
1

A SOFTWARE AGENT TOOLKIT FOR EFFECTIVE INFORMATION PROCESSING IN
THE BATTLE COMMAND DOMAIN

Mr. Tedd W. Gimber*
Global InfoTek Inc.
Reston, VA 20191

Dr. Michael N. Huhns

Global InfoTek, Inc. and University of South Carolina
Columbia, SC 29208

ABSTRACT

Commanders of combat units have traditionally

desired as much information as possible to aid them in
making key decisions. Ironically, we have reached the
stage where there is now too much information available.
A commonly proposed solution is to utilize software
agents to collect information, select what is useful, and
deliver it to the commander. By their nature, software
agents are active, distributed, intelligent, and persistent
computations, so they can enable the best information to
be made available when and where it is needed.
Unfortunately using such software agents effectively
requires computer programming expertise not typically
available to a battlefield commander. Global InfoTek Inc
(GITI) is currently assembling a suite of agent
development tools that will enable programmers to
develop software agents that can be controlled and
manipulated by the commanders in the field.

1. INTRODUCTION

Battlefield commanders have historically faced an
insidious enemy, one different than those with weapons
facing them from across the field of battle. That enemy is
information – too little information; too much
information; incomplete information; bad information;
information delivered too late; information delivered to
the wrong person. This enemy is present not only before
the first shot is fired in a battle, but also during the
fighting and after the action has completed.

1.1 Historical Example

In July of 1863, Gen. Robert E. Lee faced the
information enemy and paid dearly. His forces were
massing for what was to be a decisive Confederate victory
in Pennsylvania; a victory that Lee hoped would end the
Civil War. Instead, Gen. Lee was blind and deaf because
his "eyes and ears" were missing. Gen. J.E.B. Stuart, the
flamboyant leader of Lee's cavalry, failed to maintain
communication with the main body of the Confederate
forces and failed to maintain his observation of the Union
forces. Thus Lee was unaware of the size and position of

the Union forces as they approached him near Gettysburg.
He had some intelligence reports from scouts in the field,
but without input from his trusted cavalry leader, he could
not be certain if those reports were accurate.

1.2 Modern Scenario

Today, US Army commanders directing their forces
in a combat environment face information overload. New
and emerging technologies under the Future Combat
System program, such as sensor networks and
autonomous reconnaissance vehicles, greatly increase the
amount of information available to the commander.
However, timely and proper management of the vast
information provided by these networked systems is
essential to the success of network-centric missions.
Consider this scenario:

Data from a remote sensor network indicates possible
insurgent activity in a valley obscured by forest
cover. UAV images confirm the presence of an
encampment, but the images are insufficient to
determine its exact purpose. A commander decides
to utilize a Special Operations reconnaissance team to
observe the activity of the camp first hand. In order
to plan the operation, data from the sensor network
must be quickly examined to determine the suspected
size and movement of the forces in the camp. Digital
maps must be consulted to decide upon the safest
entry and exit points for the team as well as the best
route to the valley. Weather data from six different
systems is available and has to be considered to
determine when the team can operate and under what
conditions they will operate. Finally, recent satellite
and UAV images need to be analyzed and related to
the digital maps to determine the exact location of the
encampment. All of this information is constantly
changing – weather conditions can rapidly
deteriorate, enemy movement may be spotted, and
orders from superiors may be modified. The
operation planners must stay on top of all of this
information to create and update the operation plan.

2

This scenario illustrates the vast amount of
information available to commanders and operation
planners that is derived from multiple sources on different
heterogeneous systems. Contrasted with the historical
example, it is easy to think that we have progressed from
having too little information to too much information.
But in fact it is not the quantity of information that
matters, but it is the quality. The commander needs the
right information, at the right time, to make an intelligent
decision. It really is a problem of information
management.

1.3 Software Agents to the Rescue

A relatively recent solution to this problem is the use
of intelligent "agents" that are able to act not only on
behalf of their human "masters," but also to take the
initiative in gathering information and presenting it in a
usable fashion. Research into artificial intelligence during
the 1960's and 1970's helped form the basis for the
concept of software agents. A vision for such intelligent
creatures, crafted in software, first appeared in John
McCarthy’s seminal work [McCarthy 1979] and has later
been termed the intentional stance: the philosophical view
that cognitive concepts can be ascribed to any physical
system and that it is beneficial to do so for complex
systems.

