MICHAEL N. HUHNS

Third Workshop on Research Directions
for Artificial Intelligence in Design

edited by
John S. Gero and Fay Sudweeks

University of California—Los Angeles
19 January 1992

Organised by the Design Computing Unit, University of Sydney

Third Workshop on Research Directions
for Artificial Intelligence in Design
edited by
John S. Gero
Fay Sudweeks

ISBN 0 86758 567 6

Published by
Design Computing Unit
University of Sydney
NSW 2006 Australia

DAI in engineering design

Michael N. Huhns

Microelectronics and Computer Technology Corporation
Enterprise Integration Division

3500 West Balcones Center Drive

Austin TX 78759-6509 USA

There are three evolving facets to design: (1) the artifact to be designed, (2) the
design process, and (3) the tools available to aid the design process. They are
evolving because first, the design process is becoming more complex due to the need
to consider the entire product life-cycle—from conception to manufacturing to sales
to maintenance. Second, the artifacts of design are changing in that many products
that used to be standardized are being specially designed for each customer, and
more complicated artifacts, such as space stations and fusion power plants, are being
attempted. Third, there are now a plethora of tools for aiding the design process,
including tools for simulation, visualization, layout, test, aesthetics, compliance
with standards, and manufacturability. In addition, as more and different artifacts
are being designed, large amounts of data, knowledge, and experience are being
accumulated that can be used to aid future design processes. The overall trend in
each of the three facets of design has been towards increasing the complexity of a
designer’s task. This is turn has placed additional demands on the computational
aids for design, with the foremost demand being for assistance with the increased
complexity that has ensued.
There are several known ways to deal with complexity, including:

e abstraction, whereby performing design at a more general level can focus the
subsequent detailed design stages and vastly improve their efficiency;

e speed, whereby faster design techniques or faster implementations of these
techniques can lead to solutions of larger design problems;

e better representation, whereby considering a design problem from the right
viewpoint can lead to vast simplifications;

® past experience via learning, cases, and analogy, which can reduce the need
for experimentation or trial-and-error, and focus the search for a solution;

e modularity and parallelism, whereby problems can be decomposed into inde-
pendent subproblems that can be solved in parallel.

A result of this last factor is that design is often performed by teams of de-
signers. Computational aids for design should similarly be distributed, both to

25

mirror the way humans perform design—and thus easily fit into existing human
design teams—and to take advantage of the reduced complexity engendered by
modularity. Consider the following example:

At a large chemical plant in rural Texas, dozens of expert systems are used to
control the processing of petroleum-based chemicals. These expert systems are
small, consisting of 10-100 rules each, and were written within a few months by
the engineers at this plant. Each expert system successfully controls a single
aspect of some larger process, replacing manual control with a tremendous
savings in cost.

Alternatively, a single large system to control all aspects of the plant could
have been comstructed, but it would have had roughly the complexity of
DEC’s XCON, making it prohibitively expensive, requiring a development
time of many years, and putting it well beyond the knowledge-engineering
and software-maintenance capabilities of the local engineers.

Similarly, design should be automated through the introduction of numerous
small computational aids, involving a variety of reasoning and representation tech-
niques, including knowledge bases, neural nets, and databases. However, new
problems will arise involving interactions among these. Consider more of the above
example:

Typical of many chemical plants of this type, the processing is highly inter-
connected, with chemicals made in one part of the plant used in producing the
chemicals made in another part of the plant. Recently, a bailer failure caused
an expert system to shut down the production of a solvent that was needed
in another process producing latex paint. Unfortunately, the expert system
controlling the paint process did not find out about the shut down until the
solvent in the input pipe to the column dried up. After the dried paint was
cleaned from the column six months and $2 million later, the paint process
was back on line.

The problem was that the processes in this plant were connected at the physical
level, but the expert systems were not connected at the knowledge level, even
though they were written in the same language, ran on the same hardware, and
were connected by ethernet. They were not designed to communicate! They were
unaware of the decisions being made by the other expert systems, so they were
unable to take corrective action until, as in this case, it was too late.

The key problem for intelligent design tools will thus be to inlegraie and use all
available information resources, including knowledge bases, databases, and applica-
tion progrems. The information resources may have been independently developed,
but they must interact productively with the others.

