Design by Analogy Using Plan Abstractions

Ramdén D. Acosta and Michael N. Huhns

Microelectronics and Computer Technology Coerporation
VLSI CAD and Advanced Computer Architecture Programs
3500 West Balcones Center Drive
Austin, TX 78759
(512) 338-3673 or acosta@mecc.com

Abstract

An important problem-solving strategy used in many design do-
mains is to build upon the experience of previous design efforts as an
aid to solving new design problems. This can be viewed as problem
solving by analogy. Two concerns for constructing systems capable
of analogical reasoning are analogy recognition (finding the most rel-
evant past experiences) and analogy transformation (adapting previ-
ously acquired knowledge to new problem-solving situations). This
paper explores how the use of abstraction, particularly as related to
learning problem-solving plans, can serve as a useful foundation for
the use of analogy in design domains.

1 Introduction

Analogical reasoning is an important problem-solving strategy being ac-
tively investigated by a number researchers [2,3,5,6,9,15]. The establish-
ment of analogies as a problem-solving aid is characterized by a variety of
useful features, including

¢ a smaller search space

e a more sophisticated reuse of learned knowledge (in contrast to simple
playback of problem-solving episodes)

e the application of experience via causal connections from “more-
familiar” previously solved problems to “less-familiar” new problems

1

C AAAT -%¢ (/\.)OY‘KSL\O? On @I Avv(‘_DQstp\,



Design, being a knowledge-intensive and search-intensive activity, is a
domain for which the reusability afforded by using analogies might prove
to be particularly beneficial [11,13]. For example, because design is of-
ten hierarchical, transformations and decompositions that can be applied
to functional specifications typically lead to increasingly simpler, and of-
ten independent, subproblems. Further, even if a design system lacks the
previous design knowledge to solve an entire new problem, analogically
transforming partial design plans previously generated by the system can
be an effective approach to yielding a complete design.

A vital issue in building design systems capable of exploiting analogies
is the representation of design plans from which analogies are to be drawn.
This representation not only must be expressive enough to explicitly rep-
resent design decisions, but also must be storable and retrievable in order
to facilitate the recognition and transference of relevant analogies to future
problems. Our belief is that abstractions of plan structures are the key to
the successful use of analogy in design domains.

This paper explores various issues related to the reuse of learned knowl-
edge based on analogies with previous problem-solving efforts. Section 2
defines some important concepts, including exact versus inexact analogies,
analogy recognition, and analogy transformation. Sections 3 and 4 concen-
trate on the representation and abstraction of design plans for the purposes
of analogical reasoning. Conclusions are presented in Section 5. An indica-
tion of how these ideas have been implemented in the Argo system [1,7,8]
is presented throughout the paper.

2 Analogy Recognition and Transformation

An analogy is a mapping from a base domain to a target domain that allows
the sharing of features between these domains. We classify analogies as
being either ezact or inezact. Where there is an exact match between a past
experience and a new problem-solving situation, an exact analogy exists and
the new problem can be solved either by executing the old plan or by using
the old solution. Where there is not an exact match, an inexact analogy
exists and the two tasks that arise are 1) analogy recognition: finding the
most similar past experience, and 2) analogy transformation: adapting this



experience to the new problem situation.

Several techniques have been suggested for automatically recognizing
the most similar past experience. These include finding a past experi-
ence with either an identical first stage [3], the same causal connections
among its components [5,15], or the same purpose as the new problem-
solving situation [9]. The second task, the adaptation of old experiences
to new problem situations, has been attempted previously by employing
heuristically-guided incremental perturbations according to primitive trans-
formation steps [2], heuristic-based analogical inference [6], and user inter-
vention [12].

Our approach to these tasks is based on the following fundamental
hypothesis: inexact analogies at one level of abstraction become exact
analogies at a higher level of abstraction. Commitment to this hypoth-
esis suggests the need to develop plan representations that lend them-
selves to automatic storage, abstraction, and retrieval. We have developed
these representations and incorporated them into Argo, a tool for build-
ing knowledge-based systems that integrates techniques for reasoning and
learning by analogy to aid in solving search-intensive problems, such as
those in design domains.