This vision has been refined into the current

definition that considers agents to be autonomous,
distributed, active, persistent, and communicating
software components. Consistent with this definition,
Tim Berners-Lee has promulgated the notion of software
agents working for their human masters to gather
information from the World Wide Web [Berners-Lee
2001]. The agents work together to exchange
information, make appointments, and generally improve
life for humans by using content present on the Internet,
thereby rendering the Web as accessible for machines as
it is for humans.

These visions present a target for computer scientists,

information specialists, and researchers to work towards.
And much has been accomplished in the realm of
software agents. For example, they are overseeing the
supply chains for multinational corporate enterprises,
mining the Web for information for intelligence analysts,
and managing billion-dollar auctions for energy
resources. Yet two major problems still face the potential
user of the agents: interoperability and ease of use.

There are currently several agent systems and agent

frameworks in use as research prototypes. But most of
the frameworks are built for a single purpose and do not
work well together, nor do they work well with legacy
software applications. In other words, they lack the
ability to interoperate or enable interoperation among
other systems. Interoperability is a critical characteristic

of any network-based system, and that is especially true in
current, emerging, and future DoD systems.

The second major shortcoming of almost all current

agent systems is ease of use. Many of these systems sport
wonderful Graphical User Interfaces (GUI's) for
monitoring and controlling agents. Yet the actual creation
and programming of the agents remains firmly in the
realm of the computer scientist and software engineer.

It was in part this lack of interoperability and ease of

use that lead US Army Communications-Electronics
Research, Development, and Engineering Center
(CERDEC) to encourage the investigation of the use of a
common agent framework that could be combined with
current and future agent development tools to create an
environment for software agent development. GITI
performed that research under SBIR A05-078. During
that task we created the concept of an Agent
Development Toolkit.

The Agent Development Toolkit, shown in Figure 1,

consists of a Common Agent Framework, an Agent
Factory, and Modifiable Agents. These components are
supplemented by additional tools and libraries to provide
interoperability with other systems, including legacy
systems. The agents are created by software developers
using the Agent Factory, but the end users can manipulate
and even reprogram those agents via an easy to use and
intuitive user interface.

Figure 1 - The Agent Development Toolkit permits non-
programmers in the field to access critical information by
composing and modifying agents previously created by software
developers.

2. THE AGENT DEVELOPMENT TOOLKIT

We conducted our work on the concept of this
Toolkit during the Phase I effort of the SBIR task. Our
efforts began with the concept of a Common Agent
Framework, as define in the Agent Systems Reference

3

Model (ASRM) [Mayk 2006]. The ASRM was produced
by a team from Drexel University as part of their work in
support of the Intelligent Agent Integrated Product Team
(IPT) working group. That working group is chaired by
Dr. Israel Mayk of the US Army Research, Development,
and Engineering Command (RDECOM). The working
group has analyzed numerous agent-based systems and
formulated an understanding of what a typical agent
system looks like. The result was the first ever reference
model for an agent system. The ASRM is a guideline for
what functionality an agent framework should contain.
We used the ASRM as the basis for our plans for a
Common Agent Framework. The Framework is the
foundation component of the Agent Development Toolkit,
and one of the first tasks we undertook was determining
the requirements of that Framework.

2.1 The Common Agent Framework Requirements

We documented 60 core requirements in 9 different
categories. Those categories are: Administration,
Security, Mobility, Conflict Management, Messaging,
Logging, Interoperability, Directory Services, and Non-
Functional requirements. These were based on the major
functional areas defined in the ASRM, and represent the
core requirements for a Common Agent Framework.
Let's take a look at these categories to gain a better
understanding of the role they play within the Framework.

The categories of Administration, Conflict

Management, Directory Services, and Logging all relate
to the management of agents running within the
framework. The Administration category describes how
agents are started and stopped. Conflict Management
deals with agent interaction and the resolution of disputes
between agents. For example, two agents might be tasked
with obtaining information from sensor, but the sensor
interface does not permit concurrent access. Conflict
Management determines which agent is given the access,
which is denied, and any mediation relating to that denial.
The Directory Services category is concerned with how
agents are able to find each other in the system. Finally,
Logging deals with capturing the activities of the agents,
the messages they sent, and so on. This is useful for
understanding agent interactions and is a critical part of
security.

