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2.1 Introduction

Agents operate and exist in some environment, which typically is both computa-

tional and physical. The environment might be open or closed, and it might or

might not contain other agents. Although there are situations where an agent can

operate usefully by itself, the increasing interconnection and networking of com-

puters is making such situations rare, and in the usual state of affairs the agent

interacts with other agents. Whereas the previous chapter defined the structure and

characteristics of an individual agent, the focus of this chapter is on systems with

multiple agents. At times, the number of agents may be too numerous to deal with

them individually, and it is then more convenient to deal with them collectively, as

a society of agents.

In this chapter, we will learn how to analyze, describe, and design environments

in which agents can operate effectively and interact with each other productively.

The environments will provide a computational infrastructure for such interactions

to take place. The infrastructure will include protocols for agents to communicate

and protocols for agents to interact.

Communication protocols enable agents to exchange and understand messages.

Interaction protocols enable agents to have conversations, which for our purposes

are structured exchanges of messages. As a concrete example of these, a communi-

cation protocol might specify that the following types of messages can be exchanged

between two agents:

Propose a course of action

Accept a course of action

Reject a course of action

Retract a course of action

Disagree with a proposed course of action

Counterpropose a course of action

Based on these message types, the following conversation—an instance of an
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interaction protocol for negotiation—can occur between Agent1 and Agent2:

Agent1 proposes a course of action to Agent2

Agent2 evaluates the proposal and

sends acceptance to Agent1

or

sends counterproposal to Agent1

or

sends disagreement to Agent1

or

sends rejection to Agent1

This chapter describes several protocols for communication and interaction

among both large and small groups of agents.

2.1.1 Motivations

But why should we be interested in distributed systems of agents? Indeed, cen-

tralized solutions are generally more efficient: anything that can be computed in a

distributed system can be moved to a single computer and optimized to be at least

as efficient. However, distributed computations are sometimes easier to understand

and easier to develop, especially when the problem being solved is itself distributed.

Distribution can lead to computational algorithms that might not have been discov-

ered with a centralized approach. There are also times when a centralized approach

is impossible, because the systems and data belong to independent organizations

that want to keep their information private and secure for competitive reasons.

The information involved is necessarily distributed, and it resides in information

systems that are large and complex in several senses: (1) they can be geographically

distributed, (2) they can have many components, (3) they can have a huge content,

both in the number of concepts and in the amount of data about each concept,

and (4) they can have a broad scope, i.e., coverage of a major portion of a

significant domain. Also, the components of the systems are typically distributed

and heterogeneous. The topology of these systems is dynamic and their content is

changing so rapidly that it is difficult for a user or an application program to obtain

correct information, or for the enterprise to maintain consistent information.

There are four major techniques for dealing with the size and complexity of

these enterprise information systems: modularity, distribution, abstraction, and

intelligence, i.e., being smarter about how you seek and modify information. The

use of intelligent, distributed modules combines all four of these techniques, yielding

a distributed artificial intelligence (DAI) approach [25, 18].

In accord with this approach, computational agents need to be distributed

and embedded throughout the enterprise. The agents could function as intelligent

application programs, active information resources, “wrappers” that surround and

buffer conventional components, and on-line network services. The agents would be
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knowledgeable about information resources that are local to them, and cooperate

to provide global access to, and better management of, the information. For

the practical reason that the systems are too large and dynamic (i.e., open) for

global solutions to be formulated and implemented, the agents need to execute

autonomously and be developed independently.

The rationale for interconnecting computational agents and expert systems is to

enable them to cooperate in solving problems, to share expertise, to work in parallel

on common problems, to be developed and implemented modularly, to be fault

tolerant through redundancy, to represent multiple viewpoints and the knowledge

of multiple experts, and to be reusable.

The possibility of an agent interacting with other agents in the future, in

unanticipated ways, causes its developer to think about and construct it differently.

For example, the developer might consider “What exactly does my agent know?”

and “How can another agent access and use the knowledge my agent has?” This

might lead to an agent’s knowledge being represented declaratively, rather than

being buried in procedural code.

Multiagent systems are the best way to characterize or design distributed comput-

ing systems. Information processing is ubiquitous. There are computer processors

seemingly everywhere, embedded in all aspects of our environment. Your kitchen

likely has many, in such places as the microwave oven, toaster, and coffee maker,

and this number does not consider the electrical power system, which probably uses

hundreds in getting electricity to the kitchen. The large number of processors and

the myriad ways in which they interact makes distributed computing systems the

dominant computational paradigm today.

When the processors in the kitchen are intelligent enough to be considered

agents, then it becomes convenient to think of them in anthropomorphic terms.

For example, “the toaster knows when the toast is done,” and “the coffee pot

knows when the coffee is ready.” When these systems are interconnected so they

can interact, then they should also know that the coffee and toast should be ready at

approximately the same time. In these terms, your kitchen becomes more than just a

collection of processors—a distributed computing system—it becomes a multiagent

system.

Much of traditional AI has been concerned with how an agent can be constructed

to function intelligently, with a single locus of internal reasoning and control

implemented in a Von Neumann architecture. But intelligent systems do not

function in isolation—they are at the very least a part of the environment in which

they operate, and the environment typically contains other such intelligent systems.

Thus, it makes sense to view such systems in societal terms.

2.1.2 Characteristics of Multiagent Environments

1. Multiagent environments provide an infrastructure specifying communication

and interaction protocols.
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2. Multiagent environments are typically open and have no centralized designer.

3. Multiagent environments contain agents that are autonomous and distributed,

and may be self-interested or cooperative.

A multiagent execution environment includes a number of concerns, which are

enumerated as possible characteristics in Table 2.1.

Table 2.1 Characteristics of Multiagent Environments

Property Range of values

Design Autonomy Platform/Interaction Protocol

/Language/Internal Architecture

Communication Infrastructure Shared memory (blackboard) or Message-based

Connected or Connection-less (email)

Point-to-Point, Multicast, or Broadcast

Push or Pull

Synchronous or Asynchronous

Directory Service White pages, Yellow pages

Message Protocol KQML

HTTP and HTML

OLE, CORBA, DSOM

Mediation Services Ontology-based? Transactions?

Security Services Timestamps/Authentication

Remittance Services Billing/Currency

Operations Support Archiving/Redundancy

/Restoration/Accounting

Table 2.2 Environment-Agent Characteristics

Property Definition

Knowable To what extent is the environment known to the agent

Predictable To what extent can it be predicted by the agent

Controllable To what extent can the agent modify the environment

Historical Do future states depend on the entire history, or only the current state

Teleological Are parts of it purposeful, i.e., are there other agents

Real-time Can the environment change while the agent is deliberating

Table 2.2 lists some key properties of an environment with respect to a specific

agent that inhabits it. These generalize the presentation in [38].
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2.2 Agent Communications

We first provide a basic definition for an agent, which we need in order to describe

the languages and protocols needed by multiagent systems. Fundamentally, an agent

is an active object with the ability to perceive, reason, and act. We assume that

an agent has explicitly represented knowledge and a mechanism for operating on

or drawing inferences from its knowledge. We also assume that an agent has the

ability to communicate. This ability is part perception (the receiving of messages)

and part action (the sending of messages). In a purely computer-based agent, these

may be the agent’s only perceptual and acting abilities.

2.2.1 Coordination

Agents communicate in order to achieve better the goals of themselves or of the

society/system in which they exist. Note that the goals might or might not be known

to the agents explicitly, depending on whether or not the agents are goal-based.

Communication can enable the agents to coordinate their actions and behavior,

resulting in systems that are more coherent.

Coordination is a property of a system of agents performing some activity in

a shared environment. The degree of coordination is the extent to which they

avoid extraneous activity by reducing resource contention, avoiding livelock and

deadlock, and maintaining applicable safety conditions. Cooperation is coordination

among nonantagonistic agents, while negotiation is coordination among competitive

or simply self-interested agents. Typically, to cooperate successfully, each agent

must maintain a model of the other agents, and also develop a model of future

interactions. This presupposes sociability.

Coherence is how well a system behaves as a unit. A problem for a multiagent

system is how it can maintain global coherence without explicit global control.

