A SOFTWARE AGENT TOOLKIT FOR EFFECTIVE INFORMATION PROCESSING IN
THE BATTLE COMMAND DOMAIN

Mr. Tedd W. Gimber*
Global InfoTek Inc.
Reston, VA 20191

Dr. Michael N. Huhns
Global InfoTek, Inc. and University of South Carali

Columbia,

ABSTRACT

Commanders of combat units have traditionally
desired as much information as possible to aid tiem
making key decisions. lronically, we have reaclieel
stage where there is now too much information atl.

A commonly proposed solution is to utilize software
agents to collect information, select what is ukedind
deliver it to the commander. By their nature, waifte
agents are active, distributed, intelligent, andsiséent
computations, so they can enable the best infoomat

be made available when and where it is needed.
Unfortunately using such software agents effecfivel
requires computer programming expertise not typical
available to a battlefield commander. Global Ird&Tnc
(GITIl) is currently assembling a suite of agent
development tools that will enable programmers to
develop software agents that can be controlled and
manipulated by the commanders in the field.

1. INTRODUCTION

Battlefield commanders have historically faced an
insidious enemy, one different than those with veeesp
facing them from across the field of battle. Teaémy is
information — too little information; too much
information; incomplete information; bad informatio
information delivered too late; information deliedr to
the wrong person. This enemy is present not oafpre
the first shot is fired in a battle, but also dgrithe
fighting and after the action has completed.

1.1 Historical Example

In July of 1863, Gen. Robert E. Lee faced the
information enemy and paid dearly. His forces were
massing for what was to be a decisive Confedeiiatery
in Pennsylvania; a victory that Lee hoped would #rel
Civil War. Instead, Gen. Lee was blind and deafaose
his "eyes and ears" were missing. Gen. J.E.B.rtile
flamboyant leader of Lee's cavalry, failed to maiimt
communication with the main body of the Confederate
forces and failed to maintain his observation &f tion
forces. Thus Lee was unaware of the size andipoof

SC 29208

the Union forces as they approached him near Grittygs
He had some intelligence reports from scouts irfitid,
but without input from his trusted cavalry leadss,could
not be certain if those reports were accurate.

1.2 M odern Scenario

Today, US Army commanders directing their forces
in a combat environment face information overloatew
and emerging technologies under the Future Combat
System program, such as sensor networks and
autonomous reconnaissance vehicles, greatly irertbaes
amount of information available to the commander.
However, timely and proper management of the vast
information provided by these networked systems is
essential to the success of network-centric mission
Consider this scenario:

Data from a remote sensor network indicates passibl
insurgent activity in a valley obscured by forest
cover. UAV images confirm the presence of an
encampment, but the images are insufficient to
determine its exact purpose. A commander decides
to utilize a Special Operations reconnaissance team
observe the activity of the camp first hand. Idesr

to plan the operation, data from the sensor network
must be quickly examined to determine the suspected
size and movement of the forces in the camp. &ligit
maps must be consulted to decide upon the safest
entry and exit points for the team as well as tbstb
route to the valley. Weather data from six diffdre
systems is available and has to be considered to
determine when the team can operate and under what
conditions they will operate. Finally, recent #ite

and UAV images need to be analyzed and related to
the digital maps to determine the exact locatiothef
encampment. All of this information is constantly
changing — weather conditions can rapidly
deteriorate, enemy movement may be spotted, and
orders from superiors may be modified. The
operation planners must stay on top of all of this
information to create and update the operation.plan

This scenario illustrates the vast amount of
information available to commanders and operation
planners that is derived from multiple sources ifeicknt
heterogeneous systems. Contrasted with the Hatori
example, it is easy to think that we have progmr$sem
having too little information to too much informati.
But in fact it is not the quantity of informatiorhat
matters, but it is the quality. The commander netbes
right information, at the right time, to make areifigent

decision. It really is a problem of information
management.
1.3 Software Agentstothe Rescue

A relatively recent solution to this problem is thee
of intelligent "agents" that are able to act notyoon
behalf of their human "masters," but also to take t
initiative in gathering information and presentingn a
usable fashion. Research into artificial intelige during
the 1960's and 1970's helped form the basis for the
concept of software agents. A vision for suchliigent
creatures, crafted in software, first appeared ahnJ
McCarthy’s seminal work [McCarthy 1979] and ha®iat
been termed thimtentional stancethe philosophical view
that cognitive concepts can be ascribed to any iphlys
system and that it is beneficial to do so for campl
systems.

