
Reconciling Ontologies for Coordination among E-business Agents

Jingshan Huang, Jiangbo Dang, and Michael N. Huhns
Computer Science & Engineering Dept., University of South Carolina, Columbia, SC 29208, USA

{huang27, dangj, huhns}@engr.sc.edu

1. Introduction
To meet the demands of dynamic and open e-markets requires e-
businesses to coordinate their activities. The first step towards this
coordination is for e-business agents to understand each other’s
service description. Using ontologies can aid in this understanding.
However, independently designed ontologies usually have
heterogeneous semantics. We first present a schema-based
approach to reconcile ontologies, then introduce compatibility
vectors to solve the problem of how to select more compatible
agents to interact with. For additional details and references, see
http://www.cse.sc.edu/~huang27/paper/AAMAS%2006.pdf.

2. Ontology Heterogeneity and Our Solution
An example scenario of the interaction within an e-business
environment can be envisioned as follows:
1. A number of agents form an e-business community (EBC)
within which services from different agents might be integrated to
render a better service.
2. The agents outside this EBC can request help from the
community and make use of its services, either the original ones
or the integrated one.

Because there is no ontology which is global and accepted by
every agent, ontological heterogeneity among agents becomes an
inherent characteristic in an EBC. Therefore, two major problems
are envisioned here. First, during the formation of an EBC, how
can it be ensured that all agents within the community have no
problem in understanding each other’s ontology? Second, an
agent seeking coordination from outside this community would
like to choose those agents that understand its ontology best. How
can it ensure this selection is a correct one?

In order to solve the first problem, we need an approach to
match/align ontologies from different agents. To tackle the second
problem, we introduce compatibility vectors as a means of
measuring and maintaining ontology quality. By determining the
compatibility for each constituent agent along with the formation
of an EBC, not only the agents outside this community are able to
select the best agent(s) with ease, but also a better mutual
understanding of ontologies within the EBC is obtained.

3. A Schema-based Ontology Merging Algorithm
Our goal is to develop a methodology for constructing a merged
ontology from two original ones. The methodology can then be
applied iteratively to merge all ontologies within an EBC.

The ontology merging is carried out at the schema level. Internally
we represent an ontology using a directed acyclic graph G (V, E),
where V is a set of ontology concepts (nodes), and E is a set of
edges between two concepts, i.e., E = {(u, v) | u and v belong to V
and u is a superclass of v}. In order to merge two ontologies, G1
and G2, we try to relocate each concept (node) from one ontology
into the other one. We adopt a breadth-first order to traverse G1
and pick up a concept C as the target to be relocated into G2.
Consequently, at least one member of C’s parent set Parent(C) in
the original graph G1 has already been put into the suitable place

in the destination graph G2 before the relocation of C itself. The
time complexity of this algorithm is O(n2), with n the number of
concepts in the merged ontology.

4. Ontology Distance and Compatibility Vectors
Along with the formation of an EBC, we create a center ontology
by merging all the original ontologies; then the distances from the
latter to the center are suitably encoded in the compatibility
vectors, and can be adjusted efficiently and dynamically. Based on
the information contained in the vectors, agents are supposed to
understand the ontology from each other without trouble. In
addition, the agent from outside this community will have no
difficulty choosing the agents with good compatibilities.

4.1 Concept Distance and Ontology Distance
The concept distance in original ontologies is represented by the
amount of information missing, i.e., the number of relationships
known in the center but not in the original ontology. The
following equation formalizes the concept distance: dconcept = w1 *
nsub-super + w2 * nother, with the constraint of (w1 + w2 = 1). nsub-super
is the number of sub/superclass relationships missing in the
original ontology, and nother is that for other relationships. wi is the
weight assigned to different kinds of relationship.

After each concept distance has been calculated, the ontology
distance between the original ontology and the center can be

figured out as: dontology = ∑
=

n

i 1

wi * dconcepti, where dconcepti is the

distance between a pair of concepts, n is the number of concepts
in the center, and wi encodes the importance of a concept in its
ontology. We use the percentage of the number of relationships to
represent this measurement. For example, if ontology_1 has 100
relationships in total, and concept “Spatial” has 15 relationships,
then the weight for this concept in ontology_1 is 0.15.

