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Abstract. Cooperative Information Systems (CISs) are multiagent sys-
tems with organizational and database abstractions geared to the large
open heterogeneous information environments of today. CIS is also the
name of the associated research area, which has emerged from the syn-
thesis of distributed databases and distributed artificial intelligence. In
CIS, software agents mitigate an information environment’s heterogene-
ity by interacting through common protocols, and manage its large size
by making intelligent local decisions without centralized control. In order
to cope with the dynamism presented by open environments, CIS agents
must have the ability to adapt and learn. We discuss some of the most
important problems involving learning and adaptivity in CISs, including
requirements for reconciling semantics and improving coordination. We
present a “customers’ view” of learning technology as might find ready
application in CISs.

1 Introduction

Due to the proliferation of networking, the desires of almost everyone to be in-
terconnected, and the needs to make data accessible at any time and any place,
modern information environments have become large, open, and heterogeneous.
They are composed of distributed, largely autonomous, often legacy-based com-
ponents. Cooperative Information Systems introduce software agents into such
environments to deal with these characteristics. The agents represent the com-
ponents in interactions, where they mediate differences and provide a syntacti-
cally uniform and semantically consistent middleware. Their greatest difficulty
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in achieving uniformity and consistency is the dynamism that open environments
introduce.

Open environments are becoming an increasing part of the modern milieu
through applications such as information search, electronic commerce, and vir-
tual enterprises. They typically have the following key distinguishing character-
istics:

span enterprise boundaries;

— have components that are heterogeneous in a number of ways, such as the un-
derlying database management systems used, and the semantics associated
with the information stored or manipulated;

— comprise information resources that can be added or removed in a loosely
structured manner;

— lack global control of the content of those resources, or how that content
may be updated; and

— incorporate intricate interdependencies among their components.

To build systems that work effectively within open environments requires bal-
ancing their ease of construction and robustness with their flexibility. There are
a number of technical difficulties specific to building systems for open environ-
ments. Foremost among these are the need to handle the unpredictability in
the environment as new components appear, and old ones disappear or change.
Since the information components in the environment cannot easily be altered,
the agents that represent them must be able to learn and adapt. This provides
new challenges for machine learning, as summarized in Table 1:

Traditional Machine Learning CIS Machine Learning
Agent learns about its environment,|Agent learns about its environment,
which is passive and has no intentions which is active, because it includes other

agents who have intentions, commit-
ments, beliefs, and abilities, and can learn

Agent might have imprecise sensors that|Agent might deliberately be misled about
cause it to learn inaccurate information|the environment by other agents

about the environment

Table 1. Machine Learning for Cooperative Information Systems

Section 2 introduces cooperative information systems, and their quintessen-
tial applications. Sections 3, 4, and 5 discuss the machine learning challenges in
extracting semantics from passive components, coordinating active components,
and abstracting and structuring CISs, respectively. Section 6 concludes with a
discussion of the main themes of CIS, and how they relate to machine learning
techniques.



2 An Overview of CIS

Cooperative Information Systems (CISs) are an increasingly popular approach
that seeks to maximize the above properties through the use of combinations
of techniques from distributed artificial intelligence, databases, and distributed
computing. The term cooperative information systems also refers to the research
area that focuses on building such systems.
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Fig.1. A CIS Schematically

We define an agent as an active, persistent computational entity that can
perceive, reason about, and act in its environment, and can communicate with
other agents. Agents are autonomous to varying degrees to reflect the autonomy
of the information resources or humans whom they represent. Figure 1 shows
a CIS schematically. In this figure, we consider an environment consisting of a
variety of information resources, coupled with some kind of a semantic directory.
The semantic directory contains information about the resources, including any
constraints that apply to their joint behavior.

Each component of the environment, as well as the human user(s), is modeled
as associated with an agent. The agents capture and enforce the requirements of



their associated parties. They interact with one another appropriately, and help
achieve the robustness and flexibility in behavior that is required. The charm of
agents 1s that they provide a natural means for acquiring, managing, advertising,
finding, fusing, and using information over uncontrollable environments. Further,
agents are inherently modular, and can be constructed locally for each resource,
provided they satisfy some high-level protocol of interaction.

The applications of CISs are varied. They involve the purely informational
ones, such as database access, information malls, workflow management, elec-
tronic commerce, and virtual enterprises. They also include physical ones, such as
sensor arrays, manufacturing, transportation, energy distribution, and telecom-
munications.

