
 Abstract—Societal information systems are intended to assist
the members of a society in dealing with the complexities of
their interactions with each other, especially regarding the
resources they share. Because the members are distributed and
autonomous, we believe that software agents, having these same
characteristics, are a natural basis for representing the
members and their interests in a societal information system.
This paper describes a simulation of an agent-based societal
information system for healthcare. Our design methodology is
based on agent-oriented modeling, which we apply to analyze
and design the system and its simulation. We execute the
simulation to investigate four different strategies for assisting a
person in choosing a physician, combined with three waiting
strategies in three common social network models. The results
show that the societal information system can decrease the
number of annual sick days per person by 0.42-1.84 days
compared with choosing a physician randomly.

I. INTRODUCTION

HIS article concerns the simulation of a societal
information system in the domain of healthcare. A

societal information system is a large-scale information
system that gathers information from hundreds or thousands
of individual entities. Such systems can be abstracted as
graphs with nodes representing individual entities and edges
representing relationships between them. The purpose of a
societal information system is to affect the behavior of a
node by means of information retrieved from other nodes.
Nowadays, a person’s behavior is influenced by social
networking services, such as Facebook. However, the
amount of information to be comprehended and utilized in
such services can be overwhelming for users. To further
automate sharing and processing of information within a
large social network or a societal information system, we are
investigating supporting each node in the network by a
software agent. Software agents are autonomous
computational entities that can be viewed as perceiving their
environment through sensors and acting upon their
environment through effectors. To say that agents are
computational entities simply means that they physically
exist in the form of programs that run on computing devices.
To say that they are autonomous entities means that to some
extent they have control over their behavior and can act

T

 The second author expresses his gratitude to the Institute of
International Education for supporting his work by a Fulbright Scholarship.

without the intervention of humans or other systems. Agents
pursue goals or carry out tasks in order to meet their design
objectives, and in general these goals and tasks can be
supplementary as well as conflicting [1], [2]. Agents can
form commitments and act on behalf of individuals and form
multiagent systems (MAS). We view agent-based societal
information systems as multiagent systems.

Societal information systems are appropriate for a wide
variety of problems, including regulation (e.g., banking),
allocation of scarce resources (e.g., electric power and
parking spaces), distributed situation assessment (e.g., urban
air quality), system control (e.g., traffic management, both
vehicular and telecommunication), and decentralized
decision-making (e.g., choosing medical care). This article
addresses simulating a societal information system in the
area of decentralized decision-making for healthcare.

Healthcare decision-making is done in many developed
countries in the context of a healthcare quadruple, which
consists of (1) patients, (2) healthcare providers (hospitals,
health centers, labs, etc.) and provider networks, (3)
insurance companies, and (4) the government. There is a
variety of information systems available to support
healthcare providers, provider networks, government
healthcare agencies, and insurance companies, but none to
support patients. Because patients are naturally distributed
and are typically willing to assist each other, societal agent-
based information systems instead of centralized information
systems would be appropriate for fostering this mutual
assistance. In such systems, each patient would be
represented by a software agent. The agent would assist its
principal in health-related activities, such as understanding
and interpreting insurance rules, finding the most cost-
effective insurer, finding a good healthcare provider,
providing advice on cost-effective drugs and care, and
monitoring the spread of disease symptoms and their
treatments. Feedback and information sharing among
patients would be used extensively in such systems.

Investigating societal information systems for healthcare is
a broad research area. Moreover, it is difficult to experiment
with such information systems in a society, especially
because patients’ health, privacy, and rights must be
considered. We therefore have relied on simulations for
prototyping and evaluating.

Simulating a Societal Information System for Healthcare

Hongying Du
University of South Carolina, 315

Main St. Columbia, SC 29208
USA

du5@email.sc.edu

Kuldar Taveter
Tallinn University of Technology,

Raja 15, 12618, Tallinn
Estonia

kuldar.taveter@ttu.ee

Michael N. Huhns
University of South Carolina, 315

Main St. Columbia, SC 29208
USA

huhns@sc.edu

This article is organized as follows. First, we explain the
method we use for prototyping the societal healthcare
information system – agent-oriented modeling. Second, we
describe briefly how agent-oriented modeling is applied to
design a simulation of a societal information system for
healthcare running on the NetLogo platform [3]. Third, we
analyze and explain the simulation results. We conclude by
comparing the outcomes of using different strategies in the
healthcare system and discussing the benefits of a societal
information system for healthcare.

II. RELATED WORK

Multiagent systems are widely used in different areas,
such as tracking goods, traffic control, consensus knowledge,
and decision-making [4]. One of the interesting areas for
applying a MAS is healthcare.