4.2 Compatibility Vectors

Figure 1. Compatibility Vectors

Inside the center, there is a set of compatibility vectors, one for
each original ontology. A compatibility vector consists of a set of

dimensions, each corresponding to one concept in the center.
Each dimension has three sub-dimensions. The first one tells us
whether the original ontology understands this concept or not; the
second one records the concept name in the original ontology if
the latter does recognize that concept; the third one encodes the
corresponding concept distance. An example of compatibility
vectors is shown in Figure 1.

For the first concept (“Spatial”) in the center ontology, provider_1
knows it as “Spatial” and has a concept distance of 2.7;
provider_3 also understands this concept, but with a different
name (“Space”) and a bigger concept distance of 4.5; neither
provider_2 nor provider_m recognizes concept “Spatial”,
therefore, they have the same concept distance (5.0).

4.3 Dynamically Adjusting Compatibility Vectors
When there is only one agent, its compatibility is perfect. In the
compatibility vectors stored in the center, each concept distance
has a value of zero. However, with the adding of new agents into
this EBC, the compatibilities for existing agents might be changed.

Figure 2. Dynamic Adjustment of Compatibility Vectors

An example is shown in Figure 2. After ontology_1 and
ontology_2 are merged to generate center_1, the distance between
these two and the merged center_1 is calculated and stored in the
compatibility vectors of center_1. Upon the joining of ontology_3
and the generation of center_2, the compatibility vector for
center_1 in center_2 is calculated and integrated with the
compatibility vectors for ontology_1 and ontology_2 in center_1;
then we generate the compatibility vectors for ontology_1 and
ontology_2 in center_2. We have an algorithm (whose details are
omitted here) to accomplish the above adjustment, and its time
complexity is O(n * log n), with n the number of concepts in the
center. Figure 3 exemplifies our algorithm.

Figure 3. Example of Vector Adjustment

4.4 Ontology Understanding via Compatibility Vectors
The center maintains the compatibility vectors for all original
ontologies. If two agents would like to comprehend each other’s
ontology, they can refer to the corresponding compatibility
vectors and obtain enough information in mutual understanding.
In addition, when an agent from outside this EBC requests for
agent(s) to coordinate with, it would like to choose those that
understand its ontology best. The requesting agent first compares
its own ontology with the center, and then searches in the
compatibility vectors to find all agents understanding the concept
of its interest. If there is more than one candidate, the
coordination request will be sent to those with good
compatibilities, that is, with small concept and/or ontology
distance.

4.5 Correctness and Complexity of Compatibility Vectors
To record and maintain the proper compatibility of each agent
inside an EBC, the key is to obtain a correct center ontology by
which to evaluate the distance from it to each original ontology,
and thereby acquire the corresponding compatibility vector. When
a new agent joins the EBC, instead of communicating with each
existing agent, it only talks with the center ontology. Therefore, if
we can prove that the newly merged ontology is a correct new
center, the correctness of compatibility vectors is guaranteed.
Lemma 1. When we merge two ontologies A and B using the
algorithm in Section 3, the result is the same regardless of whether
we merge A into B or merge B into A (proof omitted).
Theorem 1. The final result of merging a number of ontologies is
identical no matter by which order the original ontologies are
merged using the algorithm in Section 3 (proof omitted).

The time complexity of establishing an EBC, along with the
achievement of mutual understanding of ontological concepts, is
on the order of O(n2 * m), with n the number of the concepts in
the center, and m the number of original ontologies. For the
ontology merging, O(n2 * m) is needed, because we need to merge
m ontologies, and each merging procedure takes time O(n2). In
addition, in order to dynamically update the compatibility vectors,
extra time will be spent. O(n * log n) is needed for updating one
agent, so the extra time for all agents is O(n * log n * m).
Therefore, the total time complexity becomes O((n2 + n * log n) *
m), which is on the same order of O(n2 * m). For agent selection,
the time complexity is O(n2). We only need to compare the
ontology from the requesting agent with the center ontology.

5. Experiment Results
A set of experiments have been conducted to show the correctness
and efficiency of our approach. Details can be found in
http://www.cse.sc.edu/~huang27/paper/AAMAS%2006.pdf.

6. Future Work
Some future work is envisioned here: (1) our current approach
makes use of a center ontology, but introduces the problem of
how to handle the vulnerability issue inherent in this centralized
solution, (2) how to maintain compatibility vectors when existing
agents modify their corresponding ontologies, and (3) what kind
of mechanism is suitable if we simultaneously consider qualities
of both ontologies and services.