In this case, the agents must be able on their own to determine goals they share

with other agents, determine common tasks, avoid unnecessary conflicts, and pool

knowledge and evidence. It is helpful if there is some form of organization among

the agents. Also, social commitments can be a means to achieving coherence, which

is addressed in Section 2.4.

Section 2.3.7 discusses another means, based on economic principles of markets.

In this regard, Simon [40] argues eloquently that although markets are excellent

for clearing all goods, i.e., finding a price at which everything is sold, they are less

effective in computing optimal allocations of resources. Organizational structures

are essential for that purpose. It is believed that coherence and optimality are

intimately related.
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Coordination

Cooperation Competition

Planning Negotiation

Centralized PlanningDistributed Planning

Figure 2.1 A taxonomy of some of the different ways in which agents can

coordinate their behavior and activities
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2.2.2 Dimensions of Meaning

There are three aspects to the formal study of communication: syntax (how the

symbols of comunication are structured), semantics (what the symbols denote),

and pragmatics (how the symbols are interpreted). Meaning is a combination of

semantics and pragmatics. Agents communicate in order to understand and be

understood, so it is important to consider the different dimensions of meaning that

are associated with communication [42].

Descriptive vs. Prescriptive. Some messages describe phenomena, while others

prescribe behavior. Descriptions are important for human comprehension, but are

difficult for agents to mimic. Appropriately, then, most agent communication lan-

guages are designed for the exchange of information about activities and behavior.

Personal vs. Conventional Meaning. An agent might have its own meaning for

a message, but this might differ from the meaning conventionally accepted by the

other agents with which the agent communicates. To the greatest extent possible,

multiagent systems should opt for conventional meanings, especially since these

systems are typically open environments in which new agents might be introduced

at any time.

Subjective vs. Objective Meaning Similar to conventional meaning, where

meaning is determined external to an agent, a message often has an explicit effect

on the environment, which can be perceived objectively. The effect might be differ-

ent than that understood internally, i.e., subjectively, by the sender or receiver of

the message.

Speaker’s vs. Hearer’s vs. Society’s Perspective Independent of the conven-

tional or objective meaning of a message, the message can be expressed according

to the viewpoint of the speaker or hearer or other observers.

Semantics vs. Pragmatics The pragmatics of a communication are concerned

with how the communicators use the communication. This includes considerations

of the mental states of the communicators and the environment in which they exist,

considerations that are external to the syntax and semantics of the communication.

Contextuality Messages cannot be understood in isolation, but must be inter-

preted in terms of the mental states of the agents, the present state of the environ-

ment, and the environment’s history: how it arrived at its present state. Interpre-

tations are directly affected by previous messages and actions of the agents.

Coverage Smaller languages are more manageable, but they must be large enough

so that an agent can convey the meanings it intends.

Identity When a communication occurs among agents, its meaning is dependent

on the identities and roles of the agents involved, and on how the involved agents

are specified. A message might be sent to a particular agent, or to just any agent

satisfying a specified criterion.

Cardinality A message sent privately to one agent would be understood differently
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Table 2.3 Agent Capabilities

Basic Agent Passive Agent Active Agent Peer Agent

Receives assertions • • • •
Receives queries • •
Sends assertions • • •
Sends queries • •

than the same message broadcast publicly.

2.2.3 Message Types

It is important for agents of different capabilities to be able to communicate.

Communication must therefore be defined at several levels, with communication

at the lowest level used for communication with the least capable agent. In order

to be of interest to each other, the agents must be able to participate in a dialogue.

Their role in this dialogue may be either active, passive, or both, allowing them

to function as a master, slave, or peer, respectively. In keeping with the above

definition for and assumptions about an agent, we assume that an agent can send

and receive messages through a communication network. The messages can be of

several types, as defined next.

There are two basic message types: assertions and queries. Every agent, whether

active or passive, must have the ability to accept information. In its simplest form,

this information is communicated to the agent from an external source by means of

an assertion. In order to assume a passive role in a dialog, an agent must additionally

be able to answer questions, i.e., it must be able to 1) accept a query from an

external source and 2) send a reply to the source by making an assertion. Note that

from the standpoint of the communication network, there is no distinction between

an unsolicited assertion and an assertion made in reply to a query.

In order to assume an active role in a dialog, an agent must be able to issue queries

and make assertions. With these capabilities, the agent then can potentially control

another agent by causing it to respond to the query or to accept the information

asserted. This means of control can be extended to the control of subagents, such

as neural networks and databases.

An agent functioning as a peer with another agent can assume both active and

passive roles in a dialog. It must be able to make and accept both assertions and

queries. A summary of the capabilities needed by different classes of agents is shown

in Table 2.3.

Other types of messages, derived from work on speech-act theory [43], are listed

in Table 2.4.
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Table 2.4 Interagent Message Types

Communicative Action Illocutionary Force Expected Result

Assertion Inform Acceptance

Query Question Reply

Reply Inform Acceptance

Request Request

Explanation Inform Agreement

Command Request

Permission Inform Acceptance

Refusal Inform Acceptance

Offer/Bid Inform Acceptance

Acceptance

Agreement

Proposal Inform Offer/Bid

Confirmation

Retraction

Denial

2.2.4 Communication Levels

Communication protocols are typically specified at several levels. The lowest level

of the protocol specifies the method of interconnection; the middle level specifies

the format, or syntax, of the information being transfered; the top level specifies

the meaning, or semantics, of the information. The semantics refers not only to the

substance of the message, but also to the type of the message.

There are both binary and n-ary communication protocols. A binary protocol

involves a single sender and a single receiver, whereas an n-ary protocol involves a

single sender and multiple receivers (sometimes called broadcast or multicast). A

protocol is specified by a data structure with the following five fields:

1. sender

2. receiver(s)

3. language in the protocol

4. encoding and decoding functions

5. actions to be taken by the receiver(s).

2.2.5 Speech Acts

Spoken human communication is used as the model for communication among

computational agents. A popular basis for analyzing human communication is

speech act theory [1, 39]. Speech act theory views human natural language as

actions, such as requests, suggestions, commitments, and replies. For example, when
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you request something, you are not simply making a statement, but creating the

request itself. When a jury declares a defendant guilty, there is an action taken: the

defendant’s social status is changed.

A speech act has three aspects:

1. Locution, the physical utterance by the speaker

2. Illocution, the intended meaning of the utterance by the speaker

3. Perlocution, the action that results from the locution.

For example, John might say to Mary, “Please close the window.” This act consists

of the physical sounds generated by John (or the character sequences typed by

John), John’s intent for the message as a request or a command, and if all goes

well, the window being shut.

In communication among humans, the intent of the message is not always easily

identified. For example, “I am cold,” can be viewed as an assertion, a request

for a sweater, or a demand for an increase in room temperature. However, for

communication among agents, we want to insure that there is no doubt about the

type of message.

Speech act theory uses the term performative to identify the illocutionary force

of this special class of utterance. Example performative verbs include promise,

report, convince, insist, tell, request, and demand. Illocutionary force can be broadly

classified as assertives (statements of fact), directives (commands in a master-

slave structure), commissives (commitments), declaratives (statements of fact), and

expressives (expressions of emotion).

Performatives are usually represented in the stylized syntatic form “I hereby

tell...” or “I hereby request...” Because performatives have the special property

that “saying it makes it so,” not all verbs are performatives. For example, stating

that “I hereby solve this problem” does not create the solution. Although the term

speech is used in this discussion, speech acts have to do with communication in

forms other than the spoken word.

In summary, speech act theory helps define the type of message by using the

concept of the illocutionary force, which constrains the semantics of the communi-

cation act itself. The sender’s intended communication act is clearly defined, and

the receiver has no doubt as to the type of message sent. This constraint simplifies

the design of our software agents.

The message contained within the protocol may be ambiguous, may have no

simple response, or may require decomposition and the assistance of other agents;

however, the communication protocol itself should clearly identify the type of

message being sent.