Nealon and Moreno [5] analyze features of healthcare
problems, including the distributed nature of the knowledge
that is needed to solve a problem, coordination, complexity,
and so on. They claim that a MAS is an appropriate
approach to tackle healthcare problems and could be used
for patient scheduling, organ and tissue transplant
management, community care, information access, and
decision support systems. Isern et al. [6] compare the
internal architecture and communication-based coordination
techniques of fifteen healthcare-related agent-based systems
and claim that agent-based systems increase reusability,
flexibility, and other beneficial qualities as compared with
centralized software systems, such as client-server systems.

MASs are also broadly used in home-care systems.
Koutkias et al. [7] present a MAS for monitoring and
detecting important cases for disease management. Isern et
al. [8] describe the K4Care Home Care model, which uses an
agent-based platform. Grund et al. [9] describe a multiagent
monitoring system that uses data mining techniques to
determine the status of a patient. Charfeddine [10] introduces
an agent-oriented framework to simulate the population of a
chronic disease.

In the work most closely related to ours, Udupi and Singh
[11] use conceptual models in a societal information system
to implement a peer-to-peer network in which an agent
contacts other agents to discover suitable service providers.
It uses InterPol, a language and framework for supporting
different kinds of interaction policies between agents. In
[12], we described the modeling method of our societal
information system.

There are several websites, similar to RateMDs [13],
where people rate doctors according to punctuality, medical
knowledge, and other characteristics, and add comments. As
we explain later, our approach differs from such websites
and has advantages.

III. METHODOLOGY

This article focuses on designing societal information
systems of a particular kind – societal information systems
for finding an appropriate physician and finding out the
benefits to do so. We use the case study method [12] and
explore by rapid prototyping the design of a simulation of a
societal information system for healthcare. Rapid
prototyping stands for implementing a proof-of-concept
prototype in an agile way by directly mapping the modeling
constructs to the constructs of a scripting environment like
Netlogo or some agent-oriented environment like JADE. The
method we use for prototyping is agent-oriented modeling.
Agent-oriented modeling as described in [14] is a holistic
approach for analyzing, designing, and rapid prototyping of
societal information systems consisting of humans and
technical components. We have chosen agent-oriented
modeling because it is geared towards prototyping
distributed systems that are open, adaptive, and intelligent.
Societal information systems are open systems because
members of the society (e.g., commuters, patients, or
shoppers) may join and leave the system at any time.
Societal information systems are adaptive systems, because
they should react to their constantly changing environment,
which for example can take the form of changes in traffic
infrastructure, health insurance coverage, and product prices.
We also term societal information systems as intelligent
systems, because they reflect the “wisdom of crowds” when
recommending a patient, for example, a healthcare provider.
In addition, agent-oriented modeling meets well the
requirements for purposefulness and understandability of the
design.

A set of canonical models are introduced in agent-oriented
modeling, whose types are shown in Table I. In addition to
representing each model with an abstraction layer (analysis,
design, or prototyping), Table I maps each model to the
vertical viewpoint aspect of interaction, information, or
behavior. Each cell in the table represents a specific
viewpoint. We explain these viewpoints in the following
paragraphs.

From the viewpoint of interaction analysis, role models
represent the properties of roles and the relationships
between the roles are represented by an organization model.
From the viewpoint of information analysis, a domain model
represents the knowledge to be handled by the societal
information system. From the viewpoint of behavior
analysis, a goal model is a container of three components:
goals, quality goals, and roles.

From the viewpoint of interaction design, agent models
transform the abstract constructs from the analysis stage,
roles, to design constructs, agent types, which will be
realized in the implementation process. Interaction models
are used to express interaction patterns between agents.
From the viewpoint of information design, knowledge
models represent both private and shared knowledge of
agents. From the viewpoint of behavior design, behavioral

scenarios are used to show how agents make decisions and
perform activities [15].

Modeling at the abstraction layer of prototyping is
explained in Section IV.

Fig. 1 shows the goal model of our societal information
system for healthcare, in which rectangles stand for
functional goals and clouds stand for quality goals. The stick
figures represent roles that are required for achieving the
goals. As can be seen from Fig. 1, from the viewpoint of
behavior analysis, our societal healthcare information
system focuses on the purpose of “Allocate Healthcare
Resources” among the members of the society. Specifically,
we study the allocation of physicians – a special kind of
healthcare resource. Achieving the functional goal “Allocate
Healthcare Resources” is characterized by the quality goal
“Maximal Societal Health”, which determines the quality
criterion according to which healthcare resources should be
allocated in a society.

