

1
Abstract—We first define and explain the notions of rapid

prototyping and societal information systems. Thereafter we

introduce a design method appropriate for designing and rapid

prototyping of societal information systems – agent-oriented

modeling. Following, we describe a “proof-of-concept” case

study of applying agent-oriented modeling to rapid prototyping

of a societal information system for finding an appropriate

physician. In the description, we first present analysis models

and then show how they can be mapped to the respective design

models. Finally, we explain how the resulting design constructs

can be turned into the programming constructs of NetLogo for

rapid prototyping. The article finishes by drawing conclusions

on designing societal information systems.

I. INTRODUCTION

THIS article is concerned with rapid prototyping of socie-

tal information systems. We first explain rapid prototyp-

ing and then discuss societal information systems. Rapid

prototyping stands for implementing proof-of-concept

prototypes in an agile way by directly mapping the mod-

eling constructs to the constructs of a scripting environ-

ment like NetLogo or some agent-oriented environment

like JADE. Previously we have investigated this tech-

nique in [5]. By societal information systems we mean

large-scale information systems that gather information

from hundreds, perhaps thousands, of nodes, each associ-

ated with a person, and then process and use the infor-

mation to affect the behaviors of the people at the nodes.

In today’s world, a person’s behavior is affected by means

of social networking services, such as Facebook or Twit-

ter. However, the amount of information to be processed

can be overwhelming for users of such systems. To fur-

ther automate the sharing and processing of information

within a large social network, we are investigating the use

of software agents – distributed reactive and proactive

software entities representing and working on behalf of

each person in the network. Such agents gather infor-

mation from humans and other agents at the nodes of the

network and aggregate and process it in ways that can

augment the capabilities of the humans at the nodes. The

resulting system is a kind of multi-agent system (MAS)

[1], [2]. The key metaphor for such a MAS is interaction.

1
 The first author expresses his gratitude to the Institute of International

Education for supporting his work by a Fulbright Scholarship.

MASs emphasize the design-time autonomy of the nodes

and the importance of the environment in which the nodes

interact with each other, which itself must often be de-

signed [3].

The areas where societal information systems can help

are regulation (e.g., banking), allocation of scarce re-

sources (e.g., electric power, parking spaces, and emer-

gency care), distributed situation assessment (e.g., traffic

jams), system control (e.g., traffic management), and de-

centralized decision-making (e.g., finding a healthcare

provider), which represent five kinds of problems that

societies confront.

Engineering societal information systems requires

methods different from those meant for engineering con-

ventional information systems. A method of engineering

societal information systems should first support the de-

sign of distributed systems consisting of autonomous,

heterogeneous, and local nodes. Second, such a method

should support the engineering of distributed systems that

are open, adaptive, and intelligent. Societal information

systems are open systems because members of the society

(e.g., commuters, patients, or shoppers) may join and

leave the system at any time. Societal information sys-

tems are adaptive systems, because they should react to

their constantly changing environment, which for exam-

ple can take the form of changes in traffic infrastructure,

health insurance coverage, and product prices. We also

term societal information systems as intelligent systems,

because they reflect the “wisdom of crowds” when, for

example, recommending a healthcare provider to a pa-

tient. In addition to the requirement of supporting the de-

sign of open, adaptive, and intelligent systems, a method

for designing societal information systems should support

the purposefulness and understandability of the design.

Considering the requirements outlined above, we have

chosen agent-oriented modeling for designing societal

information systems. Agent-oriented modeling as de-

scribed in [4] is a holistic approach for analyzing, design-

ing, and rapid prototyping of socio-technical systems

consisting of humans and technical components. Its sup-

port for rapid prototyping of information systems [5] con-

forms well to the agile approach of developing software

[e.g., 6].

Method for Rapid Prototyping of

Societal Information Systems

Kuldar Taveter
Tallinn University of Technology,

Raja 15, 12618, Tallinn

Estonia

kuldar.taveter@ttu.ee

Hongying Du
University of South Carolina, 315

Main St. Columbia, SC 29208

USA

du5@email.sc.edu

Michael N. Huhns
University of South Carolina, 315

Main St. Columbia, SC 29208

USA

huhns@sc.edu

Other methodologies and tools have been shown to be

useful for modeling and then developing large-scale

agent-based systems, such as Gaia [7], Tropos [8], and O-

MaSE [9]. In particular, the Organization-based Multia-

gent System Engineering (O-MaSE) metamodel defines

the key concepts needed to design and implement multia-

gent systems to capture the organizational concepts iden-

tified in an organization metamodel. However, the agents

in these systems are considered to have individual goals,

rather than a combination of both individual and societal

goals, on which we focus herein.