2.2.6 KQML

A fundamental decision for the interaction of agents is to separate the seman-

tics of the communication protocol (which must be domain independent) from the
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semantics of the enclosed message (which may depend on the domain). The com-

munication protocol must be universally shared by all agents. It should be concise

and have only a limited number of primitive communication acts.

The knowledge query and manipulation language (KQML) is a protocol for

exchanging information and knowledge, as illustrated in Figure 2.2. The elegance

of KQML is that all information for understanding the content of the message is

included in the communication itself. The basic protocol is defined by the following

structure:
(KQML-performative

:sender <word>

:receiver <word>

:language <word>

:ontology <word>

:content <expression>

...)
The syntax is Lisp-like; however, the arguments—identified by keywords preceded

by a colon—may be given in any order. The KQML-performatives are modeled on

speech act performatives. Thus, the semantics of KQML performatives is domain

independent, while the semanatics of the message is defined by the fields :content

(the message itself), :language (the langauge in which the message is expressed),

and :ontology (the vocabulary of the “words” in the message). In effect, KQML

“wraps” a message in a structure that can be understood by any agent. (To

understand the message itself, the recipient must understand the language and

have access to the ontology.)

The terms :content, :language, and :ontology delineate the semantics of

the message. Other arguments, including :sender, :receiver, :reply-with, and

:in-reply-to, are parameters of the message passing. KQML assumes asyn-

chronous communications; the fields :reply-with from a sender and :in-reply-to

from a responding agent link an outgoing message with an expected response.

KQML is part of a broad research effort to develop a methodology for distributing

information among different systems [35]. One part of the effort involves defining

the Knowledge Interchange Format (KIF), a formal syntax for representing knowl-

edge. Described in the next section, KIF is largely based on first-order predicate

calculus. Another part of the effort is defining ontologies that define the common

concepts, attributes, and relationships for different subsets of world knowledge. The

definitions of the ontology terms give meaning to expressions represented in KIF.

For example, in a Blocks-World ontology, if the concept of a wooden block of a

given size is represented by the unary predicate Block, then the fact that block A

is on top of block B could be communicated as follows:

The language in a KQML message is not restricted to KIF; other languages such

as PROLOG, LISP, SQL, or any other defined agent communication language can

be used.

KQML-speaking agents appear to each other as clients and servers. Their com-
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KQML KQML

Agent Agent
Application

Program

Figure 2.2 KQML is a protocol for communications among both agents and

application programs
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(tell

:sender Agent1

:receiver Agent2

:language: KIF

:ontology: Blocks-World

:content (AND (Block A) (Block B) (On A B))

munications can be either synchronous or asynchronous, as illustrated in Figure

2.3. For a synchronous communication, a sending agent waits for a reply. For an

asynchronous communication, the sending agent continues with its reasoning or

acting, which would then be interrupted when replies arrive at a later time.

Interestingly, KQML messages can be “nested” in that the content of a KQML

message may be another KQML message, which is self contained. For example,

if Agent1 cannot communicate directly with Agent2 (but can communicate with

Agent3), Agent1 might ask Agent3 to forward a message to Agent2:

(forward

:from Agent1

:to Agent2

:sender Agent1

:receiver Agent3

:language KQML

:ontology kqml-ontology

:content (tell

:sender Agent1

:receiver Agent2

:language KIF

:ontology: Blocks-World

:content (On (Block A) (Block B))))

In a forwarded KQML message, the value of the :from field becomes the value

in the :sender field of the :content message, and the value of the :to field in the

forward becomes the value of the :receiver field.

The KQML performatives may be organized into seven basic categories:

Basic query performatives (evaluate, ask-one, ask-all, ...)

Multiresponse query performatives (stream-in, stream-all, ...)

Response performatives (reply, sorry, ...)

Generic informational performatives (tell, achieve, cancel, untell, unachieve, ...)

Generator performatives (standby, ready, next, rest, ...)

Capability-definition performatives (advertise, subscribe, monitor, ...)
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Client Server

Client Server

Client Server

query

replyy

query
handle

next

next
reply

reply

reply

reply

reply

subscribe

Synchronous:  a blocking query waits for an expected reply

Asynchronous:  a nonblocking subscribe results in replies

Server maintains state; replies sent individually when requested

Figure 2.3 Synchronous and asynchronous communications among agents that

understand KQML
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Networking performatives (register, unregister, forward, broadcast, ...)

The advertise performative is used by a :sender agent to inform a :receiver

about the :sender’s capabilities:

(advertise

:sender Agent2

:receiver Agent1

:language KQML

:ontology kqml-ontology

:content (ask-all

:sender Agent1

:receiver Agent2

:in-reply-to id1

:language Prolog

:ontology: Blocks-World

:content “on(X,Y)”))

Now Agent1 may query Agent2:

(ask-all

:sender Agent1

:receiver Agent2

:in-reply-to id1

:reply-with id2

:language: Prolog

:ontology: Blocks-World

:content “on(X,Y)”

Agent2 could respond with matching assertions from its knowledge base:

(tell

:sender Agent2

:receiver Agent1

:in-reply-to id2

:language: Prolog

:ontology: Blocks-World

:content “[on(a,b),on(c,d)]”

Issues:

The sender and receiver must understand the agent communication language

being used; the ontology must be created and be accesssible to the agents who are
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communicating.

KQML must operate within a communication infrastructure that allows agents

to locate each other. The infrastructure is not part of the KQML specification, and

implemented systems use custom-made utility programs called routers or facilators

to perform this function. In the advertise example above, if Agent2 sent the message

to a facilator agent, then other agents could query the facilitator to find out about

Agent2’s capabilities.

KQML is still a work in progress and its semantics have not been completely de-

fined. Labrou and Finin [31] have recently proposed a new KQML specification that

refines the original draft [15]. However, there is yet no offical KQML specification

that agent builders can rely on.

2.2.7 Knowledge Interchange Format

Agents need descriptions of real-world things. The descriptions could be expressed

in natural languages, such as English and Japanese, which are capable of describing

a wide variety of things and situations. However, the meaning of a natural language

statement is often subject to different interpretations.

Symbolic logic is a general mathematical tool for describing things. Rather simple

logics (e.g., the first order predicate calculus) have been found to be capable of de-

scribing almost anything of interest or utility to people and other intelligent agents.

These things include simple concrete facts, definitions, abstractions, inference rules,

constraints, and even metaknowledge (knowledge about knowledge).

KIF, a particular logic language, has been proposed as a standard to use to

describe things within expert systems, databases, intelligent agents, etc. It is

readable by both computer systems and people. Moreover, it was specifically

designed to serve as an “interlingua,” or mediator in the translation of other

languages. For example, there is a translation program that can map a STEP/PDES

expression about products into an equivalent KIF expression and vice versa. If there

were a translation program for mapping between the healthcare language HL7 and

KIF, then there would be a way to translate between STEP/PDES and HL7 (to

exchange information about healthcare products) using KIF as an intermediate

representation.

KIF is a prefix version of first order predicate calculus with extensions to support

nonmonotonic reasoning and definitions. The language description includes both

a specification for its syntax and one for its semantics. KIF provides for the

expression of simple data. For example, the sentences shown below encode 3 tuples

in a personnel database (arguments stand for employee ID number, department

assignment, and salary, respectively):

(salary 015-46-3946 widgets 72000)

(salary 026-40-9152 grommets 36000)

(salary 415-32-4707 fidgets 42000)

More complicated information can be expressed through the use of complex
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terms. For example, the following sentence states that one chip is larger than

another:

(> (* (width chip1) (length chip1))

(* (width chip2) (length chip2)))

KIF includes a variety of logical operators to assist in the encoding of logical

information, such as negation, disjunction, rules, and quantified formulas. The

expression shown below is an example of a complex sentence in KIF. It asserts

that the number obtained by raising any real-number ?x to an even power ?n is

positive:

(=> (and (real-number ?x)

(even-number ?n))

(> (expt ?x ?n) 0))

KIF provides for the encoding of knowledge about knowledge, using the back-

quote (‘) and comma (,) operators and related vocabulary. For example, the follow-

ing sentence asserts that agent Joe is interested in receiving triples in the salary

relation. The use of commas signals that the variables should not be taken literally.