To accomplish the purpose “Allocate Healthcare
Resources” of the societal information system, its four
subgoals need to be achieved: finding a healthcare provider,
being provided with care, evaluating the care, and
recommending healthcare providers to other patients. As we
demonstrate below, to fulfill the goal “Find Healthcare
Provider”, a patient recursively asks her friends, friends’
friends, and so forth for recommendations and chooses the
best physician recommended. This is represented as two
subgoals of “Find Healthcare Provider:” “Ask Friends” and
“Choose.”

We attach a number of quality goals to the functional
goals in the goal model. The meanings of the quality goals
are easy to understand. For example, “Quickly” means a
patient wants to find a healthcare provider as soon as
possible. The “Anonymous” quality goal expresses that no
evaluation by a patient should identify the patient. It should
be noted that the quality goal “In the Context” attached to
the functional goal “Evaluate” represents that evaluation has
to occur in the context of receiving the service, preferably
before leaving the facilities of the healthcare provider or at
least on the same day. The “Processable” quality goal means
that the evaluation should be presented in a form amenable
to computer processing. In our simulation, we use a scale
from 1 to 5 to measure the evaluations.

According to Fig. 1, we model two roles for our
simulation – Patient and Healthcare Provider. There is also a
third role – Government. Since our work focuses on the
particular aspect of the U.S. healthcare domain dealing with
how a patient finds a physician, rather than modeling the
healthcare domain in its full complexity, the Government
role’s modeling is not relevant to the simulation system
being designed and we ignore the Government role in our
system. Additionally, we complement the goal model with
the new Assistant role, which is not shown in Fig. 1. The
Assistant role is the assistant of a person and is responsible
for asking friends for recommendations, choosing a
healthcare provider, and assisting in evaluating the care. In
the prototypical system being designed, the role of Assistant
should obviously be mapped to the Assistant Agent software
agent type. Since a patient is a real human that is treated by
another real human – a physician – we map both the roles
Patient and Healthcare Provider to the Human Agent type.
The software system boundary of the societal information
system is obviously between the roles Patient and Assistant.

From the viewpoint of interaction analysis, the
organization model of the societal information system being
designed is decided based on the three kinds of networks that
are used for representing the relationships among the
members of the society:

- Random network: the relationships between pairs of
patients are created randomly.

TABLE I.
THE MODEL TYPES OF AGENT-ORIENTED MODELING

Viewpoint aspect

Abstraction
layer

Interaction Information Behavior

Analysis Role models and
organization
model

Domain model Goal models

Design Agent models
and interaction
models

Knowledge
models

Behavioral
scenarios

Prototyping Interaction
prototyping

Information
prototyping

Behavior
prototyping

Patient

Allocate
Healthcare
Resources

Healthcare
Provider

Maximal
Societal Health

GovernmentQuickly

Find
Healthcare
Provider

Ask Friends Choose

Good Quality
Provider

Provide Care Evaluate

Discrete Easy

Recommend

Being Good
Citizen

Anonymous

Appropriate

ProcessableIn the Context

Fig. 1 The goal model of the societal information system

- Small-world network: most nodes are not neighbors to
one another, but most nodes can be reached from any other
node by a small number of hops [16].

- Scale-free network: the shortest paths between nodes
flow through hubs, and if a peripheral node is deleted, it is
unlikely that this will interfere with passing a message
between other peripheral nodes.

We use the Barabási–Albert model [17] to construct a
scale-free network for our simulation. A scale-free network
is a common model for a collaboration network.

After covering the viewpoints of behavior analysis and
interaction analysis, we next proceed to the viewpoint of
information analysis by addressing the knowledge to be
represented within the system. We do this by identifying the
types of knowledge entities related to the roles. As each
healthcare provider has predefined capacity and efficiency,
which are explained in Section IV, we attach the Capacity
and Efficiency knowledge entity types to the Healthcare
Provider role.

We now proceed to the viewpoint of interaction design.
Finding a physician involves interactions between Assistant
Agents representing patients. We represent these interactions
as an interaction protocol between agents of the type
Assistant Agent. It is appropriate to remind here that the
difference between an interaction protocol and other kinds of
interaction models is that an interaction protocol models
some aspects of the agent behaviors along with their
interactions [14].

Representing the interaction protocol of the societal
healthcare information system is very important, because it
describes the patient’s strategy of choosing a physician. We
explored the following four possible strategies:

- Random strategy. The patient’s Assistant Agent
randomly chooses a physician.