Other approaches of developing socio-technical sys-

tems for healthcare have emphasized a centralized ap-

proach, even when the individuals being assisted are de-

centralized [10].

This article focuses on designing societal information

systems for applications requiring decentralized decision-

making. In this article, we present as a “proof-of-concept”

case study, the rapid prototyping of a societal information

system for deciding on an appropriate physician. It is dif-

ficult to experiment with such information systems in a

real human society, especially when patient health, priva-

cy, and rights must be safeguarded. We therefore have

relied on simulations for evaluating our prototypes.

The rest of this article is structured as follows. We first

introduce the method we suggest to use for the rapid pro-

totyping of societal healthcare information systems –

agent-oriented modeling. This is followed by an overview

of the analysis and design by agent-oriented modeling of

our prototypical societal information system of finding a

physician. We then describe how the modeling constructs

of agent-oriented modeling can be mapped to the pro-

gramming constructs of the NetLogo simulation platform

[11]. The article concludes by drawing conclusions about

engineering societal information systems, and particularly

those for healthcare.

II. RELATED WORK

Rapid prototyping of multi-agent systems has been ad-

dressed in [12, 13]. In [12], a MAS must be described for

rapid prototyping by an organizational model which se-

mantics is given in term of a formal framework. Similarly

to our approach, [12] relies on simulation for evaluating

the prototypes. The difference from our approach is that

while our method is a lightweight agile approach, [12]

uses formal transformations between models, which re-

quire the usage of a specialized software engineering tool.

The article [13] provides a survey of approaches and then

describes a prototype of a platform-independent meta-

model for developing agent applications in a generalized

manner. Similarly to agent-oriented modeling, [13] pro-

poses mapping rules to transform platform-independent

models into platform-specific models. Differently from

us, their problem domain is workflow tasks.

III. ANALYSIS AND DESIGN

A. Method

Agent-oriented modeling [4] comprises a set of canoni-

cal models, whose types are represented in Table I. In

addition to representing each model with an abstraction

layer (analysis, design, or prototyping), Table I maps each

model to the vertical viewpoint aspect of interaction, in-

formation, or behavior. Each cell in the table represents a

specific viewpoint. We next give an overview of agent-

oriented models proceeding by viewpoints.

From the viewpoint of interaction analysis, the proper-

ties of roles are expressed by role models and the rela-

tionships between the roles – by an organization model.

From the viewpoint of information analysis, a domain

model represents the knowledge to be handled by the so-

cio-technical system. From the viewpoint of behavior

analysis, a goal model can be considered as a container of

three components: goals, quality goals, and roles. From

the viewpoint of interaction design, agent models trans-

form the abstract constructs from the analysis stage, roles,

to design constructs, agent types, which will be realized

in the implementation process. From the same viewpoint,

interaction models represent interaction patterns between

agents of the given types. From the viewpoint of infor-

mation design, agents’ knowledge models are used for

representing both private and shared knowledge by

agents. From the viewpoint of behavior design, we model

by behavioral scenarios how agents make decisions and

perform activities [4]. A more detailed explanation of the

model types can be found in [4].

TABLE I.

THE MODEL TYPES OF AGENT-ORIENTED MODELING

 Viewpoint aspect

Abstraction

layer

Interaction Information Behavior

Analysis Role models and

organization
model

Domain model Goal models

Design Agent models

and interaction

models

Knowledge

models

Behavioral

scenarios

Prototyping Interaction
prototyping

 Information
 prototyping

 Behavior
 prototyping

B. Analysis

We begin the analysis of the societal healthcare system

from the viewpoint of behavior analysis by deciding the

system’s purpose. A societal information system of

healthcare can be viewed as a socio-technical system with

the overall purpose “Allocate Healthcare Resources”

among the members of the society. Our case study is lim-

ited to the allocation of healthcare resources of a particu-

lar kind – physicians. Achieving the functional goal “Al-

locate Healthcare Resources” is characterized by the qual-

ity goal “Maximal Societal Health”, which determines the

quality criterion according to which healthcare resources

should be allocated in a society. A possible metric for this

criterion is an average number of annual sick days per

person in a society. Regardless of the global quality goal

measurement, we achieve it by the decentralized agent-

oriented method as described in Section C, rather than by

a centralized method. The roles attached to the functional

goal models – Patient, Healthcare Provider, and Govern-

ment – constitute the major stakeholders in a healthcare

system. The goal model of a societal information system

of healthcare is represented in Fig. 1. In the figure, rec-

tangles stand for functional goals and clouds for quality

goals. Roles are denoted by stick figures.