Without the commas, this sentence

(interested joe ‘(salary ,?x ,?y ,?z))

would say that agent joe is interested in the sentence (salary ?x ?y ?z) instead

of its instances.

KIF can also be used to describe procedures, i.e., to write programs or scripts

for agents to follow. Given the prefix syntax of KIF, such programs resemble Lisp

or Scheme. The following is an example of a three-step procedure written in KIF.

The first step ensures that there is a fresh line on the standard output stream; the

second step prints “Hello!” to the standard output stream; the final step adds a

carriage return to the output.

(progn (fresh-line t)

(print "Hello!")

(fresh-line t))

The semantics of the KIF core (KIF without rules and definitions) is similar to

that of first-order logic. There is an extension to handle nonstandard operators

(like backquote and comma), and there is a restriction that models must satisfy

various axiom schemata (to give meaning to the basic vocabulary in the format).

Despite these extensions and restrictions, the core language retains the fundamental

characteristics of first-order logic, including compactness and the semi-decidability

of logical entailment.
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2.2.8 Ontologies

An ontology is a specification of the objects, concepts, and relationships in an

area of interest. In the Blocks-World example above, the term Block represents a

concept and the term On represents a relationship. Concepts can be represented in

first-order logic as unary predicates; higher-arity predicates represent relationships.

To express the idea that a block is a physical object, we might use the first-order

expression

∀x (Block x) ⇒ (PhysicalObject x)

There are other, more general representations. Instead of (Block A), the expres-

sion (instanceOf A Block) could be used. Both A and Block are now objects in

the universe of discourse, and new relationships instanceOf and subclassOf are

introduced:

(class Block)

(class PhysicalObject)

(subclassOf Block PhysicalObject)

∀x,y,z (instanceOf x y) ∧ (subclassOf y z) ⇒ (instanceOf x z)

The last sentence is a rule that expresses the notion of a type hierarchy.

An ontology is more than a taxonomy of classes (or types); the ontology must

describe the relationships. The classes and relationships must be represented in

the ontology; the instances of classes need not be represented. For example, there

is no need to represent A in the ontology for either (Block A) or (instanceOf

A Block). An ontology is analogous to a database schema, not the contents of a

database itself.

Implicit in this discussion is that an agent must represent its knowledge in the

vocabulary of a specified ontology. Since agents are constructed by people, the effect

is that the agent’s creator must use a specified ontology to represent the agent’s

knowledge. All agents that share the same ontology for knowledge representation

have an understanding of the “words” in the agent communication language.

Many agents have knowledge bases in which relationships are defined in more

detail than just a character string. For example, the domain and range of a binary

relationship can be specified;

(domain On PhysicalObject)

(range On PhysicalObject)

These restrictions limit the values allowed in using a relationship. (On A B) is

permitted since both A and B are instances of PhysicalObject via transitive closure

of subclassOf; (On A Dream1) would be prohibited assuming that Dream1 is not

of type PhysicalObject.
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Ontology editors, such as those developed at Stanford [14] and the University of

South Carolina [32], are typically frame-based knowledge-representation systems

that allow users to define ontologies and their components: classes, instances,

relationships, and functions. Figure 2.4 shows an example of such an ontology.

Ontology editors offer a variety of features, such as the ability to translate ontologies

into several representation languages or the ability for distributed groups to develop

ontologies jointly over the Internet.

2.2.9 Other Communication Protocols

The above protocols for interagent communication in no way preclude other means

by which computational agents can interact, communicate, and be interconnected.

For example, one agent may be able to view a second agent with a camera, and use

the resulting images to coordinate its own actions with those of the second agent.

Once communication protocols are defined and agreed upon by a set of agents,

higher level protocols can be readily implemented. The next section describes some

of these.
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2.3 Agent Interaction Protocols

The previous section describes mechanisms for agents to communicate single mes-

sages. Interaction protocols govern the exchange of a series of messages among

agents—a conversation. Several interaction protocols have been devised for sys-

tems of agents. In cases where the agents have conflicting goals or are simply self-

interested, the objective of the protocols is to maximize the payoffs (utilities) of

the agents [37]. In cases where the agents have similar goals or common problems,

as in distributed problem solving (DPS), the objective of the protocols is to main-

tain globally coherent performance of the agents without violating autonomy, i.e.,

without explicit global control [11]. For the latter cases, important aspects include

how to

determine shared goals

determine common tasks

avoid unnecessary conflicts

pool knowledge and evidence.

2.3.1 Coordination Protocols

In an environment with limited resources, agents must coordinate their activities

with each other to further their own interests or satisfy group goals. The actions

of multiple agents need to be coordinated because there are dependencies between

agents’ actions, there is a need to meet global constraints, and no one agent has

sufficient competence, resources or information to achieve system goals. Examples

of coordination include supplying timely information to other agents, ensuring the

actions of agents are synchronized, and avoiding redundant problem solving.

To produce coordinated systems, most DAI research has concentrated on tech-

niques for distributing both control and data. Distributed control means that agents

have a degree of autonomy in generating new actions and in deciding which goals to

pursue next. The disadvantage of distributing control and data is that knowledge

of the system’s overall state is dispersed throughout the system and each agent has

only a partial and imprecise perspective. There is an increased degree of uncertainty

about each agent’s actions, so it is more difficult to attain coherent global behavior.

The actions of agents in solving goals can be expressed as search through a

classical AND/OR goal graph. The goal graph includes a representation of the

dependencies between the goals and the resources needed to solve the primitive goals

(leaf nodes of the graph). Indirect dependencies can exist between goals through

shared resources.

Formulating a multiagent system in this manner allows the activities requiring

coordination to be clearly identified. Such activities include: (1) defining the goal

graph, including identification and classification of dependencies; (2) assigning
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particular regions of the graph to appropriate agents; (3) controlling decisions about

which areas of the graph to explore; (4) traversing the graph; and (5) ensuring that

successful traversal is reported. Some of the activities may be collaborative, while

some may be carried out by an agent acting in isolation. Determining the approach

for each of the phases is a matter of system design.

While the distributed goal search formalism has been used frequently to charac-

terize both global and local problems, the key agent structures are commitment and

convention [29]. Commitments are viewed as pledges to undertake a specified course

of action, while conventions provide a means of managing commitments in chang-

ing circumstances. Commitments provide a degree of predictability so that agents

can take the future activities of others into consideration when dealing with intera-

gent dependencies, global constraints, or resource utilization conflicts. As situations

change, agents must evaluate whether existing commitments are still valid. Con-

ventions constrain the conditions under which commitments should be reassessed

and specify the associated actions that should then be undertaken: either retain,

rectify or abandon the commitments.

If its circumstances do not change, an agent will endeavor to honor its commit-

ments. This obligation constrains the agent’s subsequent decisions about making

new commitments, since it knows that sufficient resources must be reserved to honor

its existing ones. For this reason, an agent’s commitments should be both internally

consistent and consistent with its beliefs.

Conventions help an agent manage its commitments, but they do not specify how

the agent should behave towards others if it alters or modifies its commitments.

However for goals that are dependent, it is essential that the relevant agents be

informed of any substantial change that affects them. A convention of this type is a

social one. If communication resources are limited, the following social convention

might be appropriate:

LIMITED-BANDWIDTH SOCIAL CONVENTION

INVOKE WHEN

Local commitment dropped

Local commitment satisfied

ACTIONS

RULE1: IF Local commitment satisfied

THEN inform all related commitments

Rule2: IF local commitments dropped because unattainable or

motivation not present

THEN inform all strongly related commitments

Rule3: IF local commitments dropped because unattainable or

motivation not present
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AND communication resources not overburdened

THEN inform all weakly related commitments

When agents decide to pursue a joint action, they jointly commit themselves to

a common goal, which they expect will bring about the desired state of affairs.

The minimum information that a team of cooperating agents should share is (1)

the status of their commitment to the shared objective, and (2) the status of their

commitment to the given team framework. If an agent’s beliefs about either of

these issues change, then the semantics of joint commitments requires that all team

members be informed. As many joint actions depend upon the participation of

an entire team, a change of commitment by one participant can jeopardize the

team’s efforts. Hence, if an agent comes to believe that a team member is no longer

jointly committed, it also needs to reassess its own position with respect to the joint

action. These three basic assumptions are encoded in a convention that represents

the minimum requirement for joint commitments, as shown below.