The above motivates the interest in cooperative information systems. But, as
remarked above, CISs involve combining ideas not only from the study of agents,
but also from databases and distributed computing. We discuss the specific chal-
lenges posed by CISs next. In doing so, we review two of the quintessential
applications of CIS: information access and workflow management.

3 Extraction of Semantics

Learning about passive—and often preexisting—components, such as databases
and knowledge bases.

Information access involves finding, retrieving, and fusing information from
a number of heterogeneous sources. At the level of abstraction that concerns
CIS, we are not concerned with network connectivity or the formatting vari-
ations of data access languages. Rather, our concern is with the meaning of
the information stored. It is possible, and indeed common, that when different
databases store information on related topics, each provides a different model
of it. The databases might use different terms, e.g., employee or staff, to refer
to the same concept. Worse still, they might use the same term to have differ-
ent meanings. For example, one database may use employee to mean anyone
currently on the payroll, whereas another may use employee to mean anyone
currently receiving benefits. The former will include assigned contractors; the
latter will include retirees. Consequently, merging information meaningfully is
nontrivial. The problem is exacerbated by advances in communications infras-
tructure and competitive pressures, because different companies or divisions of
a large company, which previously proceeded independently of one another, are
now expected to have some linkage with each other.

The linkages can be thought of as semantic mappings between the application
(which consumes or produces information), and the various databases. If the
application somehow knows that employee from a database has one meaning, it
can insert appropriate tests to eliminate the records it does not need. Clearly,
this approach would be a nightmare to maintain. The slightest changes in a
database would require modifying all the applications that access its contents!
This would be a fundamental step backward from the very idea of the database
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architecture [Elmasri & Navathe, 1994, ch. 1], which sought to separate and
shield applications from the storage of data.

A promising approach is to use mediators [Wiederhold, 1992]. A mediator
is a simplified agent that acts on behalf of a set of information resources or
applications. Figure 2 shows a mediator architecture. The basic idea is that the
mediator is responsible for mapping the resources or applications to the rest of
the world. Mediators thus shield the different components of the system from
each other. To construct mediators effectively requires some common represen-



tation of the meanings of the resources and applications they connect. Such a
knowledge representation is called an ontology [Neches et al., 1991]. The main
learning challenges associated with ontologies include relationship and concept
acquisition. Since these are related to traditional machine learning problems,
some progress has already been made on them, but they are far from solved
from the perspective of CIS applications.

3.1 Relationship Acquisition

The major problem with ontology-based approaches is the effort required to
build them, and to relate different resources and applications to them. In order
to extend their world model, agents need to be able to acquire and integrate
ontologies autonomously. Agents also should learn the ontologies of other agents.
In other cases, tools that assist a human designer are needed. These tools must
have a strong machine learning component, to be able to not only relate concepts
across databases, but also help 1dentify relationships within an ontology. Such
relationships, e.g., generalization or containment, are necessary for CIS query
processing approaches, e.g., [Arens et al., 1993; Huhns et al., 1994]. For example,
the concept port is a generalization of airport and can be used to answer queries
about airports only if additional restrictions are added.

Further, different domains often have a rich variety of relationships that
compose elegantly with each other [Huhns & Stephens, 1989]. To give a simple,
albeit somewhat contrived, example, if a person owns a car, and the car contains
a wheel, then the person also owns the wheel. These relationships form part
of the common sense knowledge that is essential in relating information from
different databases: two tables car-ownership and car-parts in one database may
correspond to a single table auto-part-ownership in another database.

3.2 Concept Acquisition

We assumed in the above that the concepts that a given database is about
are known. A more basic challenge is to identify those concepts. This is poten-
tially useful, but extremely difficult, when dealing with a previously unknown
source. It remains useful, and becomes more tractable, when the structure of
the database is known, but the structure does not faithfully reflect the mean-
ing of the content. A problem that arises in legacy databases is that they
are often misused! For example, databases in the telecommunications indus-
try store information about signal channels. When fiber optic technology was
introduced, the databases were not redesigned to capture the new kind of chan-
nel. Rather, the existing fields in the databases were overloaded. Consequently,
the conductivity field may reflect either the conductivity for a copper channel,
or the bandwidth for a fiber channel! To access these databases systematically
requires knowing what concepts they store, but the concepts are hidden inside
the data values. A challenge is to discover the rules for partitioning the mixed
up concepts into the correct categories. Some progress is already being made,
mostly under the rubric of data mining, e.g., [Fayyad, 1996; Shen & Leng, 1996;



Zhang et al., 1996]. An issue that has not drawn much attention is collaborative
learning of the concepts. This can be important, because different uses of the
data might treat the implicit concepts differently.