This vision has been refined into the current
definition that considers agents to be autonomous,
distributed, active, persistent, and communicating
software components. Consistent with this debniti
Tim Berners-Lee has promulgated the notion of safew
agents working for their human masters to gather
information from the World Wide Web [Berners-Lee
2001]. The agents work together to exchange

information, make appointments, and generally inapro é?j::\, Composable and
life for humans by using content present on therhwt, TSy Wioditiabie Agenis
thereby rendering the Web as accessible for mastise # —\..,¢ 7 ﬁuﬁ—Q—\
s orumans SONR: e
These visions present a target for computer ssitsnti seftware arfi
information specialists, and researchers to wovkatds. Developer]I

And much has been accomplished in the realm of
software agents. For example, they are overseitiag
supply chains for multinational corporate entemgsijs
mining the Web for information for intelligence dysts,

and managing billion-dollar auctions for energy
resources. Yet two major problems still face theeptal
user of the agentmteroperabilityandease of use

There are currently several agent systems and agent

frameworks in use as research prototypes. But mbst
the frameworks are built for a single purpose aachdt
work well together, nor do they work well with leya
software applications. In other words, they latle t
ability to interoperate or enable interoperationoam
other systems. Interoperability is a critical aweristic

2

of any network-based system, and that is espedraiéyin
current, emerging, and future DoD systems.

The second major shortcoming of almost all current
agent systems is ease of use. Many of these sysgont
wonderful Graphical User Interfaces (GUI's) for
monitoring and controlling agents. Yet the acturalation
and programming of the agents remains firmly in the
realm of the computer scientist and software eragine

It was in part this lack of interoperability andseaof
use that lead US Army Communications-Electronics
Research, Development, and Engineering Center
(CERDEC) to encourage the investigation of the afsa
common agent framework that could be combined with
current and future agent development tools to eraat
environment for software agent development. GITI
performed that research under SBIR A05-078. During
that task we created the concept of akgent
Development Toolkit.

The Agent Development Toolkit, shown in Figure 1,
consists of a Common Agent Framework, an Agent
Factory, and Modifiable Agents. These componengs a
supplemented by additional tools and libraries ravigle
interoperability with other systems, including lega
systems. The agents are created by software gmrslo
using the Agent Factory, but the end users canpunéate
and even reprogram those agents via an easy tande
intuitive user interface.

System ‘Semantic Web‘ Service
interfaces ‘ Toois ‘ Wrapper

Web
Services

FCS
S0SCOE

Legacy
Applications

Common Agent Framework

Figure 1 - The Agent Development Toolkit permits non-
programmers in the field to access critical information by
composing and modifying agents previously created by software
developers.

2. THE AGENT DEVELOPMENT TOOLKIT

We conducted our work on the concept of this
Toolkit during the Phase | effort of the SBIR tasur
efforts began with the concept of a Common Agent
Framework, as define in the Agent Systems Reference

Model (ASRM) [Mayk 2006]. The ASRM was produced
by a team from Drexel University as part of theorivin
support of the Intelligent Agent Integrated Prodliem
(IPT) working group. That working group is chairbyg
Dr. Israel Mayk of the US Army Research, Developtnen
and Engineering Command (RDECOM). The working

environment. The Security Category requirements
currently cover the basic security needs. Thedkhsi
augmented by specific security requirements spaetifis
part of Certification and Accreditation processheTbasic
requirements call for agent identification, autheatton,
authorization, as well as encryption for messaga# s

group has analyzed numerous agent-based systems andetween agents.

formulated an understanding of what a typical agent
system looks like. The result was the first exeference
model for an agent system. The ASRM is a guidefime
what functionality an agent framework should camtai
We used the ASRM as the basis for our plans for a
Common Agent Framework. The Framework is the
foundation component of the Agent Development Tibolk
and one of the first tasks we undertook was deteéngi

the requirements of that Framework.