BASIC JOINT-ACTION CONVENTION

INVOKE WHEN

Status of commitment to joint action changes

Status of commitment to attaining joint action in present

team context changes

Status of joint commitment of a team member changes

ACTIONS

Rule1: IF Status of commitment to joint action changes

OR

IF Status of commitment to present team

context changes

THEN inform all other team member of these changes

Rule2: IF Status of joint commitment of a team member changes

THEN Determine whether joint commitment still viable

Commitments and conventions are the cornerstones of coordination: commit-

ments provide the necessary structure for predictable interactions, and social con-

ventions provide the necessary degree of mutual support.

2.3.2 Cooperation Protocols

A basic strategy shared by many of the protocols for cooperation is to decompose

and then distribute tasks. Such a divide-and-conquer approach can reduce the com-

plexity of a task: smaller subtasks require less capable agents and fewer resources.

However, the system must decide among alternative decompositions, if available,
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and the decomposition process must consider the resources and capabilities of the

agents. Also, there might be interactions among the subtasks and conflicts among

the agents.

Task decomposition can be done by the system designer, whereby decomposition

is programmed during implementation, or by the agents using hierarchical planning,

or it might be inherent in the representation of the problem, as in an AND-

OR graph. Task decomposition might be done spatially, based on the layout of

information sources or decision points, or functionally, according to the expertise

of available agents.

Once tasks are decomposed, they can be distributed according to the following

criteria [13]:

Avoid overloading critical resources

Assign tasks to agents with matching capabilities

Make an agent with a wide view assign tasks to other agents

Assign overlapping responsibilities to agents to achieve coherence

Assign highly interdependent tasks to agents in spatial or semantic proximity.

This minimizes communication and synchronization costs

Reassign tasks if necessary for completing urgent tasks.

The following mechanisms are commonly used to distribute tasks:

Market mechanisms: tasks are matched to agents by generalized agreement or

mutual selection (analogous to pricing commodities)

Contract net: announce, bid, and award cycles

Multiagent planning: planning agents have the responsibility for task assignment

Organizational structure: agents have fixed responsibilities for particular tasks.

Figure 2.5 illustrates two of the methods of task distribution. Details of additional

methods are described in the sections that follow.

2.3.3 Contract Net

Of the above mechanisms, the best known and most widely applied is the contract

net protocol [44, 9]. The contract net protocol is an interaction protocol for coop-

erative problem solving among agents. It is modeled on the contracting mechanism

used by businesses to govern the exchange of goods and services. The contract net

provides a solution for the so-called connection problem: finding an appropriate

agent to work on a given task. Figure 2.6 illustrates the basic steps in this protocol.

An agent wanting a task solved is called the manager; agents that might be able

to solve the task are called potential contractors. From a manager’s perspective,

the process is

Announce a task that needs to be performed



24 Multiagent Systems and Societies of Agents

Receive and evaluate bids from potential contractors

Award a contract to a suitable contractor

Receive and synthesize results.

From a contractor’s perspective, the process is

Receive task announcements

Evaluate my capability to respond

Respond (decline, bid)

Perform the task if my bid is accepted

Report my results.

The roles of agents are not specified in advance. Any agent can act as a manager

by making task announcements; any agent can act as a contractor by responding

to task announcements. This flexibility allows for further task decomposition: a

contractor for a specific task may act as a manager by soliciting the help of other

agents in solving parts of that task. The resulting manager-contractor links form a

control hierarchy for task sharing and result synthesis.

The contract net offers the advantages of graceful performance degradation. If a

contractor is unable to provide a satisfactory solution, the manager can seek other

potential contractors for the task.

The structure of a task announcement includes slots for addressee, eligibility

specification, task abstraction, bid specification, and expiration time. The tasks may

be addressed to one or more potential contractors who must meet the criteria of

the eligibility specification. The task abstraction, a brief description of the task,

is used by contractors to rank tasks from several task announcements. The bid

specification tells potential contractors what information must be provided with

the bid; returned bid specifications give the manager a basis for comparing bids

from different potential contractors. The expiration time is a deadline for receiving

bids.

Each potential contractor evaluates unexpired task announcements to determine

if it is eligible to offer a bid. The contractor then chooses the most attractive task

(based on some criteria) and offers a bid to the corresponding manager.

A manager receives and evaluates bids for each task announcement. Any bid

deemed satisfactory may be accepted before the expiration time of the task an-

nouncement. The manager notifies the contractor of bid acceptance with an an-

nounced award message. (A limitation of the contract net protocol is that a task

might be awarded to a contractor with limited capability if a better qualified con-

tractor is busy at award time. Another limitation is that a manager is under no

obligation to inform potential contractors that an award has already been made.)

A manager may not receive bids for several reasons: (1) all potential contractors

are busy with other tasks, (2) a potential contractor is idle but ranks the proposed

task below other tasks under consideration, (3) no contractors, even if idle, are

capable of working on the task. To handle these cases, a manager may request
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immediate response bids to which contractors respond with messages such as eligible

but busy, ineligible, or uninterested (task ranked too low for contractor to bid). The

manager can then make adjustments in its task plan. For example, the manager

can wait until a busy potential contractor is free.

The contract net provides for directed contracts to be issued without negotiation.

The selected contractor responds with an acceptance or refusal. This capability can

simplify the protocol and improve effiency for certain tasks.

2.3.4 Blackboard Systems

Blackboard-based problem solving is often presented using the following metaphor:

“Imagine a group of human or agent specialists seated next to a large blackboard.

The specialists are working cooperatively to solve a problem, using the blackboard

as the workplace for developing the solution. Problem solving begins when the

problem and initial data are written onto the blackboard. The specialists watch the

blackboard, looking for an opportunity to apply their expertise to the developing

solution. When a specialist finds sufficient information to make a contribution, he

records the contribution on the blackboard. This additional information may enable

other specialists to apply their expertise. This process of adding contributions to

the blackboard continues until the problem has been solved.”

This metaphor captures a number of the important characteristics of blackboard

systems, each of which is described below.

Independence of expertise. The specialists (called knowledges sources or KSs)

are not trained to work solely with that specific group of specialists. Each is

an expert on some aspects of the problem and can contribute to the solution

independently of the particular mix of other specialists in the room.

Diversity in problem-solving techniques. In blackboard systems, the internal

representation and inferencing machinery used by each KS are hidden from direct

view.

Flexible representation of blackboard information. The blackboard model

does not place any prior restrictions on what information can be placed on the

blackboard.

Common interaction language. KSs in blackboard systems must be able to cor-

rectly interpret the information recorded on the blackboard by other KSs. In prac-

tice, there is a tradeoff between the representational expressiveness of a specialized

representation shared by only a few KSs and a fully general representation under-

stood by all KSs.

Event-based activation. KSs in blackboard systems are triggered in response to

blackboard and external events. Blackboard events include the addition of new

information to the blackboard, a change in existing information, or the removal of

existing information. Rather than having each KS scan the blackboard, each KS
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informs the blackboard system about the kind of events in which it is interested.

The blackboard system records this information and directly considers the KS for

activation whenever that kind of event occurs.

Need for control. A control component that is separate from the individual KSs

is responsible for managing the course of problem solving. The control component

can be viewed as a specialist in directing problem solving, by considering the

overall benefit of the contributions that would be made by triggered KSs. When

the currently executing KS activation completes, the control component selects the

most appropriate pending KS activation for execution.

When a KS is triggered, the KS uses its expertise to evaluate the quality and

importance of its contribution. Each triggered KS informs the control component of

the quality and costs associated with its contribution, without actually performing

the work to compute the contribution. The control component uses these estimates

to decide how to proceed.

Incremental solution generation. KSs contribute to the solution as appropri-

ate, sometimes refining, sometimes contradicting, and sometimes initiating a new

line of reasoning.

Figure 2.7 shows the architecture of a basic blackboard system.