Security obviously is a major concern to any user of a

computer system and thus represents a major
requirements category. Networked systems operating
within the DoD are some of the most critical information
resources in use today, and require extraordinary security
protection. Most agent frameworks do not provide ample
security, in fact most provide no real security. This is
because these systems are being used for research and
development. However the Common Agent Framework
must address security concerns straight on if there is any
hope of using our Toolkit in a Battle Command

environment. The Security Category requirements
currently cover the basic security needs. These will be
augmented by specific security requirements specified as
part of Certification and Accreditation process. The basic
requirements call for agent identification, authentication,
authorization, as well as encryption for messages sent
between agents.

Closely related to security is the Mobility

requirements category. In many agent systems, agents are
able to move from one computer to another. This may
seem an odd thing for an agent to do at first, but there are
times when agent mobility makes sense. One example is
an agent that moves to a different computing platform to
be closer to a data source. It is more efficient for the
agent to read a database on the database server than to
perform queries over a network. The requirements for
agent mobility cover how agents may move, how the
decision is made, and the security of agent migration.

Of course agents tend to spend more time talking to

other agents than they do moving from one computer to
another. The category of Messaging specifies how agents
communicate with each other. We purposely did not
dictate a specific message format such as the Foundation
for Intelligent Agent (FIPA) Agent Communication
Language (ACL) nor did we specify the means of
communication (e.g., Java Message Service). Instead our
requirements are very broad and are geared to fostering
interoperability by agents using the Common Agent
Framework. We require that the framework provide
support for synchronous and asynchronous messaging.
We also require that the framework allow binary data
(such as video) in addition to basic text messages. We
require support for XML based messages, but do not
require that all messages be sent in XML format. This is
to provide a maximum amount of flexibility while still
providing interoperability.

The Interoperability requirements category focuses

on the ability of users of the Common Agent Framework
to exchange information with other agent frameworks as
well as non-agent systems. Defining a common
messaging format is not sufficient to provide a means of
communication between two different agent frameworks.
It is necessary to provide a common mechanism for
exchanging messages. For example, agents running under
different systems could use a centralized database to store
messages. In order to achieve interoperability with non-
agent systems, we specify requirements to provide an
interface to Web services. We also require support for
semantic technologies, specifically Resource Description
Format (RDF), RDF Schema (RDFS), and Web Ontology
Language (OWL). Finally we require a means of
wrapping legacy applications to provide a communication
channel to the Common Agent Framework.

4

We also made several non-functional requirements
for the Common Agent Framework. We specified that the
Framework would function under Microsoft Windows
(2000, XP, 2003, etc) as well as the UNIX and Linux
platforms. We also specified that the Framework be Java
based, specifically that it run under the Java 2 Standard
Edition (J2SE) version 1.4 or above. We made Java a
standard for the Framework for the following reasons:

• Java has numerous built in security features
• Java has built in support for Remote Method

Invocation (RMI) which simplifies distributed
processing and mobile agents

• There is a large community of Java developers to
provide expertise and support for the Framework

• The majority of agent systems are written in Java
• Java based systems are easily ported to new

platforms

Having documented the basic requirements for a

Common Agent Framework, we considered how agents
would be developed to run on that framework.

2.2 Requirements for an Agent Development
Environment

The Agent Development Environment (ADE)
encompasses the Agent Factory, as well as the various
"tools of the trade" employed by the typical software
developer. These include compilers, editors, version
control, and other specialized tools. But what makes the
ADE special is that it is intended to be used specifically
for the development of software agents.

A large number of the requirements that we specified

for the Common Agent Framework are repeated for the
ADE. For example, the requirement that the Framework
provide a means of sending XML formatted messages
between agents naturally leads to the requirement that the
ADE support the use of XML in general (via libraries
perhaps) and that it can create agents that can send XML
messages specifically. This is true for most of the agent
related requirements previously discussed so we will not
repeat those here. Instead we will focus on the more
interesting requirements that we determined during our
analysis of the ADE.

Probably the most important requirement that we

specified was that the ADE will be based on a popular
Integrated Development Environment (IDE) such as
NetBeans or Eclipse. We further specified that the IDE is
to be Java based and run on a variety of platforms, for the
reasons laid out in the previous section. We also
stipulated that the IDE itself be open source and freely
available. This was a specific requirement provided by
CERDEC and one that we fully supported. We did not
want to base our agent development environment on a

product that had expensive licenses which would tax
already constrained budgets. We also specified that the
IDE needed to be fully extensible via add on modules or
"plug-ins" so we could create specialized features for the
creation of software agents, namely the Agent Factory.