We next elaborate the goal tree as follows. In our lim-

ited case study, allocating healthcare resources entails

finding a healthcare provider – physician – for each pa-

tient, providing care, evaluating care, and recommending

healthcare providers to other patients. Each of these sub-

goals represents a particular aspect of allocating

healthcare resources.

In addition to functional goals, we need a number of

quality goals in the goal model. First, we add “Quickly”

pertaining to the functional goal “Find Healthcare Provid-

er”. The meaning of this quality goal is obvious. Second,

we express that a healthcare provider to be found should

be appropriate. In the analysis phase, we do not need to

specify the precise meaning of the “Appropriate” quality

goal, because it is elaborated in the design phase where

we decide how exactly appropriateness can be represent-

ed and what algorithms and software solutions are availa-

ble for supporting it. However, it is highly relevant to

capture this quality goal in analysis models that are used

in round-table discussions between customers and other

non-technical stakeholders and information system devel-

opers.

As we plan to use social networking for finding a

healthcare provider, we elaborate the “Find Healthcare

Provider” functional goal into two sub-goals: “Ask

Friends” and “Choose”. We characterize the second of

these functional goals by the “Good Quality Provider”

quality goal, meaning that the healthcare provider who

offers the best overall quality should be chosen. Again,

we do not worry here how to measure the overall quality

and postpone this until the design phase, where we decide

technical means for supporting quality appraisals and so-

cial networking.

Patient

Allocate

Healthcare

Resources

Healthcare

Provider

Maximal

Societal Health

GovernmentQuickly

Find

Healthcare

Provider

Ask Friends Choose

Good Quality

Provider

Provide Care Evaluate

Discrete Easy

Recommend

Being Good

Citizen

Anonymous

Appropriate

ProcessableIn the Context

Fig. 1. The goal model

The “Provide Care” functional goal is characterized by

the “Discrete” quality goal with an obvious meaning. The

“Evaluate” functional goal is modified by four quality

goals. The quality goal “In the Context” represents that

evaluation has to occur in the context of receiving the

service, preferably before leaving the facilities of the

healthcare provider or at least on the same day. This qual-

ity goal implies the need to introduce some context

awareness into the system. The “Easy” quality goal

means that evaluating a healthcare provider should be

easy for a patient. Potential design decisions for achieving

this quality goal involve using a cell phone or a special-

ized device for evaluation. The “Processable” quality goal

means that the evaluation should be presented in a form

amenable to computer processing. What exactly it means

is again left up to the design. For example, depending on

the system design, it could mean that all evaluations

should be expressed on a scale from 1 to 5. Or alterna-

tively, if the system includes a data-mining component, it

could mean that evaluations can be expressed in a natural

language that is controlled or restricted to a smaller or

greater extent. Finally, the “Anonymous” quality goal

expresses that no evaluation by a patient should identify

the patient.

The “Recommend” functional goal is modified by the

“Being Good Citizen” quality goal, meaning that recom-

mending healthcare providers to other patients is seen as a

voluntary activity benefiting a society as a whole.

Having defined the goals for the system, we now pro-

ceed to the viewpoint of interaction analysis by deciding

the roles that are required for achieving the goals. In the

given case study the roles are obvious: Patient and

Healthcare Provider. We represent each of these roles in

terms of its responsibilities and constraints. The resulting

role models are described by Table II and Table III. There

is also a third role – Government – but its modeling is not

relevant for the system to be designed.

TABLE II.

THE ROLE MODEL FOR PATIENT

Role Patient

Description The role of a patient in U.S. healthcare

Responsibilities Ask friends for recommendations

Choose a healthcare provider

Receive care

Evaluate care

Recommend healthcare providers

Constraints A patient should choose the best available

healthcare provider

The evaluation by a patient should not reveal the
identity of the patient

The evaluation by a patient should be processable

by computers

The evaluation by a patient should be given in
the context of receiving the care

A patient should be willing to help his/her friends

TABLE III.