- The “Choose one” strategy. The patient’s Assistant
Agent chooses the best physician according to the patient’s
evaluations for physicians. If the patient has no evaluations,
his/her Assistant Agent asks his/her friends’ Assistant Agents
for recommendations. The Assistant Agent acting on behalf
of the patient’s friend may deal with the request in one of the
following ways:

o Reply with a recommendation.
o Provide the requesting agent with the address of the

Assistant Agent of one of its principal’s friends if there is no
recommendation to give. This process continues recursively
until the first recommendation is received or until all the
friends down to the maximum forwarding depth have been
asked. The forwarding depth is defined as follows: the
originator’s friends are at depth 1; the originator’s friends’
friends at depth 2, and so on.

Fig. 2 presents the interaction protocol among patients’
Assistant Agents for the “Choose one” strategy. It models
that the Assistant Agent of a patient’s friend may respond
with a recommendation or recommend the Assistant Agent of
the friend’s friend. This means the interaction protocol is

recursive, which is represented by the “Loop” behavioral
construct. A friend’s Assistant Agent may also ignore a
request, which is not shown in the figure.

In addition to the random and “Choose one” strategies, we
have included in our simulations the “Borda voting” and
“Add and minimize” strategies. These strategies are briefly
described as follows:

- The “Borda voting” strategy. The patient’s Assistant
Agent asks his/her friends’ Assistant Agents, who are closer
than a specified limit, for recommendations. A friend’s
Assistant Agent may choose to answer or refrain from
answering just like with the “Choose one” strategy. After the
patient’s Assistant Agent has received all the responses, it
calculates for each physician the Borda count [a single-
winner election method in which voters rank candidates in
order of preference, named for the 18th-century French
mathematician and political scientist Jean-Charles de Borda,
who devised the system in 1770], according to which a
physician is given a number of points equal to the number of
physicians whose evaluations are worse than the evaluations
of the given physician. Thereafter the agent adds up all the
points gained by the physician in question. The physician
with the highest score is chosen.
 - The “Add and minimize” strategy, which has the same
procedure for getting recommendations as the “Borda
voting” strategy. After the patient’s Assistant Agent has
received all the responses, it adds up all the non-zero
evaluations and calculates the mean value of them for each
physician. Then the Assistant Agent chooses the physician
with the minimum mean evaluation. Choosing the physician
with the minimum value is due to the way we define the
evaluation, as described in Section IV.

From the viewpoint of behavior design, to model the
behaviors of agents of the decided types, we transform
responsibilities of the roles into activities attached to the
agent types. As a result, we obtain behavioral scenarios for
agents playing the roles Patient, Assistant, and Physician.

Assistant Agent
of Person A

Assistant Agent
of Person X

Loop
[i=0; i<=depth-1; X=Y]

Option A

Option B

Can you recommend a physician?

I recommend Physician P.
Exit the loop.

I don’t have a recommendation.
Please ask Assistant Agent of Person Y.

Interaction
Protocol

Fig. 2 The interaction protocol for “Choose one” strategy

For example, the behavioral scenario of an agent of the type
Assistant Agent playing the role Assistant models that the
activities “Find a physician” and “Evaluate” are performed
sequentially. In societal information system for healthcare
this is always the case, because the Assistant Agent does not
perform any activities between these activities while a
patient is attended by a physician.

Another aspect of the Assistant Agent’s behavior in
choosing a physician deals with what the agent should do if
the physician is not available on the given day. We have
decided to consider the following three waiting strategies of
a patient:

- Waiting. The patient’s Assistant Agent chooses the best
physician by adopting one of the strategies of choosing a
physician explained above and sticks to this choice. If the
physician is busy, the patient will still make an appointment
with the physician and will wait until the physician becomes
available.

- No waiting. If the physician chosen is busy, the
patient’s Assistant Agent will choose a physician randomly
according to the “Random” strategy or the next best
physician according to the other physician-choosing
strategies until it finds an available physician.

- Waiting with limit. If the physician chosen is not
available, the patient’s Assistant Agent will check whether
the physician could be reached in a certain number of days.
If it is possible, the patient will make an appointment and
wait. If not, the Assistant Agent will choose another
physician according to the rules of the same waiting strategy.
If no physician is available in a certain number of days, the
Assistant Agent will choose a physician who has the smallest
number of days required for waiting.

Finally, distinguishing between private and public
knowledge entities from the viewpoint of information design
is straightforward, because the knowledge entity Evaluation
is private to the patient and Assistant Agent helping him/her,
while the knowledge entity Recommendation is shared
between different patients and instances of Assistant Agent.
Similarly, the knowledge entity Efficiency is private to each
Healthcare Provider, but at the same time naturally forms a
basis for how patients evaluate healthcare providers.