21 TheCommon Agent Framework Requirements

We documented 60 core requirements in 9 different
categories. Those categories are: Administration,
Security, Mobility, Conflict Management, Messaging,
Logging, Interoperability, Directory Services, ahibn-
Functional requirements. These were based on #jerm
functional areas defined in the ASRM, and represieat
core requirements for a Common Agent Framework.
Let's take a look at these categories to gain &eibet
understanding of the role they play within the Feavark.

The categories of Administration, Conflict
Management, Directory Services, and Logging alateel
to the management of agents running within the
framework. The Administration category describesvh
agents are started and stopped. Conflict Managemen
deals with agent interaction and the resolutiodisputes
between agents. For example, two agents mighadied
with obtaining information from sensor, but the s@n
interface does not permit concurrent access. @onf
Management determines which agent is given thesagcce
which is denied, and any mediation relating to thextial.
The Directory Services category is concerned witkv h
agents are able to find each other in the systEmally,
Logging deals with capturing the activities of thgents,
the messages they sent, and so on. This is ukaful
understanding agent interactions and is a crifieat of
security.

Security obviously is a major concern to any ugex o
computer system and thus represents a major
requirements category. Networked systems operating
within the DoD are some of the most critical infation
resources in use today, and require extraordinacyrgy
protection. Most agent frameworks do not providgke
security, in fact most provide no real securityhisTis
because these systems are being used for reseadch a
development. However the Common Agent Framework
must address security concerns straight on if tiesny
hope of using our Toolkit in a Battle Command

Closely related to security is the Mobility
requirements category. In many agent systemstsigea
able to move from one computer to another. Thiy ma
seem an odd thing for an agent to do at first,thete are
times when agent mobility makes sense. One exarsple
an agent that moves to a different computing ptatfto
be closer to a data source. It is more efficiemt the
agent to read a database on the database servetotha
perform queries over a network. The requiremeats f
agent mobility cover how agents may move, how the
decision is made, and the security of agent migmati

Of course agents tend to spend more time talking to
other agents than they do moving from one comptater
another. The category of Messaging specifies hgents
communicate with each other. We purposely did n
dictate a specific message format such as the Fdiond
for Intelligent Agent (FIPA) Agent Communication
Language (ACL) nor did we specify the means of
communication (e.g., Java Message Service). ldsiea
requirements are very broad and are geared torifogte
interoperability by agents using the Common Agent
Framework. We require that the framework provide
support for synchronous and asynchronous messaging.
We also require that the framework allow binaryadat
(such as video) in addition to basic text messagé&e
require support for XML based messages, but do not
require that all messages be sent in XML formahisTs
to provide a maximum amount of flexibility whileilkt
providing interoperability.

The Interoperability requirements category focuses
on the ability of users of the Common Agent Framgwo
to exchange information with other agent framewaaks
well as non-agent systems. Defining a common
messaging format is not sufficient to provide a nweaf
communication between two different agent framework
It is necessary to provide a common mechanism for
exchanging messages. For example, agents runndey u
different systems could use a centralized datatmastore
messages. In order to achieve interoperability wibn-
agent systems, we specify requirements to provide a
interface to Web services. We also require supfumort
semantic technologies, specifically Resource Dp8ori
Format (RDF), RDF Schema (RDFS), and Web Ontology
Language (OWL). Finally we require a means of
wrapping legacy applications to provide a commuica
channel to the Common Agent Framework.