2.3.5 Negotiation

A frequent form of interaction that occurs among agents with different goals is

termed negotiation. Negotiation is a process by which a joint decision is reached

by two or more agents, each trying to reach an individual goal or objective. The

agents first communicate their positions, which might conflict, and then try to move

towards agreement by making concessions or searching for alternatives.

The major features of negotiation are (1) the language used by the participating

agents, (2) the protocol followed by the agents as they negotiate, and (3) the decision

process that each agent uses to determine its positions, concessions, and criteria for

agreement.

Many groups have developed systems and techniques for negotiation. These

can be either environment-centered or agent-centered. Developers of environment-

centered techniques focus on the following problem: “How can the rules of the

environment be designed so that the agents in it, regardless of their origin, capabil-

ities, or intentions, will interact productively and fairly?” The resultant negotiation

mechanism should ideally have the following attributes:

Efficiency: the agents should not waste resources in coming to an agreement.

Stability: no agent should have an incentive to deviate from agreed-upon strate-

gies.

Simplicity: the negotiation mechanism should impose low computational and

bandwidth demands on the agents.

Distribution: the mechanism should not require a central decision maker.
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Symmetry: the mechanism should not be biased against any agent for arbitrary

or inappropriate reasons.

An articulate and entertaining treatment of these concepts is found in [36]. In par-

ticular, three types of environments have been identified: worth-oriented domains,

state-oriented domains, and task-oriented domains.

A task-oriented domain is one where agents have a set of tasks to achieve, all

resources needed to achieve the tasks are available, and the agents can achieve

the tasks without help or interference from each other. However, the agents can

benefit by sharing some of the tasks. An example is the “Internet downloading

domain,” where each agent is given a list of documents that it must access over

the Internet. There is a cost associated with downloading, which each agent would

like to minimize. If a document is common to several agents, then they can save

downloading cost by accessing the document once and then sharing it.

The environment might provide the following simple negotiation mechanism

and constraints: (1) each agent declares the documents it wants, (2) documents

found to be common to two or more agents are assigned to agents based on

the toss of a coin, (3) agents pay for the documents they download, and (4)

agents are granted access to the documents they download, as well as any in their

common sets. This mechanism is simple, symmetric, distributed, and efficient (no

document is downloaded twice). To determine stability, the agents’ strategies must

be considered.

An optimal strategy is for an agent to declare the true set of documents that it

needs, regardless of what strategy the other agents adopt or the documents they

need. Because there is no incentive for an agent to diverge from this strategy, it is

stable.

Developers of agent-centered negotiation mechanisms focus on the following

problem: “Given an environment in which my agent must operate, what is the best

strategy for it to follow?” Most such negotiation strategies have been developed for

specific problems, so few general principles of negotiation have emerged. However,

there are two general approaches, each based on an assumption about the particular

type of agents involved.

For the first approach, speech-act classifiers together with a possible world se-

mantics are used to formalize negotiation protocols and their components. This

clarifies the conditions of satisfaction for different kinds of messages. To provide a

flavor of this approach, we show in the following example how the commitments

that an agent might make as part of a negotiation are formalized [21]:

∀x(x ̸= y) ∧
¬(Precommita y x ϕ) ∧ (Goal y Eventually(Achieves y ϕ)) ∧ (Willing y ϕ)

⇐⇒ (Intend y Eventually(Achieves y ϕ))

This rule states that an agent forms and maintains its commitment to achieve ϕ

individually iff (1) it has not precommitted itself to another agent to adopt and
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achieve ϕ, (2) it has a goal to achieve ϕ individually, and (3) it is willing to achieve ϕ

individually. The chapter on “Formal Methods in DAI” provides more information

on such descriptions.

The second approach is based on an assumption that the agents are economically

rational. Further, the set of agents must be small, they must have a common lan-

guage and common problem abstraction, and they must reach a common solution.

Under these assumptions, Rosenschein and Zlotkin [37] developed a unified negoti-

ation protocol. Agents that follow this protocol create a deal , that is, a joint plan

between the agents that would satisfy all of their goals. The utility of a deal for

an agent is the amount he is willing to pay minus the cost of the deal. Each agent

wants to maximize its own utility. The agents discuss a negotiation set, which is

the set of all deals that have a positive utility for every agent.

In formal terms, a task-oriented domain under this approach becomes a tuple

< T, A, c >

where T is the set of tasks, A is the set of agents, and c(X) is a monotonic function

for the cost of executing the tasks X. A deal is a redistribution of tasks. The utility

of deal d for agent k is

Uk(d) = c(Tk)− c(dk)

The conflict deal D occurs when the agents cannot reach a deal. A deal d is

individually rational if d > D. Deal d is pareto optimal if there is no deal

d′ > d. The set of all deals that are individually rational and pareto optimal

is the negotiation set, NS. There are three possible situations:

1. conflict: the negotiation set is empty

2. compromise: agents prefer to be alone, but since they are not, they will agree

to a negotiated deal

3. cooperative: all deals in the negotiation set are preferred by both agents over

achieving their goals alone.

When there is a conflict, then the agents will not benefit by negotiating—they

are better off acting alone. Alternatively, they can “flip a coin” to decide which

agent gets to satisfy its goals. Negotiation is the best alternative in the other two

cases.

Since the agents have some execution autonomy, they can in principle deceive

or mislead each other. Therefore, an interesting research problem is to develop

protocols or societies in which the effects of deception and misinformation can be

constrained. Another aspect of the research problem is to develop protocols under

which it is rational for agents to be honest with each other.

The connections of the economic approaches with human-oriented negotiation

and argumentation have not yet been fully worked out.
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2.3.6 Multiagent Belief Maintenance

A multiagent truth-maintenance system can serve as a detailed example of a high-

level interaction among agents. A truth-maintenance system (TMS) [10] is designed

to ensure the integrity of an agent’s knowledge, which should be stable, well-

founded, and logically consistent. Depending on how beliefs, justifications, and

data are represented, a stable state of a knowledge base is one in which 1) each

datum that has a valid justification is believed, and 2) each datum that lacks a

valid justification is disbelieved. A well-founded knowledge base permits no set of

its beliefs to be mutually dependent. A logically consistent knowledge base is one

that is stable at the time that consistency is determined and in which no logical

contradiction exists. A consistent knowledge base is one in which no datum is both

believed and disbelieved (or neither), or in which no datum and its negation are both

believed. Other desirable properties for a knowledge base are that it be complete,

concise, accurate, and efficient.

A single-agent TMS attempts to maintain well-founded stable states of a knowl-

edge base by adjusting which data are believed and which are disbelieved. However,

it is important for a group of agents to be able to assess and maintain the integrity

of communicated information, as well as of their own knowledge. A multiagent TMS

can provide this integrity [27].

We consider a modified justification-based TMS, in which every datum has a

set of justifications and an associated status of INTERNAL (believed, because of a

valid local justification), EXTERNAL (believed, because another agent asserted it),

or OUT (disbelieved). Consider a network of many agents, each with a partially-

independent system of beliefs. The agents interact by communicating data, either

unsolicited or in response to a query. For well-foundedness, a communicated datum

must be INTERNAL to at least one of the agents that believes it and either INTERNAL

or EXTERNAL to the rest.

The support status of a communicated datum is jointly maintained by several

agents. Hence, a single agent is generally not free to change the status on its own

accord. It must coordinate with the other agents so that they are all consistent on

the status of the datum.

The multiagent TMS is invoked by the addition or removal of a justification, and

obeys the following principles:

Belief changes should be resolved with as few agents as possible.

Belief changes should be resolved by changing as few beliefs as possible.

When invoked, it does the following three things:

1. Unlabels some data, including the newly justified datum and, presumably, its

consequences. This unlabeled data set might be confined to a single agent or

it might span several agents. If a communicated datum is unlabeled in some

agent, it must be unlabeled in all the agents that share it.

2. Chooses labelings for all the unlabeled shared data, as defined above.
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3. Initiates labeling by each of the affected agents with respect to the require-

ments imposed by the shared data. If any of the affected agents fails to label

successfully, it then backtracks. It either chooses different labelings for the

shared data (step 2), or unlabels a different set of data (step 1).