The Agent Factory is the centerpiece of the Agent

Development Environment. We specified in our
requirements that the Agent Factory will be a wizard-
driven, GUI-based tool for simplifying the creation of
software agents. The Factory provides a means for
programmers as well as non-programmers to create
agents. We do not envision that the commander in the
field will use the Agent Factory, but we do believe that
the Factory could be used by non-programmers to create
agents requested by a commander. This will dramatically
reduce the amount of time necessary to develop and
deploy software agents in the future.

To support the use of the Agent Factory, we specified

that the ADE will include industry standard tools for
version control and project building, and those tools will
be integrated into the IDE. Two examples of such tools
are Subversion for version control and Apache Ant for
automating the build process. Both are Java based, open
source, freely available tools that can be integrated into an
IDE. This will permit the Agent Factory, as part of the
ADE, to create agents that are stored in a centralized
repository and packaged for deployment as Java Archive
(JAR) files.

We also added two additional requirements to the

ADE that we feel are critical to the success of developers
creating agents: built-in help and working examples.
These seem minor, but our experience and review of
existing agent development products convinced us these
are vital and often overlooked features.

The built-in help functionality is not simply the

"search for keywords" type of help available in most
modern applications. Instead we provide direct assistance
in tasks the user performs (e.g., a Wizard guiding the
creation of an agent) as well as context sensitive help such
as you get from an IDE like Eclipse when trying to
remember the syntax for a "case" statement in Java.

The inclusion of functioning, interesting, and

instructive examples in the ADE is likewise important.
Such examples are useful for understanding how complex
technologies function. This feature allows users to begin
with a working model that they can dissect and
experiment with. During our review of agent systems, we
were impressed with the examples included in Jadex as
part of a tutorial. Jadex is a Java based agent framework
that is used primarily for researching and experimenting
with software agents. Included in the Jadex system are
working agent demonstrations for Blackjack, robotics,

5

and puzzle solving. The robotics demonstration, for
example, shows the use of agents to control virtual
vacuum cleaners tasked with collecting trash in a room.

2.3 Recommended Tools

Once we completed documenting the key
requirements for our Agent Development Toolkit, we
focused on evaluating the key components we would need
for the Toolkit. We knew that we would need an agent
framework to build upon, an IDE for development of the
agents, developers' tools for tasks such as version control,
and tools or libraries for providing interoperability with
other systems.

We used our core requirements to weed out products

that were not suited to our needs. For example, when
considering IDE's, we quickly set aside Microsoft's Visual
Studio product because it does not run under the Linux
operating system. We also added additional requirements
when we found a particular feature that we felt was
important to include. The interesting sample programs
included in the Jadex tutorial are one such case.

The purpose for having a Common Agent Framework

is that it will greatly simplify the problem of agent
interoperability. With the goal of defining what is to be
included in a Common Agent Framework, we evaluated
numerous existing frameworks. This evaluation of
frameworks was aided to a large extent by the survey
included in the ASRM. We also looked at additional
frameworks, not covered by the ASRM survey, to provide
a broad review of technology.

We eventually focused on two different frameworks,

the Cognitive Agent Architecture (Cougaar) and the
Control of Agent Based System (CoABS) Grid. Both are
Java based, and both began life as Defense Advanced
Research Projects Agency (DARPA) programs. Review
of each showed that they both meet the core requirements
for a Common Agent Framework and are generally
compatible with the functional areas set out in the ASRM.

We thus had to decide if we would use one of these

two products, or if we would build a new Common Agent
Framework using the best of all the frameworks we
evaluated. In the end we opted to use the CoABS Grid as
a starting point and then build upon it. GITI has been
involved with the CoABS Grid from its onset and thus we
are intimately familiar with it. During our research and
evaluations we realized that neither the Grid nor any other
single product provides a complete solution to the
idealized Common Agent Framework. However, the Grid
is lightweight and flexible, and makes an excellent
starting point for the Common Agent Framework.