4 Coordination and Collaboration

Learning about active components, such as workflows and agents, and their in-
teractions.

4.1 Workflow Acquisition

CISs not only involve retrieving information, but also updating it. Updates are
qualitatively more complex than retrievals, because they can potentially intro-
duce inconsistencies. This is especially the case when several databases are in-
volved, and there are subtle interdependencies among them. A workflow is a
composite activity that accesses different resources and has human interaction
to solve some business need.

Traditional databases support so-called ACID transactions, which are com-
putations that are atomic, consistency-preserving, isolated, and durable [Gray &
Reuter, 1993]. In other words, a transaction happens entirely or none at all, does
not violate consistency, does not expose any partial results, and if successful has
permanent results. Transactions are effective in homogeneous and centralized
databases, but do not apply in distributed and heterogeneous settings. This is
because to ensure the ACID properties requires the component databases to ex-
pose their internal control states, and requires locking data items on a database
even when those are not in use any more.

This has led to a number of extended transaction models [Bukhres & El-
magarmid, 1996; Elmagarmid, 1992]. Transaction models capture some of the
aspects of workflows. Figure 3 gives a trip-planning workflow in the notation of
[Buchmann et al., 1992]. This workflow has a number of separate activities, such
as opening an account, reserving a flight, booking a hotel, renting a car, and
generating a bill. These execute on databases belonging to autonomous organi-
zations, such as different airlines or hotels. Since the airlines make reservations
independently of each other and of hotel bookings, the travel agency has to pro-
vide the control to make sure air tickets are not bought unnecessarily. Typically,
a human would carry out the steps described in Figure 3. Approaches such as
[Buchmann et al., 1992] provide a way of representing the dependencies among
the steps, and executing them appropriately. However, a major challenge is in
determining the structure of workflows, possibly by observing how humans carry
them out.

Because there are a large variety of extended transaction models, some so-
called “RISC” approaches have been proposed that provide a small set of prim-
itives with which to encode the behavior of different transaction models, e.g.,
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[Attie et al., 1993; Chrysanthis & Ramamritham, 1994; Singh, 1996)]. These ap-
proaches provide some variant of a temporal language in which the coordina-
tion requirements of the transaction models can be expressed. The approaches
of [Attie et al., 1993; Singh, 1996] automatically produce schedules from those
specifications. Our challenge can then be framed in terms of how the formal
specifications are produced. We believe that the RISC approaches will facilitate
learning, because they are declarative and offer a small set of primitives.

4.2 Collaboration Acquisition

Because they are large scale and open, CISs typically involve more than one
workflow. However, since these workflows execute on the same resources, they
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have a number of interactions. Some of these interactions can be pernicious
in that one workflow may cause the failure of another workflow. Some of the
interactions, however, are useful. The challenge is to identify the (potential)
interactions and to control them appropriately. Figure 4 schematically shows
a typical situation in which resources are represented as boxes, and different
workflows are sets of lines connecting them. Although the names of the systems
have been removed to protect proprietary information, the picture represents
the information system of a telecommunication company in the US.

The agent metaphor is useful when thinking about more than one work-
flow. Agents can be identified not only with the passive resources on which the
workflows execute, but also with the workflows themselves—the agents can then
correspond either to the humans carrying out a given workflow, or the customer
of a workflow. These agents must coordinate their efforts appropriately. For ex-
ample, in a telecommunications setting, a channel assignment workflow must
wait until enough channels have been created by another workflow.

The challenge is to learn the potential ordering constraints of the workflows.
More generally, the challenge is to infer the activities or plans of other agents, and
learn from repeated interactions with them. Related challenges arise when the
information environment is truly open and new agents are added dynamically,
or the agents involved do not repeat interactions. In such cases, an agent still
needs to learn how to collaborate with classes of agents, and to classify them



appropriately. For example, an agent may infer that agents who request a price
quote for valves will often also want a price quote on matching hoses.

The foregoing challenges can be generalized still further to learn about the
agents’ dispositions to one another. For example, it is important to learn to what
extent other agents will cooperate with the given agent. Indeed, if the agents
form a team or coalition, they will be able to assist each other and prevent
mishaps [Shehory & Kraus, 1996]. It is also useful to have models of the learning
abilities of the other agents. A number of studies have shown that coalitions
become more effective as the members of the coalition learn about each other.
An implication of this is that the team members should act predictably and
transparently (possibly by revealing their state) in order to abet the learning.
Interestingly, this implication has not yet been researched or incorporated in any
systems.