Consider the justification network in Figure 2.8. There are two agents, Agent 1

and Agent 2, and they share the communicated datum T. Assume that the initial

labeling shown in the diagram is perturbed by the addition of a new justification for

Q. Agent 1 initially unlabels just the changed datum and private data downstream,

P and Q, but there is no consistent relabeling. Hence, Agent 1 unlabels all shared

data downstream of P and Q, and all private data downstream from there: P,

Q, both Ts, and U. Again labeling fails. Since there is no further shared data

downstream, Agent 1 and Agent 2 unlabel upstream and privately downstream

from there: P, Q, Ts, U, R, and S. Now labeling succeeds, with S and U IN and

everything else OUT, as shown in Figure 2.9. Had labeling failed, unlabel would not

be able to unlabel more data, and would report that the network is inconsistent.

2.3.7 Market Mechanisms

Most of the protocols and mechanisms described earlier in this chapter require

agents to communicate with each other directly, so are appropriate for small

numbers of agents only. Other mechanisms for coordination are needed when there

are a large or unknown number of agents. One mechanism is based on voting, where

agents choose from a set of alternatives, and then adopt the alternative receiving

the most votes. This mechanism is simple, equitable, and distributed, but it requires

significant amounts of communication and organization, and is most useful when

there are just a few well defined issues to be decided.

Computational economies, based on market mechanisms, are another approach

[47]. These are effective for coordinating the activities of many agents with minimal

direct communication among the agents. The research challenge is to build compu-

tational economies to solve specific problems of distributed resource allocation.

Everything of interest to an agent is described by current prices—the preferences

or abilities of others are irrelevant except insofar as they (automatically) affect

the prices. There are two types of agents, consumers, who exchange goods, and

producers, who transform some goods into other goods. Agents bid for goods at

various prices, but all exchanges occur at current market prices. All agents bid so

as to maximize either their profits or their utility.

To cast a problem in terms of a computational market, one needs to specify

the goods being traded

the consumer agents that are trading the goods

the producer agents, with their technologies for transforming some goods into

others

the bidding and trading behaviors of the agents.
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Since the markets for goods are interconnected, the price of one good will

affect the supply and demand of others. The market will reach a competitive

equilibrium such that (1) consumers bid to maximize their utility, subject to their

budget constraints, (2) producers bid to maximize their profits, subject to their

technological capability, and (3) net demand is zero for all goods.

The important property is that an equilibrium corresponds—in some sense

optimally—to an allocation of resources and dictates the activities and consump-

tions of the agents. In general, equilibria need not exist or be unique, but under

certain conditions, such as when the effect of an individual on the market is assumed

negligible, they can be guaranteed to exist uniquely.

In an open market, agents are free to choose their own strategy, and they do not

have to behave rationally. Economic rationality assumes that the agent’s preferences

are given along with knowledge of the effects of the agent’s actions. From these, the

rational action for an agent is the one that maximizes its preferences.

Economic rationality has the charm of being a simple, “least common denomi-

nator” approach—if you can reduce everything to money, you can talk about max-

imizing it. But to apply it well requires a careful selection of the target problem.

One of the oldest applications of economic rationality is in decision-theoretic

planning, which models the costs and effects of actions quantitatively and proba-

bilistically. For many applications, where the probabilities can be estimated reliably,

this leads to highly effective plans of actions [24, 22].

The need to maximize preferences essentially requires that there be a scalar

representation for all the true preferences of an agent. In other words, all of the

preferences must be reduced to a single scalar that can be compared effectively

with other scalars. This is often difficult unless one can carefully circumscribe the

application domain. Otherwise, one ends up essentially recreating all of the other

concepts under a veneer of rationality. For example, if we would like an agent to

be governed by its past commitments, not just the most attractive choice at the

present time, then we can develop a utility function that gives additional weight to

past commitments. This approach may work in principle, but, in practice, it only

serves to hide the structure of commitments in the utility function that one chooses.

The next section describes social commitments more fully.

2.4 Societies of Agents

Much of traditional AI has been concerned with how an agent can be constructed

to function intelligently, with a single locus of internal reasoning and control

implemented in a Von Neumann architecture. But intelligent systems do not

function in isolation—they are at the very least a part of the environment in which

they operate, and the environment typically contains other such intelligent systems.

Thus, it makes sense to view such systems in societal terms.

There are promising opportunities engendered by the combination of increasingly
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large information environments, such as the national information infrastructure

and the intelligent vehicle highway system, and recent advances in multiagent

systems. Planned information environments are too large, complex, dynamic, and

open to be managed centrally or via predefined techniques—the only feasible

alternative is for computational intelligence to be embedded at many and sundry

places in such environments to provide distributed control. Each locus of embedded

intelligence is best thought of as an autonomous agent that finds, conveys, or

manages information. Because of the nature of the environments, the agents must

be long-lived (they should be able to execute unattended for long periods of

time), adaptive (they should be able to explore and learn about their environment,

including each other), and social (they should interact and coordinate to achieve

their own goals, and the goals of their society; they should rely on other agents to

know things so they do not have to know everything).

Techniques for managing societies of autonomous computational agents are useful

not only for large open information environments, but also for large open physical

environments. For example, such techniques can yield new efficiencies in defense

logistics: by considering each item of materiel to be an intelligent entity whose goal

is to reach a destination, a distribution system could manage more complicated

schedules and surmount unforeseen difficulties.

A group of agents can form a small society in which they play different roles.

The group defines the roles, and the roles define the commitments associated with

them. When an agent joins a group, he joins in one or more roles, and acquires

the commitments of that role. Agents join a group autonomously, but are then

constrained by the commitments for the roles they adopt. The groups define the

social context in which the agents interact.

Social agency involves abstractions from sociology and organizational theory

to model societies of agents. Since agents are often best studied as members of

multiagent systems, this view of agency is important and gaining recognition.

Sociability is essential to cooperation, which itself is essential for moving beyond the

somewhat rigid client-server paradigm of today to a true peer-to-peer distributed

and flexible paradigm that modern applications call for, and where agent technology

finds its greatest payoffs.

Although mental primitives, such as beliefs, desires, and intentions, are appropri-

ate for a number of applications and situations, they are not suitable in themselves

for understanding all aspects of social interactions. Further, economic models of

agency, although quite general in principle, are typically limited in practice. This

is because the value functions that are tractable essentially reduce an agent to a

selfish agent. [7] argue that a self-interested agent need not be selfish, because it

may have other interests than its immediate personal gain. This is certainly true

in many cases when describing humans, and is likely to be a richer assumption for

modeling artificial agents in settings that are appropriately complex.

Social commitments are the commitments of an agent to another agent. These

must be carefully distinguished from internal commitments. Social commitments

have been studied by a number of researchers, including [17, 28]. There are a
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number of definitions in the literature, which add components such as witnesses

[5] or contexts [41]. Social commitments are a flexible means through which the

behavior of autonomous agents is constrained. An important concept is that of

social dependence, defined as

(SocialDependence x y a p) ≡ (Goal x p) ∧
¬(CanDo x a) ∧
(CanDo y a) ∧
((DoneBy y a) =⇒ Eventually p)

that is, agent x depends on agent y with regard to act a for realizing state p, when

p is a goal of x and x is unable to realize p while y is able to do so.

Social dependence can be voluntary when the agents adopt the roles that bind

them to certain commitments. However, it is an objective relationship, in that

it holds independently of the agents’ awareness of it. Of course, there may be

consequences that occur when the agents become aware of it, such as x might try

to influence y to pursue p.

Social dependencies may be compound. For example, mutual dependence occurs

when x and y depend on each other for realizing a common goal p, which can be

achieved by a plan including at least two different actions, such that x depends on

y doing ay and y depends on x doing ax, as

∃p((SocialDependence x y ay p) ∧ (SocialDependence y x ax p))

Cooperation is a form of such mutual dependence.

Reciprocal dependence occurs when x and y depend on each other for realizing

different goals, px for x and py for y, as

∃px∃py((SocialDependence x y ay px) ∧ (SocialDependence y x ax py))

Social exchange is a form of such reciprocal dependence.