Next we began searching for a proper development

tool on which to base our Agent Factory. As stated

above, we decided to use a full-featured IDE for that
development tool. We evaluated several IDE's including
Microsoft's Visual Studio, Borland's JBuilder, NetBeans,
and Eclipse. We quickly eliminated Visual Studio and
JBuilder because they did not meet our basic requirements
of being Java based and freely obtainable. This left us
with NetBeans and Eclipse. Each is a solid IDE with
features that permit extensions well suited to our Agent
Factory. Each has a built-in tutorial plus wizards for
performing common tasks (e.g., creating a new Java
class). In the end we selected Eclipse because we deemed
that it had more popular support (which we grant is a very
subjective characteristic) and because Eclipse uses the
Open Services Gateway initiative (OSGi) model for its
runtime layer [Clayberg 2006]. The OSGi Alliance is a
worldwide technology consortium that advocates a
standard for a component-based integrated platform to
assure interoperability among applications and service.
We obtain additional interoperability by building upon
this standard.

The Agent Factory consists of tools and libraries in

addition to the Eclipse IDE. One tool that works well
with Eclipse is Apache Ant. Ant, which was discussed
earlier, is a tool for building Java applications and
packaging them for distribution. Although Ant is not a
scripting language, it can be used to aid in creating agents,
by automating the steps needed to build an agent.

Another tool that the Agent Factory requires is a

version control tool. This is needed to store versions of
agents created by the Factory, so that other developers,
and eventually end-users, can call upon that agent. For
this we looked at two tools, the Concurrent Versioning
System (CVS) and Subversion. Both are freely available,
open source, and run on a variety of platforms, including
Windows and UNIX. We have decided to include
Subversion in the initial Toolkit because it is newer and is
an improved version of CVS.

Finally we reviewed numerous tools and libraries that

provide interoperability with other systems. We have not
specified any tools or libraries specifically because
interoperability technologies are still emerging and
changing. We have instead included Web services,
Semantic Web technologies, and general mechanisms for
wrapping legacy systems as key components of the
interoperability functionality of the Toolkit.

Web services are intended as a means to support

interoperability among multiple heterogeneous platforms
(e.g., Windows and Linux) over a common network, such
as the Internet. They do this by using a standards based
approach to provide common interfaces to the services.
The basic language for Web services is the Extensible
Markup Language (XML), which is used for basic data
exchange. Messaging between the services is typically

6

done using a standard for messaging such as Simple
Object Access Protocol (SOAP). Another standard, the
Web Services Description Language (WSDL), provides a
common interface for describing a Web service. To
advertise and learn about the availability of a Web
Service, a directory is used, which is commonly based on
the Universal Description, Discovery, and Integration
(UDDI) directory protocol.

A rapidly emerging concept for providing

interoperability across networks is the Semantic Web.
The goal of the Semantic Web is to add meaning to the
data available via the Web, including Web services. For
example, if we have a description of an individual as a
"father," we typically understand that the person is a male
who has one or more children. However, in a different
context, the "father" being referred to could be a Catholic
priest. We as humans have developed an ability to
recognize the meaning of words in a given context.
However this is much more difficult for computers. This
meaning is typically added to the data as metadata – data
about data. Additional meaning can be inferred using
logic. For example, if one's father has a father, that
person can be inferred to be the grandfather. These
inferred meanings can be incorporated into the predefined
meanings to create a better understanding of the
information.

The full Agent Development Environment is shown

in Figure 2. As can be seen, the ADE consists of the
Agent Factory plus a collection of libraries, application
programming interfaces (API's), and tools such as Protégé
(an ontology editor used with semantic technologies).
The Agent Factory itself includes the IDE (Eclipse), the
Java compiler, and developer tools such as Ant. All of
this together forms the development environment used to
create the agents. So where do these agents live, work,
and play? In the run time environment of course!

Figure 2 - The ADE will contain the Agent Factory (Eclipse, Java,
Ant, etc) as well as libraries for interfacing with external systems.
The product is user modifiable agents.

2.4 The Battle Command Run Time Environment

The full Agent Development Toolkit includes the
ADE just described, plus a run-time environment where
the agents run. The run-time environment also includes a
user interface to enable the end-user (i.e., the warfighter)
to directly access and control the agents. It is important to
differentiate the programming environment from the run
time environment for our Toolkit, for we commonly
include both when discussing the Toolkit. The ADE is
the Java compiler, the editor, and the other developer
tools (e.g., Apache Ant). It includes the Agent Factory.
Additionally it contains the various libraries necessary to
provide interoperability, as previously discussed.