Distributed artificial intelligence (DAI) (Huhns, 1987; Gasser and Huhns, 1989)
provides some of the technology needed for this integration and interaction. DAI
is concerned with how a decentralized group of intelligent computational agents
should coordinate their activities to achieve their goals. When pursuing common -
or overlapping goals, they should act cooperatively so as to accomplish more as a
group than individually; when pursuing conflicting goals, they should compete intel-
ligently. Interconnected agents can cooperate in solving problems, share expertise,

26

work in parallel on common problems, be developed, implemented, and maintained
modularly, be fault tolerant through redundancy, represent multiple viewpoints and
the knowledge of multiple human experts, and be reusable. DAI is the appropriate
technology for applications where

e expertise is distributed, as in design;

information is distributed, as in office automation;

data are distributed, as in distributed sensing;

e rewards are distributed, as in automated markets;

decisions are distributed, as in manufacturing control; and

knowledge bases are developed independently but must be interconnected or
reused, as in next-generation knowledge engineering.

But in order for agents to coordinate their activities and cooperate in solving
mutual problems, it is essential that they be able not only to communicate with

each

other, but also to assess and maintain the integrity of the communicated

information, as well as of their own knowledge. Consistency maintenance is thus
crucial. However, there are many types of inconsistencies that can arise among a
group of agents, such as

one agent could believe a datum, while another agent could disbelieve it;

one agent could believe a datum, while another agent could believe its nega-
tion, and these beliefs could be used to justify a datum they share;

two agents could believe an object to be of two incompatible types, i.e. they
could use different terms for the same object;

two agents could believe two different objects are of the same type, i.e. they
could use the same term for two different objects;

the agents’ beliefs may be inconsistent at a semantic level, e.g. one agent
could believe that an object is made out of plastic, while another believes
that it is made out of steel.

What technology is needed to achieve the requisite consistency among the dif-
ferent information resources?

Distributed truth maintenance: There are many desirable properties for a

knowledge base, such as completeness, conciseness, accuracy, and efficiency.
For an agent that can reason nonmonotonically, there are additional properties
used to describe the integrity of the knowledge base: stability, well-
foundedness, and logical consistency. In addition, any algorithm that attempts
to maintain well-founded stable states of a knowledge base should be complete,
in that the algorithm should find a well-founded stable state if it exists. We
desire each agent in a multiagent environment to have a complete algorithm
for maintaining the integrity of its own knowledge base.

27

Truth maintenance systems are a common way to achieve knowledge base
integrity in a single agent system, because they deal with the frame problem,
they deal with atomicity, and they lead to efficient search. Furthermore, the
justification networks they create can be used for nonmonotonic reasoning,
problem-solving explanations to a user, explanation-based learning, and
multiagent negotiation.

However, the above definitions of properties for a single knowledge base
are insufficient to characterize the multiple knowledge bases in a multiagent
environment. When agents that are nonmonotonic reasoners exchange beliefs
and then make inferences based on the exchanged beliefs, then concepts of
disiributed knowledge-base integrity are needed.

Nonmonotonic reasoning: Agents need to be able to maintain independent
viewpoints and skepticism until they receive convincing evidence otherwise,
but they should then be able to revise their beliefs consistently.

Negotiation: A few researchers have explored negotiation as a means to mediate
among conflicting agents. The systems they developed involved either
monotonic reasoners, or nonmonotonic, but memoryless, reasoners, i.e.,
reasoners that simply discard old solutions and re-solve in the face of conflicts.
Negotiation is likely the correct approach, but the agents must be able to revise
their plans incrementally as they interact. They must be able to communicate
directly, with each other and with human agents, and they must be able to
assess and maintain the integrity of both the communicated information and
their own knowledge. Then they can successfully coordinate their activities
and cooperate in solving mutual problems.

Semantic integration: Where the semantics of a resource are expressed
(partially) in the form of data dictionary or schema information, this
information must be interrelated with the semantics of the other resources
through the use of class servers or global schemas, such as the Cyc knowledge
base. It is essential that a common semantics be available and provided
computationally.

Federated databases: Where it is necessary to retain the autonomy of individual
information resources, mappings must be generated to yield interoperability.

Database management systems for design: Design DBMSs are needed that
support large and long-duration transactions, relaxed transactions, large
structured composite objects, versions, and aggregation.

Intentionality: Representations for agents and their actions must be developed
that can express their intentions and commitments through communicative
acts.

