
table, “+” means increasing and “-” means decreasing. We 
can  see  from the  table  that  for  “Add and  minimize”,  the 
average sick days increases while the probability decreases, 
because patients gets fewer responses from friends, leading 
to less-informed decisions. For the “Borda voting” strategy, 
the  average  sick  days  decreases  while  the  probability 
decreases.  As  mentioned  before,  due  to  the  way that  the 
“Borda voting” strategy gets the evaluation and calculates, it 

TABLE IX.
AVERAGE SICK DAYS WITH PROBABILITY = 0.6

Waiting No-waiting Waiting-with-limit

Choose one 9.86 5.31 6.29

Borda voting 7.60 6.26 6.60

Add and minimize 9.75 5.01 6.37

TABLE X.
AVERAGE SICK DAYS WITH PROBABILITY = 0.4

Waiting No-waiting Waiting-with-limit

Choose one 8.72 5.42 6.24

Borda voting 7.05 6.07 6.42

Add and minimize 10.38 5.14 6.40



always gets too much information and lead to worse results 
than other strategies. So when the information is less with 
decreasing probability, we have better results of less average 
sick  days.  There’s  no  fixed  trend  for  a  certain  waiting 
strategy with different physician choosing strategies.

V.  CONCLUSIONS

This paper describes the design and rapid prototyping of a 
societal  information  system for  healthcare.  Agent-oriented 
modeling was chosen for developing our simulation because 
it  explicitly  addresses  the  design  of  societal  information 
systems where  the  activities  of  humans  are  supported  by 
software agents.

We  investigated  the  prototyped  societal  healthcare 
information  system  using  agent-based  simulations  on  the 
NetLogo platform. The NetLogo code for the simulation can 
be  found  in  [19].  In  the  simulation,  we  investigated  the 
influence  of  different  strategies  of  finding  an  appropriate 
physician and different waiting strategies in three common 
social  network  models.  Our  prototype  revealed  that  if  a 
patient adopts the “Waiting” strategy, the “Random” strategy 
will  outperform  all  the  other  strategies  of  choosing  a 
physician. On the other hand, with the “No waiting” strategy, 
all  the  other  strategies  will  outperform  the  “Random” 
strategy. If the “Waiting with limit” strategy is adopted, the 
“Choose one” and “Add and minimize” strategies will show 
the  best  performance.  We  found  that  by  adopting  the 
“Choose one” or “Add and minimize” strategy, in the “No-
waiting” and “Waiting-with-limit” case, the average number 
of  sick  days  can  be  reduced  by 0.42-1.84  days  or  6.2%-
27.1%.

Our  societal  information  system differs  from RateMDs 
and other similar websites where people can rate  and find 
physicians in  the  way that  people  rate  the  physicians and 
patients interact. It is difficult to compare the effect of these 
websites and that of our system, mostly because there are no 
objective evaluation statistics on the websites,  such as the 
length of time each patient takes to get cured during a period. 
Such websites use more flexible criteria on which different 
people  might have different  opinions,  such as  punctuality, 
medical knowledge, and time spent on a patient, while our 
system uses the time it takes to cure a patient as a criterion, 
which is more objective and meaningful. Although patients 
might access more ratings online, they usually do not know 
the  people  who have  rated  the  physicians  and  there  is  a 
higher  possibility that  the  ratings  will  not  be  truthful  and 

accurate.  In  our  system,  a  patient  relies  on  friends’ 
recommendations, which are typically more reliable.
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