We also made several non-functional requirements
for the Common Agent Framework. We specified that
Framework would function under Microsoft Windows
(2000, XP, 2003, etc) as well as the UNIX and Linux
platforms. We also specified that the Frameworkléea
based, specifically that it run under the Java éh&ard
Edition (J2SE) version 1.4 or above. We made Java
standard for the Framework for the following reason

» Java has numerous built in security features

e Java has built in support for Remote Method
Invocation (RMI) which simplifies distributed
processing and mobile agents

e There is a large community of Java developers to
provide expertise and support for the Framework

» The majority of agent systems are written in Java

» Java based systems are easily ported to new
platforms

Having documented the basic requirements for a
Common Agent Framework, we considered how agents
would be developed to run on that framework.

2.2 Requirements for an Agent Development
Environment
The Agent Development Environment (ADE)

encompasses the Agent Factory, as well as theusrio
"tools of the trade" employed by the typical softaa
developer. These include compilers, editors, wersi
control, and other specialized tools. But what esathe
ADE special is that it is intended to be used dmdly
for the development of software agents.

A large number of the requirements that we spetifie
for the Common Agent Framework are repeated for the
ADE. For example, the requirement that the Franmkwo
provide a means of sending XML formatted messages
between agents naturally leads to the requireniexitthe
ADE support the use of XML in general (via librarie
perhaps) and that it can create agents that cah)Seih
messages specifically. This is true for most &f dgent
related requirements previously discussed so wenetl
repeat those here. Instead we will focus on theemo
interesting requirements that we determined ducdnog
analysis of the ADE.

Probably the most important requirement that we
specified was that the ADE will be based on a papul
Integrated Development Environment (IDE) such as
NetBeans or Eclipse. We further specified thatlbie is
to be Java based and run on a variety of platfofonghe
reasons laid out in the previous section. We also
stipulated that the IDE itself be open source aeely
available. This was a specific requirement predidy
CERDEC and one that we fully supported. We did not

product that had expensive licenses which would tax
already constrained budgets. We also specifiatlttte
IDE needed to be fully extensible via add on moslule
"plug-ins" so we could create specialized featdoeshe
creation of software agents, namely the Agent Fgcto

The Agent Factory is the centerpiece of the Agent
Development Environment. We specified in our
requirements that the Agent Factory will be a wdzar
driven, GUI-based tool for simplifying the creatia
software agents. The Factory provides a means for
programmers as well as non-programmers to create
agents. We do not envision that the commandeheén t
field will use the Agent Factory, but we do beliethat
the Factory could be used by non-programmers tatere
agents requested by a commander. This will draaiéti
reduce the amount of time necessary to develop and
deploy software agents in the future.

To support the use of the Agent Factory, we spegtifi
that the ADE will include industry standard toolsr f
version control and project building, and thoseldoill
be integrated into the IDE. Two examples of stozis
are Subversion for version control and Apache Amnt f
automating the build process. Both are Java bagszh
source, freely available tools that can be integtato an
IDE. This will permit the Agent Factory, as paftthe
ADE, to create agents that are stored in a cené@li
repository and packaged for deployment as Javaivech
(JAR) files.

We also added two additional requirements to the
ADE that we feel are critical to the success ofalepers
creating agents: built-in help and working exaraple
These seem minor, but our experience and review of
existing agent development products convinced aseth
are vital and often overlooked features.

The built-in help functionality is not simply the
"search for keywords" type of help available in mos
modern applications. Instead we provide direcistessce
in tasks the user performs (e.g., a Wizard guidimg
creation of an agent) as well as context senditélp such
as you get from an IDE like Eclipse when trying to
remember the syntax for a "case" statement in Java.

The inclusion of functioning, interesting, and
instructive examples in the ADE is likewise impaoitta
Such examples are useful for understanding how @mp
technologies function. This feature allows userbégin
with a working model that they can dissect and
experiment with. During our review of agent systeme
were impressed with the examples included in Jaex
part of a tutorial. Jadex is a Java based agentefnark
that is used primarily for researching and expeniting
with software agents. Included in the Jadex sysaeen

want to base our agent development environment on a working agent demonstrations for Blackjack, robmtic

4

and puzzle solving. The robotics demonstratiorr, fo
example, shows the use of agents to control virtual
vacuum cleaners tasked with collecting trash iocan.