3 Design Plans

Analogical reasoning systems can employ a variety of techniques for solving
problems. Argo employs the following control strategy for solving a design
problem P, based on ordering these techniques according to the amount
and specificity of domain knowledge they require [3]:

1. If knowledge of an artifact that satisfies P is available, then this
solution is directly instantiated.

2. If a plan for solving a problem that is exactly analogous to P is
available, then it is directly executed.

3. If a plan for solving P’ is available, where P’ is “similar” (i.e., inex-
actly analogous) to P, then it is analogically transformed to synthesize
an artifact for P.



4. If past experience is unavailable, then weak methods such as heuristic
search or means-ends analysis are employed.

In addition to the planning requirements imposed by analogical reasoning
in step 3, design systems must employ hierarchical plan representations that
are easily constructed and executed. Consequently, an attractive represen-
tation for a plan is a tree that depicts the goal structure or goal-operator
structure involved in design construction [13]. A goal structure representa-
tion has a number of advantages, such as the explicitness with which design
decisions are recorded, and the corresponding ease of replaying the design
process. Note that a goal structure is not necessarily isomorphic to a design
decomposition tree.

Argo acquires problem-solving experience in the form of problem-solving
plans represented by rule-dependency graphs (RDGs). An RDG is a di-
rected acyclic graph having nodes corresponding to forward rules and edges
indicating deductive dependencies between the rules. Thus, we generalize
the notion of a goal-operator tree in order to account for interaction among
subgoals.

4 Learning Plan Abstractions

A number of domain-dependent and domain-independent techniques for
automatically generating plan abstractions are possible. For a given plan
represented by an RDG, these techniques include:

1. Deleting a rule having no outgoing edges, i.e., one upon which no
other rule in the plan is dependent. For design domains, such rules
typically instantiate details; it seems plausible that deleting these
rules will yield plan abstractions because the resultant plans will make
fewer commitments to implementation details.

2. Replacing a rule by a more general rule that refers to fewer details of a
problem. A more general rule might be one having fewer antecedents
or consequents, fewer constants, more variables, more general domain
constants, etc. As achieved in ABSTRIPS [14], these rules can be gen-
erated from the initial domain knowledge using criticality measures.

4



3. Replacing a sequence of rules or a subplan by a single, more general
rule.

4. Generalizing a computed macrorule (see below) for the plan without
reference to the components of the original plan.

Some of the questions that must be carefully considered in choosing an
appropriate abstraction scheme include the following;:

1. How independent is the technique from the application domain?

2. Are the abstractions generated within the deductive closure of the
system?

3. How automatic is the technique?
4. How easy is it to implement?
5. How useful are the abstractions for solving analogous problems?

In keeping with these guidelines, the abstraction scheme currently em-
ployed in Argo is a variation of the first option listed above. It involves
automatically formulating a plan abstraction by deleting all of its leaf rules,
which are those having no outgoing dependency edges. For many design
domains, the leaf rules trimmed from a plan tend to be those that deal
with design details at the plan’s level of abstraction. In effect, deletion of
leaf rules generates a reusable plan kernel at a given level of abstraction.
Thus, increasingly abstract versions of a plan are obtained by iteratively
trimming it until either one or zero nodes remain.

One possible drawback of Argo’s automatic abstraction scheme is that
deleting all leaf rules might eliminate potentially useful abstract plans in
which only part of the leaf rules should be deleted. Except for the very
smallest plans, however, it is clearly not practicable to automatically cap-
ture abstractions for all possible subgraphs of the RDG, although these
would be valid and potentially useful. In addition, although additional for-
ward chaining might be required, it is always possible for the system to start
with a previously computed abstract plan kernel, followed by instantiations
of the relevant trimmed rules, to obtain the appropriate “abstraction” re-
quired to solve a new problem.



Argo computes abstractions during its learning phase—after a problem
is solved. In contrast, it is possible to save a plan and only compute abstrac-
tions when necessary, 7.e., when solving new problems in which an abstract
version of an original plan is applicable. There are difficulties with using
this approach, including identification of the most suitable previous plan
using some type of partial match procedure and analogical transformation
of the selected plan based upon the partial match results. Consequently,
Argo uses an @ priori approach to generating abstractions.

From increasingly abstract plan kernels, Argo uses an explanation-based
mechanism [4,10] to calculate sets of macrorules. These macrorules are or-
ganized according to an abstraction relation for plans into a partial order,
from which Argo can efficiently retrieve the most specific plan applicable
for solving a new problem. Thus, the use of plan abstraction provides
Argo with an effective means for analogy transformation and recognition,
enabling systems built with Argo to improve their problem-solving perfor-
mance as they are used.