We describe models including role models, the
organization model, and the domain model in detail in [12].

IV. EVALUATION

A. Simulation Settings

We next describe from the three viewpoints introduced in
Section III how we mapped agent-oriented models of the
societal information system to the programming constructs of
the simulation environment – NetLogo.

From the viewpoint of information prototyping, we
represented the knowledge entities decided by agent-oriented
modeling as described in Section III as follows:

- The Capacity knowledge entity – in terms of the
number of patients per day that a given physician can handle.

- The Efficiency knowledge entity – in terms of the
number of days that it takes for a given physician to cure a
patient. This number of days is generated for each physician
according to a normal distribution whose mean and standard
deviation can be adjusted in the user interface.

- The Evaluation knowledge entity – in terms of the
following variables:

o The number of days the physician in question failed to
handle a given patient. How this value is determined is
explained below.

o The number of days that the physician needed to cure a
patient. This is determined by the Efficiency knowledge item
pertaining to the physician.

o A random component representing that different
patients evaluate the same physician differently.

A patient’s evaluation for a specific physician is
calculated by adding these three factors. For example, let us
assume that a patient gets sick today and decides to visit a
physician chosen by her Assistant Agent, but the physician is
busy and cannot see the patient until tomorrow. In this case,
the value of the first factor – the number of days the
physician in question failed to handle a given patient – is 1,
because the patient had to wait for 1 day to see the physician.
The second factor – the number of days that the physician
requires to cure the patient – is a fixed number related to the
physician in question. The third factor – the random
component expressing the subjective factor – is a random
value that varies between -0.5 and 0.5.

The viewpoint of behavior prototyping covers the
behaviors of software agents representing patients and
physicians. In accordance with the behavioral scenarios
modeled as a part of the design described in Section III,
every day the patients each try to decide which physician to
visit. For each patient, the Assistant Agent acting on behalf
of its principal may ask Assistant Agents of the principal’s
friends for recommendations and then makes a decision as to
which physician the principal should visit.

From the viewpoint of interaction prototyping, the
exchange of messages to be implemented is modeled
according to interaction diagrams, such as the one in Fig. 2
for the case of choosing a physician according to the
“Choose one” strategy. To make our simulations more
realistic, we have chosen a 20% probability that a friend
would ignore the patient’s request.

Back to the viewpoint of behavior prototyping, the
software agent corresponding to the Assistant Agent
recommends physicians based on evaluations. The agent can
recommend only those physicians that its principal has
actually visited in the simulation. The number of days the
physician in question could not handle the given patient,
because of the physician’s exceeded capacity, accumulates in
the patient’s evaluation until the patient actually visits the
given physician. On each new visit the agent “forgets” its

previous evaluation and updates its knowledge base with the
new evaluation. The reason why the agent forgets its
previous evaluation is that during the time period between
the previous evaluation and the new evaluation, factors that
influence the evaluation may have occurred. For example,
the physician may have become more skilled. Therefore it is
fairer to use the latest evaluation.

To make our simulations as realistic as possible, we used
the following statistical data by the Centers for Disease
Control and Prevention (CDC) from the year 2008 [18]:

- The number of physician office visits per 100 people
per year: 320.1.

- The number of physicians per 10,000 people: 26.
Based on the above data, we obtained the average number

of people who get sick every day by dividing the number of
visits per 10,000 people by 250, which is the standard
number of working days in a calendar year in the U.S. As a
result, 128 people out of a population of 10,000 get sick
every day.

B. Results and Evaluation

We simulated 365 days with 5,000 patients and 13
physicians. In our simulation, 64 random people get sick
every day. The value of the local variable of each physician’s
software agent corresponding to the Capacity knowledge
entity was set to 8 patients per day. The value of the local
variable of each physician’s software agent corresponding to
the Efficiency knowledge entity was determined randomly
according to a normal distribution with mean value 3 days
and with the value of deviation as 2.0.

Fig. 3 describes the number of days needed for curing by
different physicians in our simulations.

We performed simulations by combining the types of
social networks explained in Section III with different
strategies of choosing a physician and waiting strategies,
which are both described in Section III. The results from
simulations in terms of the annual sick days per person and
leftover patients who were not taken care of by the end of the
last day simulated are represented in Tables II - VII.