5 Abstractions and Structure

Learning about interactive components, such as roles and organizational struc-
ture, their dispositions, responsibilities, and commitments.

For CISs applied to enterprises or virtual enterprises, a variety of models are
typically built. Figure 5 shows some of the common modeling approaches. Of
the main ones, entity-relationship (E-R) diagrams describe a conceptual model
of the information stored in (a subset of the databases in) the enterprise. Activity
decomposition describes the relationship of inclusion among different activities,
whereas the control, data, and materiel flows give additional information about
it. E-R diagrams correspond to static information as in ontologies; the activity
representations correspond to the workflows. It is important to relate the two
categories of representations, because the actions in the workflows depend on the
concepts they manipulate, and the concepts are defined based on their patterns
of usage. A challenge is to classify the concepts and actions in this manner, so
that they can be used for building ontologies and coordinating workflows.

In a number of settings, including enterprises, the organizational structure
of a CIS is important. By the organizational structure, we mean the set of
roles and responsibilities that make up a functioning system [Gasser, 1991;
Papazoglou et al., 1992]. There is an intimate relationship between the work-
flows executing in a CIS, and the organizational roles available in it. Figure 6
shows on the left a simple workflow corresponding to submitting a contract pro-
posal from a company. The write white paper task itself may be decomposed
into a subworkflow. The bottom left shows a possible subworkflow for travel.
The tasks in the workflow impinge upon various databases, and other ongoing
processes, such as budget forecast. They also relate to the organizational struc-
ture of the company, because key steps in the workflow must be performed by
people with specific authorities.

Traditionally, the roles are mapped to tasks rigidly. However, in open and
dynamic environments, more flexible role-bindings are needed. For example, if
the research director is on leave, how may the workflow be rerouted? If one



Module Chart

Context Diagram P
Object/Class Model | | | |
gaégw

S
en M7 |2

i i) -

Data Flow Diagram

A\

¢ Materiel Flowchart
Activity Decomposition

Fig. 5. Different Views of an Enterprise

person fills multiple roles, how may the workflow be scheduled to optimize their
time? The challenge i1s to learn the capabilities and authorities necessary to
execute different steps in a workflow, and to learn the interrelationships among
the various roles.

6 Conclusions

Learning by agents can minimize or entirely replace communications, which is
extremely important in large information environments where communication
bandwidth is an expensive commodity.

In looking at the examples of CISs, we find that certain problems show up
in different guises. The unifying themes of CIS are the following. One, we wish
to obtain the effect of logical homogeneity and centralization despite physical
distribution and heterogeneity. Two, we wish to support the logical openness of
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CISs. Openness translates into a number of interesting systemic challenges, re-
lating to how a CIS may initialize and stabilize when some agents come together,
are added, or leave. These lead to the following challenges for machine learning;:

— learning about each other

— learning about society and the environment

— learning from repeat interactions with changing agent instances
— learning biased by social structure

— forgetting by a group about its former members.

A number of learning techniques exist [Russell & Norvig, 1995]. We give some



suggestions about how different categories of learning might relate to problems
in CIS. These categories are, of course, not mutually exclusive:

— Clustering techniques can help extract concepts from vast amounts of data
(e.g., by classifying data that was carelessly mixed up)

— Passive learning appears appropriate for a new agent that joins a group (e.g.,
watching)

— Active learning can help a group learn about its new members, (e.g., inter-
viewing them to evaluate their opinions)

— Unsupervised learning can be an unintrusive approach for acquiring work-
flows and learning the constraints on role-bindings (e.g., looking over the
shoulder of staff members performing different tasks)

— Supervised learning applies for relating the more subtle interactions among
workflows (e.g., being told business rules)

— Reinforcement learning applies in environments with autonomously built
agents (e.g., adaptively acting and interacting).

This paper described some of the key ideas in CIS, and pointed out some
of the places where machine learning could contribute. We believe the relation-
ship between the two areas is synergistic. Cooperative information systems need
machine learning to realize their promise of adaptivity and flexibility. Machine
learning can benefit from CISs as a rich application area with open problems
that are widely recognized as crucial, and promise to yield significant scientific
advances in machine learning.
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