MICHAEL N. HUHNS

“ Sponsored by
E(P IEEE COMPUTER SOCIETY
‘ [EEE CIRCUITS AND SYSTEMS SOCIEETY
In Cooperation with

IEEE ELECTRON DEVICES SOCIETY

&3ACM SPECIAL INTEREST GROUP
ON DESIGN AUTOMATION

IEEE Computer Society Order Number 744
Library of Congress Number 86-81578
IEEE Catalog Number 86CH2353~1

ISBN 0-8186~0744-0
@ Assaciation for Computing Machinery
THE COMPUTER SOCIETY $ e RABLTES
. OF THE IEEE SOCIETY

IEEE THE INSTITUTE OF ELECTRICAL ANO ELECTRONICS ENGINEERS, INC. PRESS

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and titte page. They reflect the authors’ opinions and are published as presented and without change,
in the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, IEEE Computer Society Press, or the Institute of Electrical and Electronics
Engineers, Inc.

Published by IEEE Computer Society Press
1730 Massachusetts Avenue, N.W.
Washington, D.C. 20036-1903

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem, MA
01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission, write to Director, Publishing serv-
ices, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copyright © 1986 by The Institute
of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number 744
Library of Congress Number 86-81578
|EEE Catalog Number 86CH2353-1
ISBN 0-8186-0744-0 (paper)

ISBN 0-8186-4744-2 (microfiche)
ISBN 0-8186-8744-4 (case)

Order from: IEEE Computer Society IEEE Service Center
Post Office Box 80452 445 Hoes Lane
Worldway Postal Center Piscataway, NJ 08854

Los Angeles, CA 90080

Q THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
IEEE

it

Analogical Reasoning for Digital System Synthesis

Ramdn D. Acosta, Michael N. Huhns, and Shiuh-li Liuh

Microelectronics and Computer Technology Corporation
9430 Research Blvd.
Austin, Texas 78759

Abstract

Knowledge-based expert systems are being integrated
into a variety of VLSI computer-aided design tools. Unfor-
tunately, the static and predetermined capabilities of most
of these systems do not allow them to acquire design
experience for future use. To overcome this limitation, a
digital synthesis system based on analogical reasoning prin-
ciples has been developed. It is capable of remembering
past design experience and employing this accumulated
experience in solving new problems. This approach results
in a system that acts as an intelligent design assistant
because of its ability to improve in both design capabilities
and performance through its use.

The system refines VHDL behavioral specifications
into structural modules by building hierarchical design
trees. This refinement is accomplished by executing plans
composed of partially ordered rule sets. The current system
has rules for designing circuits comprised of elementary
digital components including transistors, logic gates, and
inverter loop memory cells. Some of the reasoning and
learning techniques being employed include formulation of
design plans and their preconditions, abstraction of plans,
and transformation of plans to analogous design problems.

1. Introduction

In recent years, several knowledge-based expert sys-
tems have been proposed and implemented for aiding in the
design of integrated circuits. Some of the problems being
investigated include layout [8], simulation [19], verification
and analysis [7,9], and synthesis [1,10,15,16,18]. These
systems are particularly suited to situations in which heuris-
tic expert knowledge must be employed because algo-
rithmic techniques are unavailable or prohibitively expen-
sive. Unfortunately, the knowledge embodied in these sys-
tems is static: it fails to capture the iterative aspects of the
design process that involve solving new problems by build-
ing upon the experience of previous design efforts.

There have been several attempts to overcome this
limitation by making use of more sophisticated reasoning
and learning techniques {11,12]. One such system, the
Learning Apprentice System (LEAP) for VLSI design [14],
acquires knowledge by generalizing from training examples.
The transfer of experience from previous design efforts to
new problems has also been accomplished via analogical

CH2353-1/86/0000/0173$01.00 © 1986 IEEE

173

reasoning methods [2,21]. These methods, however, are
limited by their requirements that new design problems be
identical to previously solved ones.