Fig. 3 Days needed to be cured by different physicians

TABLE III.
LEFTOVER PATIENTS FOR RANDOM NETWORK

Waiting No-waiting Waiting-with-limit

Random 0 0 0

Choose one 427 0 80

Borda voting 4569 0 96

Add and minimize 155 0 94

TABLE IV.
AVERAGE SICK DAYS FOR SMALL-WORLD NETWORK

Waiting No-waiting Waiting-with-limit

Random 6.79 6.78 6.79

Choose one 10.31 5.22 6.31

Borda voting 7.63 6.58 6.83

Add and minimize 9.59 4.96 6.34

TABLE II.
AVERAGE SICK DAYS FOR RANDOM NETWORK

Waiting No-waiting Waiting-with-limit

Random 6.8 6.78 6.80

Choose one 12.18 5.21 6.34

Borda voting 34.75 6.01 8.31

Add and minimize 10.17 4.94 6.37

TABLE V.
LEFTOVER PATIENTS FOR SMALL-WORLD NETWORK

Waiting No-waiting Waiting-with-limit

Random 0 0 0

Choose one 407 0 71

Borda voting 76 0 25

Add and minimize 239 0 93

TABLE VI.
AVERAGE SICK DAYS FOR SCALE-FREE NETWORK

Waiting No-waiting Waiting-with-limit

Random 6.79 6.74 6.77

Choose one 13.72 5.29 6.33

Borda voting 38.56 6.49 9.92

Add and minimize 9.41 4.92 6.35

TABLE VII.
LEFTOVER PATIENTS FOR SCALE-FREE NETWORK

Waiting No-waiting Waiting-with-limit

Random 1 0 2

Choose one 686 0 78

Borda voting 4449 0 110

Add and minimize 255 0 96

We can see from Tables II - VII that if a patient adopts the
“Waiting” strategy, the “Random” strategy will outperform
all the other strategies of choosing a physician in social
networks of all three kinds addressed. This is the case
because in all the other strategies, a patient always waits for
the best physician chosen by her Assistant Agent, which
increases the waiting days and accordingly sick days. Also,
because the Random strategy leads to even visiting of
physicians, it has no leftover patients, but there are leftover
patients in the other three strategies.

The performance of the “Borda voting” strategy is the
worst in all three kinds of social networks addressed, except
for the combination of the “Borda voting” strategy and
“Waiting” strategy in the small world network, because it
uses more evaluation information than the other strategies
due to its method for calculating the votes for physicians.

Differently from the “Borda voting” strategy, the “Add
and minimize” strategy uses less information because it does
not consider the physicians who have not been evaluated.
The patients whose Assistant Agents follow the “Add and
minimize” strategy therefore tend to choose physicians with
fewer days required for curing, as compared with other
physician choosing strategies, and then wait for that
physician chosen, which increases the number of sick days.

If the “No waiting” strategy is adopted, all the other
strategies will outperform the “Random” strategy. This is
because the patients’ Assistant Agents consider the
evaluations by their principals’ friends and choose the best
physicians, and there is no problem of waiting.

If the “Waiting with limit” strategy is adopted, the
“Choose one” and “Add and minimize” strategies of
choosing a physician show the best performance. However,
these strategies result in more leftover patients than the
random strategy. This is reasonable, since according to
“Choose one” and “Add and minimize” strategies a patient
may be willing to wait for a good physician if the waiting
time is less than 2 days, leading to just a few leftover patients
and less average annual sick days.

According to the “Random” strategy of choosing a
physician, patients’ Assistant Agents just choose physicians
randomly and each physician has almost the same number of
patients in total. For the other three strategies, as time passes,
Assistant agents gradually gather enough information about
physicians, evaluate them, and recommend to their friends
the best physicians they are aware of. As a result, after
patients have formed their opinions about the physicians,
good physicians get full capacity of patients every day and
bad physicians get only a few patients. Due to space
limitations, the graphs showing this trend are not shown here.

We also performed simulations with fewer physicians to
check whether the claims stated above still hold. We adopted
the “Choose one” and “Add and minimize” strategies of
choosing a physician and “No waiting” and “Waiting with
limit” strategies for conducting simulation experiments with
7 physicians. Table VIII shows the results in terms of

average sick days. We can see that for the “No waiting”
strategy, the “Choose one” and “Add and minimize”
strategies of choosing a physician still perform better than
the combination of “Random” and “No waiting” strategies.
This is because a patient’s Assistant Agent first chooses a
physician who requires less days for curing and only then
randomly chooses a physician if the patient has to wait.

Table VIII also shows that the combination of the
“Waiting with limit” strategy and all strategies for choosing a
physician yields almost the same result.