2.3 Recommended Tools

Once we completed documenting the key
requirements for our Agent Development Toolkit, we
focused on evaluating the key components we woesdin
for the Toolkit. We knew that we would need anrage
framework to build upon, an IDE for developmenttioé
agents, developers' tools for tasks such as vecsinfrol,
and tools or libraries for providing interoperdtyilwith
other systems.

We used our core requirements to weed out products
that were not suited to our needs. For examplesnwh
considering IDE's, we quickly set aside Microsoffisual
Studio product because it does not run under timendi
operating system. We also added additional remdrgs
when we found a particular feature that we felt was
important to include. The interesting sample paogs
included in the Jadex tutorial are one such case.

The purpose for having a Common Agent Framework
is that it will greatly simplify the problem of age
interoperability. With the goal of defining what io be
included in a Common Agent Framework, we evaluated
numerous existing frameworks. This evaluation of
frameworks was aided to a large extent by the surve
included in the ASRM. We also looked at additional
frameworks, not covered by the ASRM survey, to fitev
a broad review of technology.

We eventually focused on two different frameworks,
the Cognitive Agent Architecture (Cougaar) and the
Control of Agent Based System (CoABS) Grid. Boté a

above, we decided to use a full-featured IDE faatth
development tool. We evaluated several IDE's ificlg
Microsoft's Visual Studio, Borland's JBuilder, Nets,
and Eclipse. We quickly eliminated Visual Studioda
JBuilder because they did not meet our basic rements

of being Java based and freely obtainable. THisue
with NetBeans and Eclipse. Each is a solid IDEhwit
features that permit extensions well suited to Agent
Factory. Each has a built-in tutorial plus wizarfds
performing common tasks (e.g., creating a new Java
class). Inthe end we selected Eclipse becausteemed
that it had more popular support (which we grarat igry
subjective characteristic) and because Eclipse tlses
Open Services Gateway initiative (OSGi) model fr i
runtime layer [Clayberg 2006]. The OSGi Allianceas
worldwide technology consortium that advocates a
standard for a component-based integrated platftrm
assure interoperability among applications and iserv
We obtain additional interoperability by buildingpan
this standard.

The Agent Factory consists of tools and libraries i
addition to the Eclipse IDE. One tool that worksliw
with Eclipse is Apache Ant. Ant, which was discs
earlier, is a tool for building Java applicationsda
packaging them for distribution. Although Ant istra
scripting language, it can be used to aid in cngagigents,
by automating the steps needed to build an agent.

Another tool that the Agent Factory requires is a
version control tool. This is needed to store oS of
agents created by the Factory, so that other deeedp
and eventually end-users, can call upon that agéiat:
this we looked at two tools, the Concurrent Vergign
System (CVS) and Subversion. Both are freely atel,
open source, and run on a variety of platformduitiag
Windows and UNIX. We have decided to include

Java based, and both began life as Defense Advancedgypyersion in the initial Toolkit because it is m@vand is

Research Projects Agency (DARPA) programs. Review
of each showed that they both meet the core remeinés
for a Common Agent Framework and are generally
compatible with the functional areas set out inAISRM.

We thus had to decide if we would use one of these
two products, or if we would build a new Common Age
Framework using the best of all the frameworks we
evaluated. In the end we opted to use the CoOAB& &

a starting point and then build upon it. GITI Hasen
involved with the CoABS Grid from its onset and shue
are intimately familiar with it. During our researand
evaluations we realized that neither the Grid myr @ther
single product provides a complete solution to the
idealized Common Agent Framework. However, thelGri
is lightweight and flexible, and makes an excellent
starting point for the Common Agent Framework.

Next we began searching for a proper development
tool on which to base our Agent Factory. As stated

5

an improved version of CVS.