With this as a basis, a group of agents form a cooperative team when

All agents share a common goal.

Each agent is required to do its share to achieve the common goal by the group

itself or a subgroup.

Each agent adopts a request to do its share.

Beyond social dependencies, social laws may govern the behaviors of large numbers

of agents in a society. See [34] for a treatment of this concept.

2.5 Conclusions

This chapter described elements of a computational environment that are needed

for the interaction of multiple software agents. The elements enable agents to
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communicate, cooperate, and negotiate while they act in the interests of themselves

or their society.

Further research is needed to develop the basis and techniques for societies of

autonomous computational agents that execute in open environments for indefi-

nite periods. This research will rely on the ability of agents to acquire and use

representations of each other. This is what is needed for negotiation, cooperation,

coordination, and multiagent learning. What should be the contents of these rep-

resentations? Subsequent chapters of this textbook provide the answers.

2.6 Exercises

1. [Level 1] What are some of the advantages and disadvantages of synchronous

versus asynchronous communications among agents?

2. [Level 1] Imagine that two agents are negotiating a contract. In the course

of the negotiation, they engage in the following speech acts: propose, counter-

propose, accept, reject, retract, explain, ask-for-clarification, agree, disagree.

Draw a state diagram for the negotiation protocol followed by each agent.

3. [Level 3] Consider an environment having one broker agent with which many

information agents can advertise. When an information agent advertises, it

provides the broker with a list of predicate calculus expressions summarizing

its knowledge. To find information agents who are knowledgeable about certain

topics, a query agent supplies predicate calculus expressions to the broker and

asks for pointers to the relevant information agents. The broker then returns

a list of all relevant information agents.

(a) List the KQML message that would be sent when query agent Q1 asks

broker agent B1 for pointers to information agents knowledgeable about

the predicate calculus expression weight(Automobile ?x). Hint: the fol-

lowing is an example KQML message for an information agent advertising

with a broker:

(advertise

:content weight(Automobile ?z)

:language Predicate-Calculus

:ontology Transportation-Domain

:sender info-agent-3

:receiver broker-1)

(b) The Transportation-Domain ontology is common to all agents. Draw a

state transition diagram for each agent. Be sure that every speech act

sent and received serves as a “condition” for a state transition. State any

simplifying assumptions used.

4. [Level 1] What is the difference between the concepts coherence and coordi-

nation?
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5. [Level 1] Give an advantage and disadvantage of the use of the contract net

protocol.

6. [Level 2] Formalize the following protocol for the contract net in KQML.

Clearly state which parts must be in the :content part of the communications.

“One agent, the Manager, has a task that it wants to be solved. The Man-

ager announces the task by broadcasting the task description in a task-

announcement message to the other agents, the potential contractors. When

contractors receives a task announcement, they evaluate it and some of them

respond with a bid message, containing an estimate of their ability and a cost.

The manager evaluates the bids, chooses the best one, and sends an award

message to the winning contractor.”

7. [Level 2] List the sequence of KQML performatives that must the generated

by agents A, B, and C in solving the following problem: “Agent A wants to

find out the cost of football tickets. Agent A does not know the cost, but

Agent A knows that Agent B exists. Agent B does not know the cost either,

but Agent B knows that Agent C exists. Agent C knows the cost.” Assume

that the agents are cooperative and truthful.

8. [Level 2] Describe how three agents might negotiate to find a common tele-

phone line for a conference call. Assume that Agent A has telephones lines 1,

2, 3; Agent B, 1, 3; and Agent C, 2, 3.

The negotiation proceeds pair-wise: two agents at a time. The agents negotiate

in order: A, B, C, A, B, C, A,... Also, alternate lines are chosen in the order

specified above for each agent.

Initially,

Agent A proposes line 1 to Agent B, and Agent B accepts it.

Agent B proposes line 1 to Agent C, but Agent C rejects it.

Complete the process until all agents have picked a common line.

9. [Level 3] “Multiagent Truth Maintenance:” A single agent who knows P and

P ⇒ Q would have its knowledge labeled as follows:

fact1: P

status: (IN)

shared with: (NIL)

justification: (PREMISE)

rule1: P ⇒ Q

status: (IN)

shared with: (NIL)

justification: (PREMISE)

fact2: Q

status: (IN)

shared with: (NIL)

justification: (fact1, rule1)
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If the agent shares fact1 with another agent, fact1’s status changes to IN-

TERNAL, and the agent receiving the knowledge labels its new fact as having

status EXTERNAL.

Now consider the following situation in which the knowledge is initially local

to each agent:

Agent A Agent B Agent C

fact1: P rule1: P ⇒ Q fact1: R

rule1: S ⇒ V rule2: R ⇒ Q

rule3: R ⇒ S

rule4: Q ⇒ W

(a) Suppose that Agent A shares fact1 with Agent B, who uses forward

chaining to make all possible conclusions from his knowledge. Show

the effect of Agent A sharing fact1 on the status, shared with, and

justification fields for all data in each agent.

(b) Now suppose Agent C shares fact1 with Agent B. Show the effect of

sharing this knowledge on the status, shared with, and justification

fields for all data in each agent.

(c) Now suppose that Agent A retracts fact1 by making fact1 have status

OUT. Show the changes that would occur to the status, shared with,

and justification fields for all data in each agent.

10. [Level 1] In the discussion of the unified negotiation protocol, it is stated that

the agents might decide to “flip a coin” when the negotiation set is empty.

Under what conditions might this be beneficial to the agents.

11. [Level 4] Imagine a two-dimensional domain consisting of packages and desti-

nations. In this domain, robots must move the packages to the correct destina-

tions. Robots can carry only one package at a time, and they are not allowed

to travel through a package—they must maneuver around it. There is a cost

associated with moving a package, but not with picking it up or setting it

down. If a robot encounters a package when it is already carrying another, it

can either move the package out of the way, or it can go around it. Moving

it has a higher cost, but it might be beneficial to itself or other robots in the

future to have the package out of the way. Assume that a robot is rewarded

according to the amount that it moves a package closer to its destination. De-

velop a computer simulation of this domain, and try to establish answers to

the following questions:

(a) Will the robots develop any social conventions regarding which direction

they move packages that are obstacles?

(b) Under what conditions will “roadways” (paths without obstacles) form

for the robots to travel on?

(c) Destination points will likely become congested with robots attempting

to drop off their packages. Gridlock might even occur. Will the robots
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become specialized in their operation, where some robots bring packages

near the destinations and other robots move them from the drop-off points

to the final destinations?

(d) If the robots communicate information about their intentions regarding

the packages they are moving, will other robots be able to take advantage

of the information?

Suggestions: choose a grid of size NxN containing P packages, R robots, and D

destinations, where initial values for the parameters are N=100, P=50, R=8,

and D=3. Assume that a robot and a package each take up one square of the

grid. Assume that a robot can move to any of its 8 adjoining squares, or stay

where it is, in each time interval.

12. [Level 1] The initial state in a Block’s World is On(B,C), On(D,A), Table(A),

and Table(C). The desired goal state is On(A,B), On(B,C), Table(C), and

Table(D). Agent1 can manipulate only blocks A and B; Agent2 can manipulate

only blocks C and D. In solving this problem, the action MoveToTable(agent,

block) can be used to place block D on the table. Express the movement of

block D to the table in terms of the social dependence formula in this chapter.
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Figure 2.4 Example ontology for a simple business, showing classes and their

subclasses, relationships, and instances (indicated by a dashed line)
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Spatial decomposition by information source or decision point:

Functional decomposition by expertise:

Pediatrician
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Agent 2
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Figure 2.5 Two commonly used methods for distributing tasks among cooperative

agents
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A manager announces the existence of tasks via a (possibly selective)
multicast

Agents evaluate the announcement.  Some of these agents submit bids

The manager awards a contract to the most appropriate agent

The manager and contractor communicate privately as necessary

Figure 2.6 The basic steps in the contract net, an important generic protocol for

interactions among cooperative agents
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Figure 2.10 A domain where robots must move packages to their destinations