TABLE VIII.
AVERAGE SICK DAYS WITH SEVEN PHYSICIANS

No-waiting Waiting-with-limit

Random 28.01 19.23

Chose one 26.15 19.24

Add and minimize 18.33 19.24

In addition, we investigated the performance of a system
having a lower probability that the friends of a patient in
small world network will answer a request, which are shown
in the following two tables. The “Random” strategy is shown
here because it is not influenced by the probability.

Comparing Table IV with these two tables, we discovered
that the conclusions before still hold. To clarify this, we
include Table XI, which denotes the changing trend of the
average sick days while the probability is decreasing. In the
table, “+” means increasing and “-” means decreasing. We
can see from the table that for “Add and minimize”, the
average sick days increases while the probability decreases,
because patients gets fewer responses from friends, leading
to less-informed decisions. For the “Borda voting” strategy,
the average sick days decreases while the probability
decreases. As mentioned before, due to the way that the
“Borda voting” strategy gets the evaluation and calculates, it

TABLE IX.
AVERAGE SICK DAYS WITH PROBABILITY = 0.6

Waiting No-waiting Waiting-with-limit

Choose one 9.86 5.31 6.29

Borda voting 7.60 6.26 6.60

Add and minimize 9.75 5.01 6.37

TABLE X.
AVERAGE SICK DAYS WITH PROBABILITY = 0.4

Waiting No-waiting Waiting-with-limit

Choose one 8.72 5.42 6.24

Borda voting 7.05 6.07 6.42

Add and minimize 10.38 5.14 6.40

always gets too much information and lead to worse results
than other strategies. So when the information is less with
decreasing probability, we have better results of less average
sick days. There’s no fixed trend for a certain waiting
strategy with different physician choosing strategies.

V. CONCLUSIONS

This paper describes the design and rapid prototyping of a
societal information system for healthcare. Agent-oriented
modeling was chosen for developing our simulation because
it explicitly addresses the design of societal information
systems where the activities of humans are supported by
software agents.

We investigated the prototyped societal healthcare
information system using agent-based simulations on the
NetLogo platform. The NetLogo code for the simulation can
be found in [19]. In the simulation, we investigated the
influence of different strategies of finding an appropriate
physician and different waiting strategies in three common
social network models. Our prototype revealed that if a
patient adopts the “Waiting” strategy, the “Random” strategy
will outperform all the other strategies of choosing a
physician. On the other hand, with the “No waiting” strategy,
all the other strategies will outperform the “Random”
strategy. If the “Waiting with limit” strategy is adopted, the
“Choose one” and “Add and minimize” strategies will show
the best performance. We found that by adopting the
“Choose one” or “Add and minimize” strategy, in the “No-
waiting” and “Waiting-with-limit” case, the average number
of sick days can be reduced by 0.42-1.84 days or 6.2%-
27.1%.

Our societal information system differs from RateMDs
and other similar websites where people can rate and find
physicians in the way that people rate the physicians and
patients interact. It is difficult to compare the effect of these
websites and that of our system, mostly because there are no
objective evaluation statistics on the websites, such as the
length of time each patient takes to get cured during a period.
Such websites use more flexible criteria on which different
people might have different opinions, such as punctuality,
medical knowledge, and time spent on a patient, while our
system uses the time it takes to cure a patient as a criterion,
which is more objective and meaningful. Although patients
might access more ratings online, they usually do not know
the people who have rated the physicians and there is a
higher possibility that the ratings will not be truthful and

accurate. In our system, a patient relies on friends’
recommendations, which are typically more reliable.

ACKNOWLEDGEMENTS

We express our gratitude to Professor Leon Sterling from
Swinburne University of Technology, Australia for
comments and suggestions on a draft of this paper.

REFERENCES
[1] M. N. Huhns, and L. M. Stephens, (1999). Multiagent systems and

societies of agents. In G. Weiss (ed.), Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence. Cambridge, MA, and
London, England: MIT Press.

[2] M. Wooldridge, (2009). An Introduction to Multiagent Systems. 2nd
Edition. Chichester, UK: John Wiley & Sons.

[3] U. Wilensky, (1999). NetLogo. Last accessed on February 16, 2012,
from http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling. Evanston, IL: Northwestern
University.

[4] M. N. Huhns, (2009). From DPS to MAS to ...: continuing the trends.
In C. Sierra, C. Castelfranchi, K. S. Decker, & J. S. Sichman (eds.),
8th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2009), Budapest, Hungary, May 10-15,
Volume 1 (pp. 43-48). New York, NY: ACM.