Finally we reviewed numerous tools and librariest th
provide interoperability with other systems. Wedaot
specified any tools or libraries specifically besau
interoperability technologies are still emerging dan
changing. We have instead included Web services,
Semantic Web technologies, and general mechanisms f
wrapping legacy systems as key components of the
interoperability functionality of the Toolkit.

Web services are intended as a means to support
interoperability among multiple heterogeneous platis
(e.g., Windows and Linux) over a common networlghsu
as the Internet. They do this by using a standbssed
approach to provide common interfaces to the sesvic
The basic language for Web services is the Exténsib
Markup Language (XML), which is used for basic data
exchange. Messaging between the services is tipica

done using a standard for messaging such as Simple
Object Access Protocol (SOAP). Another standand, t
Web Services Description Language (WSDL), provides
common interface for describing a Web service. To
advertise and learn about the availability of a Web
Service, a directory is used, which is commonlyeldasn

the Universal Description, Discovery, and Integmati
(UDDI) directory protocol.

A rapidly emerging concept for providing
interoperability across networks is the SemanticbWe
The goal of the Semantic Web is to add meanindh¢o t
data available via the Web, including Web servicésr
example, if we have a description of an individaal a
"father," we typically understand that the perspa imale
who has one or more children. However, in a déffer
context, the "father" being referred to could b&atholic
priest. We as humans have developed an ability to
recognize the meaning of words in a given context.
However this is much more difficult for computefhis
meaning is typically added to the data as metadatata
about data. Additional meaning can be inferrechgisi
logic. For example, if one's father has a fathbgt
person can be inferred to be the grandfather. &hes
inferred meanings can be incorporated into the gfiieed
meanings to create a better understanding of the
information.

The full Agent Development Environment is shown
in Figure 2. As can be seen, the ADE consistshef t
Agent Factory plus a collection of libraries, apption
programming interfaces (API's), and tools suchraségé
(an ontology editor used with semantic technoldgies
The Agent Factory itself includes the IDE (Eclipstie
Java compiler, and developer tools such as Antl ofAl
this together forms the development environmentl use
create the agents. So where do these agentswion,
and play? In the run time environment of course!

{ O |

Java
ompiler

Eclipse IDE

Bubversio

o

Common Agent Framework

Figure 2 - The ADE will contain the Agent Factory (Eclipse, Java,
Ant, etc) as well as libraries for interfacing with external systems.
The product is user modifiable agents.

2.4 TheBattle Command Run Time Environment

The full Agent Development Toolkit includes the
ADE just described, plus a run-time environment rghe
the agents run. The run-time environment alsaiihes a
user interface to enable the end-user (i.e., thdigirer)
to directly access and control the agents. Injgdrtant to
differentiate the programming environment from te
time environment for our Toolkit, for we commonly
include both when discussing the Toolkit. The ABE
the Java compiler, the editor, and the other deezlo
tools (e.g., Apache Ant). It includes the Agenttiay.
Additionally it contains the various libraries nesary to
provide interoperability, as previously discussed.

Conversely the Battle Command run-time
environment does not contain the Java compiler, or
Apache Ant, or the Eclipse IDE. It does includeioas
libraries, including those necessary for interopaits.
These libraries will be required for the agents to
communicate with other agents, frameworks, and non-
agent-based systems. And it should be clear that t
Common Agent Framework, which itself is compriséd o
libraries, will be included in the run-time enviroent.

The Battle Command run-time environment also
includes a specialized user interface for contgllthe
running of the agents and, more importantly, a raasm
for reprogramming agents as they run. This is possible
with modifiable behavior-based agents. Behavimeda
agents contain a core logic that processes ingingt
received from another agent (including a human #igen
via messages. The instructions are queued foruérec
by the agent, and in effect become the behaviahaf
agent. New instructions may be received that nyodlif
replace existing instructions, thus providing arergg
whose behavior can be changed as it runs, withmait t
need to recompile it.

It is important to understand that these behavdoes
programmable and are not simply parameters. For
example, we can have an agent that monitors a
thermometer. If the temperature exceeds someadet,v
say 70° Fahrenheit, the agent is to send an alestage.