This paper addresses an analogical reasoning approach
to digital design in which old design efforts can aid in solv-
ing new problems, even when there is only a partial match
between old and new problems. With this approach, a
design system can learn either from a user or as a result of
its own problem-solving efforts. These ideas have been
integrated into a system that refines behavioral descriptions
written in VHDL (VHSIC Hardware Description Language)
[6,20] to synthesize digital circuits.

2. Design Hierarchy

A plan consists of a sequence of rules that transforms
and decomposes a digital circuit design problem by build-
ing a hierarchical design tree. Each node of this tree is an
entity, or component, that is described in terms of its

O
(B) Behavior — functional specification, and
(S) Structure — subcomponents and their interconnections.

The description of an entity’s interface and behavior
(I-B) specify a design problem. A rule can be applied
when its antecedent matches an I-B. Executing its conse-
quent results in building a structural description (S) for the
I-B, as well as all of the subcomponent descriptions (I-Bs)
instantiated by S. A sequence of rule applications refines
this specification into a tree of I-B-S nodes. The leaves of
this tree constitute a solution synthesized in terms of instan-
tiated library components, such as standard cells or
parameterized modules. Fig. 2 shows an I-B-S tree con-
structed during the design of the simple circuit in Fig. 1.

Interface — port and parameter declarations,

Phig Inputs

C AbstractModule — T T T - T[T~ T T < - 0

! [MémorgModile — —— " T T~~~ !

: | [N] :

y ! " .

Inputl . ['t \ |
Input? o.{_: DO.- : : _]:—1—0 Output

Phil t___TM[odule ! oo, | :

] ! ! Modute ! |

UV U JL -1
] |
L e ettt T T T e —— Fl

Fig. 1. Schematic diagram for a circuit comprised of a
memory element and combinational logic.

[1s Abstract Module

]

| I: Combinational Module _l

Pass-Transistor Rule - - -

s:]

— — — Memory-Partition Rule

R

i I: Memory Module

.

B:

— — — Memory-Implementation Rule

E

I: PASS TRANSISTOR |

|I: INVERTER LOOP |

{I: Combinational Module !

Fig. 2. Hierarchical design tree for the circuit in Fig. 1.

The system uses VHDL for representing VLSI
designs. Since the declarative facilites of VHDL are
intended for describing design abstraction, they are well
suited for specifying the I-B-S design hierarchy.

3. Strategy for Solving Design Problems

A variety of artificial intelligence techniques is avail-
able for solving circuit design problems. The following
control strategy for solving a problem P is based on classi-
fying these techniques according to the amount and
specificity of domain knowledge they require [2]:

(1) If knowledge of a circuit that satisfies P is available,
then this solution is directly instantiated.

(2) If a specific plan for transforming and decomposing P

is available, then it is directly executed.

(3) If a plan for solving P’ is available, where P’ is ‘‘simi-

lar’’ to P, then it is analogically transformed to syn-

thesize a circuit for P.

(4) If past experience is unavailable, then weak methods
such as heuristic search or means-ends analysis are

employed.

To implement this strategy, a system must be capable of
formulating, remembering, and executing design plans.

4. Formulating Plans and Plan Preconditions

In the system described herein, circuit design rules are
applied deductively to transform and decompose VHDL
specifications of design problems. Because a hierarchy of
independent subentities is created by this process, rule sets
leading to final designs are partially ordered when they are
saved as plans (Fig. 3). These plans can be followed to
design circuits for new problem specifications.

174

Memory-Partition Rule

Pass-Transistor Rule

Fig. 3. Plan for synthesizing the circuit in Fig. 1.

The precondition for a plan is a set of conditions that
a problem’s specification must meet in order for the plan to
be applicable. Previous techniques, such as the STRIPS tri-
angle table [3,4] or goal regression in explanation-based
generalization [13], derive these conditions based on a plan
and specific training examples. The approach used here
differs in that only the partially ordered rules of the plan
are used. Thus, the most general (i.e., necessary and
sufficient) precondition is obtained.