[5] J. Nealon and A. Moreno. “Agent-Based Applications in Healthcare”,
in Applications of Software Agent Technology in the Healthcare
Domain, chapter 2, pp. 3–18. Birkhauser Verlag, 2003.

[6] Isern, D. Sánchez, A. Moreno, “Agents applied in healthcare: a
review.” Int. J. Med. Inf. vol. 79, no. 3, 145–166, Mar. 2010.

[7] G. Koutkias, I. Chouvarda, N. Maglaveras, “A multiagent system
enhancing home-care health services for chronic disease
management,” IEEE Trans. Information Technology in Biomedicine,
vol. 9, no. 4, pp. 528–537, Dec. 2005

[8] Isern, A. Moreno, G. Pedone, L. Varga, “An intelligent platform to
provide home care services,” in Proc. of the 2007 conference on
Knowledge management for healthcare procedures, July 07, 2007.
Lecture Notes on Computer Science, vol. 4924, pp. 149-160,
Amsterdam, The Netherlands.

[9] M. Gund, S. Andhalkar, D. Patil, V. M. Wadhai, “An intelligent
architecture for multi-agent based m-healthcare system,” Int. Journal
of Computer Trends and Technology, vol. 1, no. 1, 2011.

[10] M. Charfeddine, B. Montreuil, “Integrated agent-oriented modeling
and simulation of population and healthcare delivery network:
application to COPD chronic disease in a Canadian region.” in Proc.
Of the 2010 Winter Simulation Conf., Quebec, Canada, pp. 2327–
2339, Dec. 2010.

[11] Y.B. Udupi and M.P. Singh, “Information Sharing among
Autonomous Agents in Referral Networks,” in Agents and Peer-to-
Peer Computing, 6th International Workshop (AP2PC 2007), S.R.
Joseph, Z. Despotovic, G. Moro and S. Bergamaschi, eds, Lecture
Notes in Computer Science, Vol. 5319, Springer-Verlag, 2007, pp.
13–26.

[12] K. Taveter, H. Du, and M. N. Huhns. “Method for rapid prototyping
of societal information systems.” In Proceedings of Workshop on
Agent Based Computing: from Model to Implementation IX
(ABC:MI), Wrocław, Poland, September 9-12, 2012.

[13] RateMDs. (2012). Find and Rate Doctors and Dentists,
http://www.ratemds.com/, retrieved: 15th January 2012.

[14] L. Sterling, and K. Taveter, (2009). The Art of Agent-Oriented
Modeling. Cambridge, MA, and London, England: MIT Press.

[15] K. Taveter, H. Du, and M. N. Huhns, “Engineering societal
information systems by agent oriented modeling,” J. of Ambient
Intelligence and Smart Environments, vol. 4, no. 3, pp. 227-252,
2012.

[16] J. Watts, and S. H. Strogatz (1998). Collective dynamics of ‘small-
world’ networks. Nature, 393, pp. 440-442.

[17] A.-L. Barabasi and R. Albert (1999). Emergence of Scaling in
Random Networks. Science, 286(5439), pp. 509–512.

[18] Ambulatory Care and Physician Visits. (2011). Last accessed on June
19, 2011, from http://www.cdc.gov/nchs/fastats/docvisit.htm.

[19] http://www.cse.sc.edu/~huhns/HealthCarePhysicianV9full.nlogo

TABLE XI.
CHANGING TREND WITH DECREASING PROBABILITY

Waiting No-waiting Waiting-with-limit

Choose one - + -

Borda voting - - -

Add and minimize + + +

http://ccl.northwestern.edu/netlogo/
http://www.cdc.gov/nchs/fastats/docvisit.htm
http://dl.acm.org/citation.cfm?id=1793670&CFID=80612254&CFTOKEN=73812837
http://dl.acm.org/citation.cfm?id=1793670&CFID=80612254&CFTOKEN=73812837
http://dl.acm.org/citation.cfm?id=1793670&CFID=80612254&CFTOKEN=73812837
http://dl.acm.org/citation.cfm?id=1793670&CFID=80612254&CFTOKEN=73812837
http://dl.acm.org/citation.cfm?id=1793670&CFID=80612254&CFTOKEN=73812837
http://dl.acm.org/citation.cfm?id=1793670&CFID=80612254&CFTOKEN=73812837
http://dl.acm.org/citation.cfm?id=1793670&CFID=80612254&CFTOKEN=73812837
http://dl.acm.org/citation.cfm?id=1793670&CFID=80612254&CFTOKEN=73812837
http://dl.acm.org/citation.cfm?id=1793670&CFID=80612254&CFTOKEN=73812837