Conversely the Battle Command run-time

environment does not contain the Java compiler, or
Apache Ant, or the Eclipse IDE. It does include various
libraries, including those necessary for interoperability.
These libraries will be required for the agents to
communicate with other agents, frameworks, and non-
agent-based systems. And it should be clear that the
Common Agent Framework, which itself is comprised of
libraries, will be included in the run-time environment.

The Battle Command run-time environment also

includes a specialized user interface for controlling the
running of the agents and, more importantly, a mechanism
for reprogramming agents as they run. This is possible
with modifiable behavior-based agents. Behavior-based
agents contain a core logic that processes instructions
received from another agent (including a human agent)
via messages. The instructions are queued for execution
by the agent, and in effect become the behavior of that
agent. New instructions may be received that modify or
replace existing instructions, thus providing an agent
whose behavior can be changed as it runs, without the
need to recompile it.

It is important to understand that these behaviors are

programmable and are not simply parameters. For
example, we can have an agent that monitors a
thermometer. If the temperature exceeds some set value,
say 70° Fahrenheit, the agent is to send an alert message.
It is a simple thing to change a parameter to say the
threshold is now 75°, but the behavior of the agent really
hasn't changed in that case; it stills sends a message when
a limit is exceeded. But imagine we tell the agent that we
now want it monitor the thermometer plus an acoustic
sensor and alert us if the temperature changes by more
than 10% in 5 minutes and the acoustic sensor registers an
increase in sound during the same time. Clearly this is
much different than simply changing a parameter.

7

We are currently using such behavior-based agents

for a sensor monitoring project. As can been seen in
Figure 3, behavior-based agents have a queue to store
behaviors, plus a collection of data about the sensors.
This knowledge base is filled with environmental
information obtained from "managed elements," which
are in fact sensors. New behaviors are sent to the agent,
which modify the agent's processing of the knowledge
base. The result is the agent produces new messages or
takes some other action different than what was originally
programmed.

 Figure 3 - Behavior Based Agents can be reprogrammed by
replacing their existing behaviors, which tell them how to process
information such as sensor data.

In order for warfighters to control agents intuitively,

our Toolkit will contain a Modifiable Agent User
Interface (MAUI). In addition to conjuring up images of
white sandy beaches and blue water, MAUI will be the
port for warfighters to interact with the agents that are
processing their information. It will be a graphical
interface, highly configurable and intuitive. In order to be
truly useful to warfighters, we intend to develop MAUI
using an iterative development approach with frequent
feedback from Subject Matter Experts (SME's)
experienced with the Battle Command environment.

3. CURRENT ACTIVITIES

Currently our work on the Common Agent
Development Toolkit is being performed as an internal
research and development project. However, many of the
pieces of the Toolkit have already been developed and, in
an effort to produce highly flexible products for our
customers, we are incorporating some aspects of the
Toolkit into our solutions for them.

Recently, GITI acquired the technology of the

Valaran Corporation. Valaran had a Service Oriented
Architecture (SOA) that was similar to the CoABS Grid,
with the addition of advanced security features based on
Sun's Jini 2.1 technology. We have incorporated those

features with the CoABS Grid to create the Intelligent
Service Layer (ISL). The ISL is a services based
architecture that forms the basis for our software agent
framework.

We are utilizing behavior based agents as part of our

current research on Mobile Ad hoc Networks (MANET).
A MANET is a network composed of mobile wireless
nodes connected in a peer-to-peer fashion using
specialized routing protocols to address the dynamic
nature of a mobile network. We are using agents to
monitor the MANET and take appropriate actions based

on the state of the network. For example if the MANET
is dense, meaning there are many nodes and the overall
throughput of the network is good, our agents will
transmit large messages with photographic images. But
if bandwidth decreases, our agents will send a text
message describing the image. By using modifiable
agents with the behaviors described previously, we can
provide a highly adaptive and flexible agent
environment.

To augment the use of modifiable agents, we have

developed an agent planning tool to link agents together
to perform complex tasks. The Composable
Heterogeneous Agents for Intelligent Notification
(CHAIN™) is a tool developed to allow autonomous

agents to be created, linked together, and managed in
order to provide extensive capabilities to users. CHAIN
could be used in conjunction with MAUI to provide a
highly configurable agent-based system for the Battle
Command environment.