5. Reasoning by Analogy

Exact analogies arise when the specification of a new
problem satisfies the precondition for a plan of a previously
solved design problem. Yet it is conceivable that an old
plan might almost apply, except for a few minor steps. In
order to make use of the previous problem-solving experi-
ence embedded in a plan, it should be possible to use por-
tions of it to solve, at least partially, the new problem.
Thus, the use of inexact analogies via increasingly abstract
design plans has been developed.

Plan abstractions [5,17] are obtained by omitting or
generalizing steps that are considered details (Fig. 4). Con-
sequently, abstracted plans have more general preconditions
and are applicable to a wider class of problems. These

Tmﬁtion Rule

Memory-Implementation Rule

Fig. 4. Abstraction for the plan in Fig. 3.

Phig

i

Inputd o |
Input o |

Phit o |

Jombinational

PModule

Fig. 5. Analogous circuit to that in Fig. 1.

Memory-Pastition Rule

AND-Gate Rule Impl tation Rule

Fig. 6. Analogical transformation of the abstract plan in
Fig. 4.

plans are analogically transformed to suit specific problems
by appropriately filling in missing steps (Figs. 5-6). Note
that as plans get more abstract, the number of details that
must be filled in to solve a given problem increases.
Hence, it is desirable to find and apply the least abstract
plan that is appropriate.

Three activities can be identified in this abstraction
procedure:

(1) generating and storing plan and precondition abstrac-
tions from given design problems and solutions,

(2) recognizing analogies by matching new problem
specifications with abstract preconditions for previ-
ously solved problems, and

€))

analogically transforming abstract plans to synthesize
solutions to new problems.

Because of the inherent complexity of VLSI design,
interactive user assistance for various phases of this process
is employed. With use, the system accumulates design
knowledge resulting in an increase in both its performance
and its ability to synthesize digital circuits.

1. Results

The current system employs rules written in Common
Lisp. Table 1 shows some measurements of execution time
and rule use for a small test circuit. Three strategies were
evaluated on a Symbolics 3640:

I : l ; Output
Input§

175

(S1) exhaustively computing all possible design plans,

(S2) exhaustively computing all possible specializations for
an abstract plan, and

(83) directly applying a specific plan.

The abstract plan, which consisted of three rules, was
obtained by eliminating the rules that instantiated library
components in the nine-rule specific plan used in strategy
(S3). Designing with the aid of an abstract plan resulted in
reductions of over 98% in execution time, rules applied,
and number of alternative designs produced. While these
results do not reflect searching for previous plans or using
heuristics to reduce the exhaustive search, they strongly
suggest that dramatic improvements in the performance of

design systems can be achieved by incorporating analogical
reasoning techniques.

Table 1. Test Circuit Measurements (CAM cell)
Design || Execution Rules Rules Number
Strategy || Time (sec) | Attempted | Applied | of Designs
(81) 612327 7145025 | 117570 50463
(82) 770.3 57753 1519 616
(83) 53 9 9 I

1. Conclusions

A system has been developed for the design of digital
systems through the refinement.of behavioral specifications
into structural specifications using analogical reasoning.
Analogical transformation of increasingly abstract design
plans is used when more specific plans fail to apply. The
main advantages of this system are that it improves in both
performance and design capabilities as it is used.

At present, the system has rules for designing circuits
comprised of elementary digital components including
transistors, logic gates, and clocked inverter loop memory
cells. It is being extended to include rules for the synthesis

of processor-level circuits using higher-level building
blocks.

3. References

1. H. Brown, C. Tong, and G. Foyster, ‘‘Palladio: An
Exploratory Environment for Circuit Design,”” Com-
puter, Vol. 16, No. 12, December 1983, pp. 41-56.

2. J.G. Carbonell, ‘“‘Derivational Analogy: A Theory of
Reconstructive Problem Solving and Expertise
Acquisition,”” in Machine Learning: An Artificial Intel-
ligence Approach, Vol. II, R.S. Michalski, J.G. Car-
bonell, and T.M. Mitchell, Eds., Morgan Kaufmann,
Los Altos, CA, 1986, pp. 371-392.