It is a simple thing to change a parameter to $wy t
threshold is now 75°, but the behavior of the ageatly
hasn't changed in that case; it stills sends aagesahen

a limit is exceeded. But imagine we tell the agbat we
now want it monitor the thermometer plus an acausti
sensor and alert us if the temperature changes drg m
than 10% in 5 minutes and the acoustic sensortezgian
increase in sound during the same time. Cleaily ith
much different than simply changing a parameter.

We are currently using such behavior-based agents Service Layer (ISL).

for a sensor monitoring project. As can been seen
Figure 3, behavior-based agents have a queue te sto
behaviors, plus a collection of data about the @ens
This knowledge base is filled with environmental
information obtained from "managed elements," which
are in fact sensors. New behaviors are sent tadgeat,
which modify the agent's processing of the knowéedg
base. The result is the agent produces new message
takes some other action different than what wagirally
programmed.

Behavior
Storage
S——
Knowledge Base
(resources)

Figure 3 - Behavior Based Agents can be reprogrammed by
replacing their existing behaviors, which tell them how to process
information such as sensor data.

In order for warfighters to control agents intuiiy,
our Toolkit will contain a Modifiable Agent User
Interface (MAUI). In addition to conjuring up imeg of
white sandy beaches and blue water, MAUI will be th
port for warfighters to interact with the agentsttlare
processing their information. It will be a grapdic
interface, highly configurable and intuitive. Inder to be
truly useful to warfighters, we intend to developAMI
using an iterative development approach with fregque
feedback from Subject Matter Experts (SME's)
experienced with the Battle Command environment.

3. CURRENT ACTIVITIES

Currently our work on the Common Agent
Development Toolkit is being performed as an iraérn
research and development project. However, martlyeof
pieces of the Toolkit have already been develope] &
an effort to produce highly flexible products fouro

features with the CoABS Grid to create the Inteltiy
The ISL is a services based
architecture that forms the basis for our softwagent
framework.

We are utilizing behavior based agents as paruof o
current research on Mobile Ad hoc Networks (MANET).
A MANET is a network composed of mobile wireless
nodes connected in a peer-to-peer fashion using
specialized routing protocols to address the dyoami
nature of a mobile network. We are using agents to
monitor the MANET and take appropriate actions dase

on the state of the network. For example if the NEX

is dense, meaning there are many nodes and thallover
throughput of the network is good, our agents will
transmit large messages with photographic imadast

if bandwidth decreases, our agents will send a text
message describing the image. By using modifiable
agents with the behaviors described previously came
provide a highly adaptive and flexible agent
environment.

To augment the use of modifiable agents, we have

developed an agent planning tool to link agentstiogy

to perform complex tasks. The Composable

Heterogeneous Agents for Intelligent Notification

(CHAIN™) is a tool developed to allow autonomous
agents to be created, linked together, and managed
order to provide extensive capabilities to use@HAIN
could be used in conjunction with MAUI to provide a
highly configurable agent-based system for the I8att
Command environment.

We have also developed automatic generation of
software agents as part of CHAIN and ISL. These
automatic generation tools are used to create m@muta
and to wrap legacy systems as agents to permit
interoperability. Our recent Valaran acquisitiomsh
provided us with an Eclipse plug-in for developing
software agents. These capabilities will evenyuall
become the Agent Factory, which will produce agémis
can be programmed via MAUI and linked into CHAIN
workflow plans.

The ISL provides extensive interoperability
capabilities that we are continually extending. TB&
includes a Web service interface that permits @enss
to speak to Web services or to act as a Web senAcel
we are investigating the use of semantic technolmgy

customers, we are incorporating some aspects of the permit communication among heterogeneous systems.

Toolkit into our solutions for them.