THE ROLE MODEL FOR HEALTHCARE PROVIDER

Role Healthcare Provider

Description The role of a healthcare provider in U.S.

healthcare

Responsibilities Provide medical service

Constraints Medical service should be provided in a discrete
manner

TABLE IV.

THE ROLE MODEL FOR ASSISTANT

Role Assistant

Description The role of a patient’s assistant in healthcare

Responsibilities Ask friends for recommendations

Choose a healthcare provider

Assist in evaluating the care

Constraints The best possible healthcare provider should be
chosen

Appropriate for the given problem healthcare

provider should be found

Healthcare provider should be found as quickly
as possible

The evaluation by a patient should not reveal the

identity of the patient

The evaluation by a patient should be processa-
ble by computers

According to the metaphor of hiring new staff proposed

in [14], we next ask what positions would be needed to be

filled if one was to hire more staff to handle the problem.

The answer is that the Assistant position would need to be

filled, because some help would make finding a

healthcare provider easier for a patient. To reflect this, we

complement the goal model with a new Assistant role.

The Assistant role takes up the responsibilities of asking

friends for recommendations, choosing a healthcare pro-

vider, and assisting in evaluating the care. The Assistant

role is modeled in terms of its responsibilities and con-

straints as described by Table IV.

We proceed by modeling the organizational structure of

the societal information system to be developed. The or-

ganization model is depicted in Fig. 2. All three major

relationship types – peer, benevolence, and control – are

represented in the organization model. First, as we are

addressing social networks, there is the “IsPeerTo” rela-

tionship attached to the Patient role. Second, since

healthcare providers provide services to patients, there is

the “IsBenevolentTo” relationship between the roles

Healthcare Provider and Patient. Third, in finding

healthcare providers, a patient needs help that is provided

by his/her assistant. This is reflected by the “Controls”

relationship between the roles Patient and Assistant.

The organization model also shows that there can be

different types of healthcare providers, out of which phy-

sicians and hospitals are modeled in the figure. As stated

above, the design of the societal information system fo-

cuses on patients finding physicians.

Visualizing the organization model assisted us in ex-

ploring three kinds of social networks, which vary ac-

cording to how the “isPeerTo” or “being friend to” rela-

tionship of the Patient role is instantiated. The three kinds

of relationships are the following ones:

- Random network: the relationships between pairs of

patients are created randomly.

- Small-world network: most nodes are not neighbors

to one another, but most nodes can be reached from any

other node by a small number of hops [15].

- Scale-free network: the shortest paths between nodes

flow through hubs, and if a peripheral node is deleted, it

is unlikely that this will interfere with passing a message

between other peripheral nodes. We follow the Barabási–

Albert model [16] to construct a scale-free network for

our simulation. Scale-free network is a common model

for a collaboration network.

PatientHealthcare Provider

IsBenevolentTo

IsPeerTo

Assistant

Controls

Physician Hospital

Fig. 2. The organization model

Patient

Healthcare Provider

Creates

EVALUATION

Physician Hospital

CAPACITY
Has

RECOMMENDATION

Assistant

Controls

Concerns Concerns

Accepts

IsBasedOn

EFFICIENCY
Has

Gives

Fig. 3. The domain model

Based on the above behavior and interaction analysis,

we proceed to the viewpoint of information analysis by

addressing the knowledge to be represented within the

system. We do this by identifying the types of knowledge

entities related to the roles. As each healthcare provider

has predefined capacity and efficiency, we attach the Ca-

pacity and Efficiency knowledge entity types to the

Healthcare Provider role. According to the role models

represented in Tables II and IV, patients evaluate and their

assistants recommend healthcare providers. We accord-

ingly place the Evaluation and Recommendation

knowledge entity types between the roles Patient, Assis-

tant, and Healthcare Provider. In this way we obtain a

domain model, represented in Fig. 3, from the organiza-

tion model.

C. Design

Having created the goal model and the models of rele-

vant roles, as well as the organization model and domain

model, we have completed the analysis phase of agent-

oriented modeling. We now proceed with design and de-

cide from the viewpoint of interaction design the agent

types for the prototype. In the prototypical societal infor-

mation system to be designed, the role Assistant should

obviously be mapped to the Assistant Agent software

agent type. Since a patient is a real human that is treated

by another real human – a physician – we map both the

roles Patient and Healthcare Provider to the Human Agent

type. The software system boundary of the societal in-

formation system is obviously going to be between the

roles Patient and Assistant. Regarding the Healthcare

Provider role, because of the need to limit the scope of

our case study, the societal information system to be de-

signed by us does not include any software agents for

healthcare providers.