Background

Knowledge-based systems have become an important part of computing. There
are estimates of over 100,000 fielded systems to date. These systems are mostly

28

small, independent, and developed for specific applications using off-the-shelf expert
system shells. These shells are most suitable for monolithic applications involving
the knowledge of a single human expert. But applications in larger and more com-
plicated domains, and attempts to use several small systems in concert when their
application domains overlap argue for knowledge-based systems to be developed in
a modular and distributed fashion.

Early attempts to develop systems of cooperating agents, involved agents with
independent knowledge bases. The independence was achieved by restricting agent
interactions to modifications of a global data structure—a blackboard—and by
minimizing overlap in the agents’ knowledge. Later systems allowed richer agent
interactions and overlapping knowledge, but the agents were required to have consis-
tent knowledge and to reason monotonically. This led to representational problems,
because different experts in the same domain often have different perspectives and
conflicling knowledge, making it difficult to construct a coherent problem-solving
system for that domain.

MCC is addressing the above problems through the development of RAD (Arni
et al., 1990). RAD enables a set of knowledge-based systems, constructed inde-
pendently, to act as a set of cooperating agents, working together to solve a prob-
lem. Developers of distributed reasoning systems can exploit a divide-and-conquer
approach to development; they can build smaller, more manageable knowledge-
based agents. These smaller agents might represent alternative points of view
on a problem; there is no longer a need for global consistency across an entire
large system. These smaller agents can also be reused in different combinations for
solving additional problems as they arise. They can be physically distributed in the
world, just as the problems that they address are. The intelligence needed for such
problems can be embedded throughout a computer network and made available
where appropriate.

The RAD agents operate within this network asynchronously and, in general,
autonomously. RAD permits the collection of agents to be dynamic, allowing agents
to come and go. The agents can be either reactive or ingenuous, i.e., they can
either respond to questions and commands from another agent or initiate dialogs
with another agent. RAD also allows other types of agents, including OPS5 expert
systems and human agents, to interact with RAD agents.

RAD incorporates a distributed TMS {Huhns and Bridgeland, 1991) that allows
each agent to rely on the results of another’s reasoning without having to keep
track of the details of that reasoning. However, there is no requirement for two
agents to agree completely. The DTMS enforces local consistency within each agent,
while enabling negotiation about inconsistencies among agents. When two or more
agents disagree about belief in a datum and when this disagreement is encountered
during problem solving, then negotiation among the agents will ensue to resolve
the disagreement. The negotiation procedure involves an exchange of justifications
among the agents. The negotiation is necessary to ensure that the global solutions
to the problems posed to the agents are coherent.

The DTMS is agnostic about what data should be shared among agents. The
research of Courand (1990) and Galliers (1990) has produced principles governing
the incorporation of data from other agents. In Courand (1990), agents share goals
and plans in order to achieve the mutual beliefs necessary to take cooperative action,

29

but only when the resultant belief system will be more coherent. In Galliers (1990),
the agents are skeptical, rather than cooperative, and prefer to adopt beliefs that
reinforce existing beliefs without revising any. The Rational Distributed Reason
Maintenance System (Doyle and Wellman, 1990) similarly suggests a basis for
deciding rationally which beliefs and plans to revise.

References

(1} Arni, N. et al. (1990). Overview of RAD: A hybrid and distributed reasoning
tool, MCC Technical Report No. ACT-RA-098-90, Microelectronics and
Computer Technology Corporation, Austin, TX, March.

{2] Huhns, M. H. and Bridgeland, D. M. (1991). Multiagent Truth Maintenance,
IEEE Transactions on Systems, Man, and Cybernetics, December.

[3] Courand, G. J. (1990). Cooperation via consensus formation, Proceedings
of the 10th International Workshop on Distribuled Artificial Intelligence,
Bandera, TX, chap. 10, MCC Technical Report No. ACT-AI-855-90, October.

(4] Doyle, J. and Wellman, M. P. (1990). Rational distributed reason
maintenance for planning and replanning of large-scale activities (Preliminary
Report), Proceedings DARPA Workshop on Innovative Approaches to
Planning, Scheduling, and Control, Morgan Kaufmann, San Mateo, CA,
pp. 28-36.

(5] Galliers, J. R. (1990). Cooperative interaction as strategic belief revision,
Proceedings of the International Working Conference on Cooperating
Knowledge-Based Systems, Keele, England, pp. 148-163.

[6] Gasser, L. and Huhns, M. N. (eds) (1989). Distributed Artificial Inielligence,
Volume II, Pitman, London.

(7] Huhns, M. N. (ed.) (1987). Distributed Artificial Intelligence, Pitman,
London.

30