5 Conclusions

In this paper we have described a number of topics relevant to using analog-
ical reasoning in the design process. Fundamental to any system that uses
analogy for solving problems are the issues of analogy recognition and anal-
ogy transformation. In design domains, suitable representations for plans
are critical to the effectiveness of analogical reasoning. Goal-structured hi-
erarchical trees or graphs are representations worth investigating because
they capture the expressiveness and explicitness of decisions in the design
process. Techniques for plan abstraction are the key to success in recogni-
tion and transformation of analogies in design systems.

The work on Argo outlined here is based on developing the fundamental
methodology for a system that reasons and learns by analogy for solving
problems in design. This methodology includes the use of design plans
to effect the analogical transfer of knowledge from a base problem to a
target problem, the use of abstract plans to allow the transfer of experi-
ence to inexactly analogous target problems, an algorithm for calculating
macrorules for a design plan that allows the plan to be retrieved and ap-



plied efficiently, and the formal definition of an abstraction relation for
partially ordering plans. Thus, Argo implements a type of derivational
analogy [3,11]. Readers are referred to the works on Argo cited above for
more detailed descriptions of the system and the motivation behind our
approach.

References

[1] R. D. Acosta, M. N. Huhns, and S. Liuh, “Analogical Reasoning for
Digital System Synthesis,” Proceedings of the IEEE International Con-
ference on Computer-Aided Design, Santa Clara, CA, November 1986,
pp. 173-176.

[2] J. G. Carbonell, “Learning by Analogy: Formulating and Generaliz-
ing Plans from Past Experience,” in Machine Learning, An Artificial
Intelligence Approach, Vol. I, R. S. Michalski, J. G. Carbonell, and T.
M. Mitchell, eds., Tioga Press, Palo Alto, CA, 1983, pp. 137-161.

[3] J. G. Carbonell, “Derivational Analogy: A Theory of Reconstructive
Problem Solving and Expertise Acquisition,” in Machine Learning:
An Artificial Intelligence Approach, Vol. II, R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell, eds., Morgan Kaufmann, Los Altos,
CA, 1986, pp. 371-392.

[4] G. DeJong and R. Mooney, “Explanation-Based Learning: An Alter-
native View,” Machine Learning, vol. 1, no. 2, 1986, pp. 145-176.

[5] D. Gentner, “Structure Mapping: A Theoretical Framework for Anal-
ogy,” Cognitive Science, vol. 7, no. 2, April 1983, pp. 155-170.

[6] R. Greiner, Learning by Understanding Analogies, Ph.D. Dissertation,
Stanford University, Technical Report STAN-CS-1071, Palo Alto, CA,
September 1985.

[7] M. N. Huhns and R. D. Acosta, “Argo: An Analogical Reason-
ing System for Solving Design Problems,” MCC Technical Report
No. AI/CAD-092-87, Microelectronics and Computer Technology Cor-
poration, Austin, TX, April 1987.

[8] M. N. Huhns and R. D. Acosta, “Argo: A System for Design by Anal-
ogy,” Proceedings of the Fourth IEEE Conference on Artificial Intelli-
gence Applications, San Diego, CA, March 1988.



[9]

[10]

[11]

[12]

[13]
[14]

[15]

S. T. Kedar-Cabelli, “Formulating Concepts According to Purpose,”
Proceedings of the Siwzth National Conference on Artificial Intelligence,
Seattle, WA, July 1987, pp. 477—481.

T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli, “Explanation-
Based Generalization: A Unifying View,” Machine Learning, vol. 1,
no. 1, 1986, pp. 47-80.

J. Mostow, “Automated Replay of Design Plans: Some Issues in
Derivational Analogy,” to appear in Artificial Intelligence, 1988.

J. Mostow and M. Barley, “Automated Reuse of Design Plans,”
Proceedings of the International Conference on Engineering Design,

Boston, MA, August 1987.

J. Mostow, “Toward Better Models of the Design Process,” AI Maga-
zine, vol. 6, no. 1, Spring 1985.

E. D. Sacerdoti, “Planning in a Hierarchy of Abstraction Spaces,”
Artificial Intelligence, vol. 5, no. 2, 1974, pp. 115-135.

P. H. Winston, “Learning by Augmenting Rules and Accumulating
Censors,” in Machine Learning, An Artificial Intelligence Approach,
Vol. II, Morgan Kaufman, Los Altos, CA, 1985, pp. 45-61.