Finding a physician involves interactions among Assis-

tant Agents representing patients. We represent these in-

teractions as an interaction protocol among agents of the

type Assistant Agent. It is appropriate to remind here that

the difference between interaction protocol and other

kinds of interaction models is that interaction protocol

models some aspects of the agent behaviors along with

their interactions [4].

Interaction protocol is an important model for the soci-

etal healthcare information system, because it describes

the patient’s strategy of choosing a physician. Visualizing

interaction protocols assisted us in exploring the follow-

ing four possible strategies of choosing a physician:

- Random strategy. The patient’s Assistant Agent ran-

domly chooses a physician.

- The “Choose one” strategy. The patient’s Assistant

Agent chooses the best physician according to the pa-

tient’s evaluations for physicians. If the patient has no

evaluations, the Assistant Agent asks her friends’ Assis-

tant Agents for recommendations.

In addition to the random and “Choose one” strategies,

the “Borda voting” [Borda voting is a single-winner elec-

tion method in which voters rank candidates in order of

preference, named for the 18th-century French mathema-

tician and political scientist Jean-Charles de Borda, who

devised the system in 1770] and “Add and minimize”

strategies were explored. In the “Borda voting” strategy,

the Assistant Agent of the patient asks for recommenda-

tions and the Assistant Agents of the patient’s friends give

back recommendations just like in the “Choose one”

strategy. Physicians then earn points which are equal to

the number of physicians whose evaluations are worse

than the given physician. For each friend who gives a

recommendation, the points are calculated individually

for each physician with whom the friend has experience.

Then the Assistant Agent of the patient calculates the total

points of each recommended physician and chooses the

one with the highest points. In the “Add and minimize”

strategy, the Assistant Agent of the patient calculates the

mean value of all the non-zero evaluations for each rec-

ommended physician and chooses the one with the mini-

mal mean evaluation. These strategies are explained in

more detail in [17]. The interaction protocol modeled in

Fig. 4 describes interactions between patients’ Assistant

Agents according to the “Choose one” strategy.

Assistant Agent
of Person A

Assistant Agent
of Person X

Loop
[i=0; i<=depth-1; X=Y]

Option A

Option B

Can you recommend a physician?

I recommend Physician P.
Exit the loop.

I don’t have a recommendation.
Please ask Assistant Agent of Person Y.

Interaction
Protocol

Fig. 4. The interaction protocol for “Choose one” strategy

We also created similar interaction protocols for the two

other strategies of choosing a physician by the patient.

The interaction protocol shown in Fig. 4 models that in

case of the “Choose one” strategy, the Assistant Agent

acting on behalf of the patient’s friend may deal with the

request in one of the following ways:

o Reply with a recommendation.

o Provide the requesting agent with the address of the

Assistant Agent of one of its principal’s friends if there is

no recommendation to give. This process continues recur-

sively until the first recommendation is received or until

all the friends until the maximum forwarding depth have

been asked. The forwarding depth is defined as follows:

the originator’s friends are at depth 1; the originator’s

friends’ friends at depth 2, and so on. This means that the

interaction protocol is recursive, which is represented by

the “Loop” behavioral construct, whose repeating condi-

tion is presented in the programming style. A friend’s As-

sistant Agent may also ignore a request, in which case

neither of the Option boxes shown in Fig. 4 is chosen.

From the viewpoint of behavior design, to model the

behaviors of agents of the decided types, we transform

responsibilities of the roles into activities attached to the

agent types. This results in behavioral scenarios for

agents playing the roles Patient, Assistant, and Physician.

Table V represents the behavioral scenario for the role

Assistant played by a software agent of the type Assistant

Agent when finding a physician for its principal. The be-

havioral scenario represented in Table V models that

“Find a physician” and “Evaluate” activities are per-

formed sequentially. In the societal information system

for healthcare being designed by us this is always the case

because the Assistant Agent does not perform any activi-

ties between these activities while a patient is attended by

a physician.

Another aspect of the Assistant Agent’s behavior in

choosing a physician deals with what the agent should do

if the physician is not available on the given day. By us-

ing agent-oriented modeling for representing agent be-

haviors, we have decided to consider the following three

waiting strategies of a patient:

- Waiting. The patient’s Assistant Agent chooses the

best physician by adopting one of the physician choosing

strategies that were explained above and sticks to its

choice. If the physician is busy, the patient will still make

an appointment with the physician and will wait until the

physician becomes available.