We have also developed automatic generation of

software agents as part of CHAIN and ISL. These
automatic generation tools are used to create new agents
and to wrap legacy systems as agents to permit
interoperability. Our recent Valaran acquisition has
provided us with an Eclipse plug-in for developing
software agents. These capabilities will eventually
become the Agent Factory, which will produce agents that
can be programmed via MAUI and linked into CHAIN
workflow plans.

The ISL provides extensive interoperability

capabilities that we are continually extending. The ISL
includes a Web service interface that permits our agents
to speak to Web services or to act as a Web service. And
we are investigating the use of semantic technology to
permit communication among heterogeneous systems.

4. FUTURE WORK

We are currently not directly funded to develop the
Agent Development Toolkit, but we continue to work on
the individual components with the goal of eventually
assembling the full version. Our original plan called for

8

incrementally developing the Toolkit, with each iteration
resulting in a new version with more capabilities. We
continue to follow that plan, though at a reduced effort.

One of the reasons for developing the Toolkit

incrementally is to provide end-users the opportunity to
review the product and provide feedback. We currently
lack access to Battle Command SME's that can provide us
with that feedback. But we are currently taking advantage
of the current Grid user base to garner useful feedback,
and we are actively seeking new tasks where we will have
direct access to Battle Command SME's.

There is continuing progress in heterogeneous system

interoperability, particularly in the area of the use of
semantics and ontologies to share information. Semantic
understanding will be a critical capability for software
agents to communicate with other agents across global
networks. We are actively involved in this research,
because we believe this will be the next major
breakthrough in interoperability.

Finally, though the original concept of the Toolkit

was created with the US Army Battle Command domain
in mind, we see great potential in using the Toolkit in
other environments. This includes use in homeland
security, network monitoring and management, and home
automation systems. We are continually improving the
tools we have and creating new ones with awareness of
the value of the Agent Development Toolkit in a wide
range of domains.

CONCLUSIONS

We have described our concept of an Agent
Development Toolkit, and shown how it can be applied to
the Battle Command domain to deliver to warfighters the
right information at the right time. Developers will be
able to create agents that can be utilized and manipulated
by warfighters. These agents will assist the commanders
and operation planners to make sense of the vast
information available to them, and to manage that
information effectively.

The Toolkit will consist of a Common Agent

Framework, an integrated development environment for
creating powerful software agents, tools for version
control and packaging agents, plus a run time
environment where end-users will be able to access the
agents. The agents themselves will be built by developers
using a modified and extended version of the IDE which
we call the Agent Factory. Those agents will have
programmable behaviors, which will allow the agents to
be reprogrammed while they run. The control of these
agents and the manipulation of the behaviors will be
accomplished by commands using a special user interface
created for just that purpose.

The Toolkit will be built using industry best practices

and defined standards, such as the Agent Systems
Reference Model. By selecting Java based tools that are
license free, we will create a powerful and flexible
collection of tools, integrated into a single package that
will run on most if not all computing platforms with a low
cost to the government at a time of reduced budgets and
demands for greater efficiency.

Although the Toolkit is not a fully functional product

at this time, many of the key components exist and are
being used today. The GITI Intelligent Service Layer
(ISL), CHAIN, behavior-based agents, and other
technologies are real and proving themselves daily. Full
integration into a comprehensive toolkit is simply a matter
of time.

ACKNOWLEDGMENTS

We would like to extend a special word of thanks to
the members of the Intelligent Agent Sub-IPT working
group chaired by Dr. Israel Mayk of RDECOM
CERDEC. Our participation with the working group has
been very beneficial. In particular, we thank Dr. William
Regli and his team from Drexel University for their work
in creating the ASRM.

We would also like to thank Dr. Ray Emami of

Global InfoTek Inc for his belief in our work and backing
that with internal research and development funding. It is
a pleasure to work for a gentleman who values progress
and contributions to knowledge above money.

REFERENCES

Berners-Lee T., Hendler, J., and Lassila O. 2001: The
Semantic Web. Scientific American, May 2001 Issue.

Clayberg E., Rubel D., Eclipse – Building Commercial-
Quality Plug-ins. Addison-Wesley, 810pp.

Mayk I., Regli W. C., et al, 2006: The Agent Systems
Reference Model Drexel University.

McCarthy J 1979: Ascribing Mental Qualities to
Machines. Philosophical Perspectives in Artificial
Intelligence, Ringle M., ed., Harvester Press.