3. R.E. Fikes, P. Hart, and N.J. Nilsson, ‘‘Learning and
Executing Generalized Robot Plans,”’ Artificial Intelli-
gence, Vol. 3, 1972, pp. 251-288.

10.

11.

12.

13.

R.E. Fikes and N.J. Nilsson, ‘‘STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving,’’ Arrificial Intelligence, Vol. 2, 1971,
pp. 189-208.

PE. Friedland and Y. Iwasaki, ‘“The Concept and
Implementation of Skeletal Plans,” Journal of
Automated Reasoning, Vol. 1, 1985, pp. 161-208.

IEEE Design & Test of Computers, Special Issue on
VHDL: The VHSIC Hardware Description Language,
Vol. 3, No. 2, April 1986.

V.E. Kelly, ““The CRITTER System - Automated Cri-
tiquing of Digital Circuit Designs,’” Proceedings of the
21st Design Automation Conference, June 1984, pp.
419-425.

I. Kim and J. McDermott, ‘“Computer Aids for IC
Design,”” IEEE Software, Vol. 3, No. 2, March 1986,
pp. 38-47.

A. Kolodny, R. Friedman, and T. Ben-Tzur, ‘‘Rule-
Based Static Debugger and Simulation Compiler for
VLSI Schematics,’’ Proceedings of the IEEE Interna-
tional Conference on Computer-Aided Design, 1985,
pp. 150-152.

T.J. Kowalski, An Ariificial Intelligence Approach to
VLSI Design, Kluwer Academic Publishers, Boston,
Massachusetts, 1985,

R.S. Michalski, J.G. Carbonell, and T.M. Mitchell,
Eds., Machine Learning: An Artificial Intelligence
Approach, Vol. I, Tioga, Palo Alto, California, 1983.

R.S. Michalski, J.G. Carbonell, and T.M. Mitchell,
Eds., Machine Learning: Arn Artificial Intelligence
Approach, Vol. II, Morgan Kaufmann, Los Altos, Cali-
fornia, 1986.

T.M. Mitchell, RM. Keller, and S.T. Kedar-Cabelli,
‘‘Explanation-Based Generalization - A Unifying
View,” Technical Report ML-TR-2, Laboratory for
Computer Science Research, Rutgers University,
August 1985.

176

14.

15.

16.

17.

18.

19.

20.

21.

T.M. Mitchell, S. Mahadevan, and L.I. Steinberg,
‘“LEAP: A Learning Apprentice for VLSI Design,”’
Proceedings of the 9th International Joint Conference
on Artificial Intelligence, August 1985, pp. 573-580.

TM. Mitchell, L.I. Steinberg, and J.S. Shulman, ‘“A
Knowledge-Based Approach to Design,”” IEEE Tran-
saction on Pattern Analysis and Machine Intelligence,
Vol. PAMI-7, No. 5, September 19835, pp. 502-510.

P.S. Rosenbloom, J.E. Laird, J. McDermott, A.
Newell, and E. Orciuch, ‘‘R1-Soar: An Experiment in
Knowledge-Intensive Programming in a Problem-
Solving Architecture,”” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-7, No.
5, September 1985, pp. 561-569.

E.D. Sacerdoti, ‘‘Planning in an Hierarchy of Abstrac-
tion Spaces,”’ Artificial Intelligence, Vol. 5, No. 2,
1974, pp. 115-135.

E. Simoudis and S. Fickas, ‘““The Application of
Knowledge-Based Design Techniques to Circuit
Design,”” Proceedings of the IEEE International
Conference on Computer-Aided Design, 1985, pp.
213-215.

N. Singh, ‘“MARS: A Multiple Abstraction Rule-
Based Simulator,”” Memo No. HPP-83-43, Stanford
Heuristic Programming Project, December 1983.

‘““VHDL Language Reference Manual, Version 7.2,”’
Intermetrics Report IR-MD-045-2, August 1985.

P.H. Winston, ‘‘Learning and Reasoning by Anal-
ogy,”’ Communications of the ACM, Vol. 23, No. 12,
December 1980, pp. 689-703.