- No waiting. If the physician chosen is busy, the pa-

tient’s Assistant Agent will choose a physician randomly

according to the “Random” strategy or the next best phy-

sician according to the other physician choosing strategies

until it finds an available physician.

- Waiting with limit. If the physician chosen is not

available, the patient’s Assistant Agent will check wheth-

er the physician could be reached in a certain number of

days. If it is possible, the patient will make an appoint-

ment and wait. If not, the Assistant Agent will choose

another physician according to the rules of the same wait-

ing strategy. If no physician is available in a certain num-

ber of days, the Assistant Agent will choose a physician,

who requires the minimum number of days to wait.

As is modeled in Table V, the activity “Evaluate” per-

formed by the Assistant Agent is triggered by a patient

leaving the physician’s office. This reflects the “In the

Context” quality goal, which in Fig. 1 is attached to the

“Evaluate” functional goal. How the leaving is to be per-

ceived is left to more detailed design, which we do not

address here because of the scope of this paper. A possible

solution may involve the timeframe of the physician of-

fice visit in question and perceiving the geographical co-

ordinates of the patient [18].

TABLE V.

THE BEHAVIORAL SCENARIO FOR AN ASSISTANT AGENT PLAYING THE ROLE OF ASSISTANT

BEHAVIORAL SCENARIO
Role Assistant

Agent type Assistant Agent

DESCRIPTION
Trigger Condition Step Activity Other roles/agent types

involved

Knowledge

entities

Relevant goals (quality goals)

Request by the
patient

Sequential

1 Find a physician Patient/Human Agent,
Assistant/Assistant Agent

Recom-
mendation

Find healthcare provider (Quickly,
Appropriate, Good Quality Provider)

Patient leaves the

physician’s office

2 Evaluate Patient/Human Agent,

Assistant/Assistant Agent

Efficiency,

Evaluation

Evaluate (In the Context, Proces-

sable, Anonymous, Easy)

In accordance with another quality goal – “Quickly” –

which was introduced by the goal model shown in Fig. 1,

we assume that a patient is willing to get healthy as soon

as possible.

Finally, distinguishing between private and public

knowledge entities from the viewpoint of information

design is straightforward, because the knowledge entity

Evaluation is private to the patient and Assistant Agent

helping him/her, while the knowledge entity Recommen-

dation is shared between different patients and instances

of Assistant Agent. Similarly, the knowledge entity Effi-

ciency is private to each Healthcare Provider, but at the

same time naturally forms a basis for how patients evalu-

ate healthcare providers.

IV. MAPPING AGENT-ORIENTED MODELS TO NETLOGO

In this section, we give an overview of some basic pro-

gramming constructs of NetLogo and show how agent-

oriented models described in Section III can be mapped to

them.

NetLogo [11] is a programmable modeling environ-

ment for simulating natural and social phenomena. Sys-

tem designers using NetLogo can give instructions to

hundreds or thousands of agents all operating inde-

pendently. This makes it possible to explore the connec-

tion between the micro-level behavior of individuals and

the macro-level patterns that emerge from the interactions

between many individuals. Because of this, NetLogo is a

suitable environment for rapid prototyping of societal

information systems. In this subsection, we give an over-

view of some basic programming constructs of NetLogo

and show how agent-oriented models can be mapped to

them.

The NetLogo world is made up of agents that can fol-

low instructions. Each agent can carry out its own activity

simultaneously with the activities performed by other

agents. Detailed overview of the types of agents in

NetLogo can be found from [11].

The programming constructs of NetLogo are seemingly

quite different from the modeling concepts of agent-

oriented modeling. However, at a closer look, the

NetLogo programming constructs can be understood as

the ones defining agents and their environments. As has

been pointed out in [4], an environment can be either a

real physical environment or a virtual environment. An

environment simulated by means of NetLogo is an exam-

ple of a virtual environment.

In NetLogo, knowledge entities of agent-oriented mod-

eling that are private for specific agents can be represent-

ed by means of agents’, which in NetLogo are called tur-

tles, local variables and knowledge entities shared by

agents – by global variables. The relationships between

knowledge entities are represented in NetLogo as calcula-

tions or derivations involving the respective NetLogo

variables. Acquaintances (communication pathways) be-

tween agents can be simulated as links between NetLogo

turtles. The environment in which the agents are situated

can be simulated as a set of patches. All in all, such a

view is consistent with the one treating both agents and

their environments as first-class citizens [19].