Recently, GITI acquired the technology of the
Valaran Corporation. Valaran had a Service Oriénte
Architecture (SOA) that was similar to the CoABSIid3r
with the addition of advanced security featureseHasn
Sun's Jini 2.1 technology. We have incorporatesseh

4. FUTURE WORK

We are currently not directly funded to develop the
Agent Development Toolkit, but we continue to wank
the individual components with the goal of everual
assembling the full version. Our original planledlfor

incrementally developing the Toolkit, with eachrétéon
resulting in a new version with more capabilitiesVe
continue to follow that plan, though at a reductdre

One of the reasons for developing the Toolkit
incrementally is to provide end-users the oppotjuto
review the product and provide feedback. We cdiyen
lack access to Battle Command SME's that can peowsd
with that feedback. But we are currently takingatage
of the current Grid user base to garner useful faekl,
and we are actively seeking new tasks where wehaitk
direct access to Battle Command SME's.

There is continuing progress in heterogeneous isyste
interoperability, particularly in the area of theseu of
semantics and ontologies to share information. eBim
understanding will be a critical capability for seére
agents to communicate with other agents acrossaglob
networks. We are actively involved in this reséarc
because we believe this will be the next major
breakthrough in interoperability.

Finally, though the original concept of the Toolkit
was created with the US Army Battle Command domain
in mind, we see great potential in using the Tdoiki
other environments. This includes use in homeland
security, network monitoring and management, andeho
automation systems. We are continually improvihg t
tools we have and creating new ones with awareokss
the value of the Agent Development Toolkit in a &id
range of domains.

CONCLUSIONS

We have described our concept of an Agent
Development Toolkit, and shown how it can be agptie
the Battle Command domain to deliver to warfightes
right information at the right time. Developerslivibe
able to create agents that can be utilized and putaied
by warfighters. These agents will assist the condees

and operation planners to make sense of the vast

information available to them, and to manage that
information effectively.

The Toolkit will consist of a Common Agent
Framework, an integrated development environment fo
creating powerful software agents, tools for versio
control and packaging agents, plus a run time
environment where end-users will be able to actless
agents. The agents themselves will be built byelimers
using a modified and extended version of the IDHctvh
we call the Agent Factory. Those agents will have
programmable behaviors, which will allow the agetuts
be reprogrammed while they run. The control ofséhe
agents and the manipulation of the behaviors wdl b
accomplished by commands using a special usefaater
created for just that purpose.

The Toolkit will be built using industry best praets
and defined standards, such as the Agent Systems
Reference Model. By selecting Java based toalsate
license free, we will create a powerful and flegibl
collection of tools, integrated into a single pagpdahat
will run on most if not all computing platforms Wit low
cost to the government at a time of reduced budaedts
demands for greater efficiency.

Although the Toolkit is not a fully functional pradt
at this time, many of the key components exist aral
being used today. The GITI Intelligent Service éay
(ISL), CHAIN, behavior-based agents, and other
technologies are real and proving themselves datyll
integration into a comprehensive toolkit is simplynatter
of time.

ACKNOWLEDGMENTS

We would like to extend a special word of thanks to
the members of the Intelligent Agent Sub-IPT wogkin
group chaired by Dr. Israel Mayk of RDECOM
CERDEC. Our participation with the working grougsh
been very beneficial. In particular, we thank Dfilliam
Regli and his team from Drexel University for theiork
in creating the ASRM.

We would also like to thank Dr. Ray Emami of
Global InfoTek Inc for his belief in our work an@dking
that with internal research and development fundiltdgs
a pleasure to work for a gentleman who values gsyr
and contributions to knowledge above money.

REFERENCES

Berners-Lee T., Hendler, J., and Lassila O. 200e T
Semantic WebScientific AmericanMay 2001 Issue.

Clayberg E., Rubel DEclipse — Building Commercial-
Quality Plug-ins Addison-Wesley, 810pp.

Mayk I., Regli W. C., et al, 2006The Agent Systems
Reference Moddbrexel University.

McCarthy J 1979: Ascribing Mental Qualities to
Machines. Philosophical Perspectives in Artificial
Intelligence Ringle M., ed., Harvester Press.