When we turn from the level of instances to the level of

types, we also discover obvious mappings between agent-

oriented modeling and NetLogo. For example, roles of

agent-oriented modeling are mapped to agent types,

which are in turn mapped to breeds of turtles. Similarly,

private and shared knowledge entities from the agents’

knowledge models are respectively mapped to turtles’

local variables and global variables of NetLogo. The

types of organizational relationships between agents, such

as control, benevolence, and peer, correspond to breeds of

links between turtles. Behavioral scenarios of agent-

oriented modeling correspond to procedures of NetLogo

with the difference that the procedures typically define

the behavior of a set of turtles rather than just one turtle.

The biggest disadvantage of using NetLogo for simulat-

ing multi-agent systems is that NetLogo does not directly

support interactions between agents, and interactions

therefore have to be implemented indirectly through using

global variables. The mapping between the concepts of

agent-oriented modeling and the programming constructs

of NetLogo required for rapid prototyping is presented in

Table VI.

TABLE VI. THE MAPPINGS BETWEEN AGENT-ORIENTED MODELING AND NETLOGO

Modeling concept of analysis Modeling concept of design Programming construct of NetLogo
Role (role model) Agent (agent model) Turtle

Role (role model) Agent type (agent model) Turtle breed

Goal (goal model) Behavioral scenario Procedure

Domain entity (domain model) Private knowledge item (knowledge model) Local (to turtle) variable
Domain entity (domain model) Shared knowledge item (knowledge model) Global variable

Relationship between roles in a domain model
(organization model)

Acquaintance (agent acquaintance model) Link between turtles

Relationship between domain entities (domain

model)
Relationship between knowledge items

(knowledge model)

Calculation or derivation involving the

knowledge items

Relationship type (domain model) Relationship type (knowledge model) Link breed

V. CONCLUSIONS

We proposed a method for designing and rapid proto-

typing of societal information systems. For developing

societal information systems, both their social and tech-

nical aspects should be considered. We have chosen to

use agent-oriented modeling for developing societal in-

formation systems, because this approach explicitly ad-

dresses the design of socio-technical systems where the

activities of humans are supported by software agents.

What makes agent-oriented modeling particularly appro-

priate for developing societal information systems is that

the design process starts with specifying goals for a socio-

technical system as a whole and then with defining roles

required for achieving the goals. Technical and social

subsystems of the system are identified only later in the

design process when roles are mapped to the types of

agents enacting them. This is also a stage when the deci-

sions of architectural design can be made by mapping

roles to different possible configurations of agents. Alter-

natively, the system architecture can be designed already

when deciding roles. Another advantage of agent-oriented

modeling is that it enables a system designer to address

the problem domain of an information system from three

balanced perspectives – information, interaction, and be-

havior – and at three abstraction layers.

Designing the prototypical societal information system

confirmed that agent-oriented modeling can effectively

combine models presenting the overall view of the infor-

mation system to be designed – goal model, organization

model, and domain model, with the models representing

the perspectives of individual participants – role and in-

teraction models, behavioral scenarios, and agents’

knowledge models. This supports well the requirements

for autonomy, heterogeneity, and locality of individual

members, while achieving the goals set for the system as

a whole. At the same time, the usage of agent-oriented

modeling ensures that agents implemented and deployed

by all of the participants in the information system are

designed in a uniform way to behave benevolently and

safely rather than maliciously. As a result, each patient

can in a secure and fast manner launch and personalize

his/her own healthcare agent and can task it to find a phy-

sician.

The results from performing simulations with the

“proof-of-concept” societal information system for find-

ing a physician are described in [17]. One main conclu-

sion is that the number of annual sick days per person is

decreased by 6.2%-27.1% using some strategies devel-

oped in the system compared to using random strategy.

ACKNOWLEDGEMENTS

We express our gratitude to Professor Leon Sterling

from Swinburne University of Technology, Australia for

comments and suggestions on the draft of this paper.

REFERENCES

[1] Huhns, M. N. and Stephens, L. M. (1999). Multiagent systems and

societies of agents. In G. Weiss (ed.), Multiagent Systems: A Modern

Approach to Distributed Artificial Intelligence. Cambridge, MA, and

London, England: MIT Press, Chapter 2.
[2] Wooldridge, M. (2009). An Introduction to Multiagent Systems. 2nd

Edition. Chichester, UK: John Wiley & Sons.

[3] Huhns, M. N. (2009). From DPS to MAS to ...: continuing the trends.
In C. Sierra, C. Castelfranchi, K. S. Decker, and J. S. Sichman (eds.),

8th International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2009), Budapest, Hungary, May 10-15,
Volume 1 (pp. 43-48). New York, NY: ACM.

[4] Sterling, L. and Taveter, K. (2009). The Art of Agent-Oriented

Modeling. Cambridge, MA, and London, England: MIT Press.
[5] Taveter, K. and Sterling, L. (2008). An Expressway from Agent-

Oriented Models to Prototype Systems. In M. Luck and L. Padgham

(eds.), Agent Oriented Software Engineering VIII, Proceedings of the
8th International Workshop on Agent-Oriented Software Engineering

(AOSE 2007), LNCS 4951, 149-166. Berlin, Germany: Springer-

Verlag.
[6] Ambler, S. W. (2002). Agile Modeling. Chichester, UK: John Wiley &

Sons.

[7] Wooldridge, M., Jennings, N. R., and Kinny, D. (2000) The Gaia
Methodology for Agent-Oriented Analysis and Design. Journal of

Autonomous Agents and Multi-Agent Systems, 3(3), 285-312.

[8] Bresciani, P., Perini, A., Giorgini, P.,Giunchiglia, F., and Mylopoulos,
J. (2004). Tropos: An Agent-Oriented Software Development

Methodology. Autonomous Agents and Multi-Agent Systems, 8, 203–

236.
[9] DeLoach, S. and García-Ojeda, J.C. (2010). O-MaSE: a customisable

approach to designing and building complex, adaptive multi-agent

systems. Int. J. Agent-Oriented Software Engineering, 4(3), 244-280.
[10] Berg, M. (1999). Patient care information systems and health care

work: a sociotechnical approach. Int J Med Inform. 55(2), 87-101.

[11] Wilensky, U. (1999). NetLogo. Last accessed on February 16, 2012,
from http://ccl.northwestern.edu/netlogo/. Center for Connected

Learning and Computer-Based Modeling. Evanston, IL: Northwestern

University.
[12] Hilaire, V., Koukam, A., Gruer P., and Müller, J.-P. (2000). Formal

Specification and Prototyping of Multi-agent Systems. In A.Omicini,

R. Tolksdorf and F. Zambonelli (eds.), Engineering Societies in the
Agent World, First International Workshop, ESAW 2000, Berlin,

Germany, August 21, Revised Papers, LNCS 1972, 114-127. Berlin,

Germany: Springer-Verlag.
[13] Hahn, C., Madrigal-Mora, C., and Fischer, K. (2009). A platform-

independent metamodel for multiagent systems. Journal of

Autonomous Agents and Multi-Agent Systems, 18, 239–266.
[14] Wilmann, D and Sterling, L. (2005). Guiding agent-oriented

requirements elicitation: HOMER. In The 2005 NASA / DoD

Conference on Evolvable Hardware (EH 2005), 29 June - 1 July,
Washington, DC, USA (pp. 419–424). Washington, DC: IEEE

Computer Society.
[15] Watts, D. J. and Strogatz S. H. (1998). Collective dynamics of ‘small-

world’ networks. Nature, 393, 440-442.

[16] Barabasi A.-L. and Albert R. (1999). Emergence of Scaling in
Random Networks. Science, 286(5439), 509–512.

[17] Du, H., Taveter, K. and Huhns, M. N. (2012). Simulating a Societal

Information System for Healthcare. In Proceedings of the 6th
International Workshop on Multi-Agent Systems and Simulation

(MAS&S), Wrocław, Poland, September 9-12, 2012, to be published.

[18] Nguyen, T., Loke, S. W., Torabi, T., and Lu, H. (2011). PlaceComm: A
framework for context-aware applications in place-based virtual

communities, Journal of Ambient Intelligence and Smart

Environments, 1(3), 51–64.
[19] Weyns, D., Omicini, A., and Odell, J. (2007). Environment as a first

class abstraction in multiagent systems. Autonomous Agents and

Multiagent Systems, 14(1), 5–30.

http://www.ncbi.nlm.nih.gov/pubmed/10530825
http://www.ncbi.nlm.nih.gov/pubmed/10530825
http://ccl.northwestern.edu/netlogo/

