A Research Agenda for Agent-Based
Service-Oriented Architectures

Michael N. Huhns

Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208, USA
huhns@sc.edu
http://wuw.cse.sc.edu/~ huhns

Abstract. Web services, especially as fundamental components of
service-oriented architectures, are receiving a lot of attention. Their great
promise, however, has not yet been realized, and a possible explantion is
that significant research and engineering problems remain. We describe
the problems, indicate likely directions and approaches for their solution,
present an agenda for the deployment of such solutions, and explain the
benefits of the resultant deployment. It is our strong expectation that
Web services will eventually have an agent basis, which would be needed
to address the problems.

1 Introduction

The latest paradigm for structuring large-scale applications is a service-oriented
architecture (SOA), which involves the linking of small functional services to
achieve some larger goal. As the central concept in service-oriented architectures,
Web services provide a standardized network-centric approach to making the
functionality available in an encapsulated form.

It is worth considering the major benefits of using standardized services.
Clearly anything that can be done with services can be done without. So the
following are some reasons for using services, especially in standardized form.

— Services provide higher-level abstractions for organizing applications in large-
scale, open environments. Even if these were not associated with standards,
they would be helpful as we implemented and configured software applica-
tions in a manner that improved our productivity and improved the quality
of the applications that we developed.

— Moreover, these abstractions are standardized. Standards enable the inter-
operation of software produced by different programmers. Standards thus
improve our productivity for the service use cases described above.

— Standards make it possible to develop general-purpose tools to manage the
entire system lifecycle, including design, development, debugging, monitor-
ing, and so on. This proves to be a major practical advantage, because with-
out significant tool support, it would be nearly impossible to create and field
robust systems in a feasible manner. Such tools ensure that the components

M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNCS 4149, pp. 8{22] 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Research Agenda for Agent-Based Service-Oriented Architectures 9

developed are indeed interoperable, because tool vendors can validate their
tools and thus shift part of the burden of validation from the application
programmer.

— The standards feed other standards. For example the above basic standards
enable further standards, e.g., dealing with processes and transactions.

To realize the above advantages, SOAs impose the following requirements:

Loose coupling. No tight transactional properties should generally apply
among the components. In general, it would not be appropriate to spec-
ify the consistency of data across the information resources that are parts
of the various components. However, it would be reasonable to think of the
high-level contractual relationships through which the interactions among
the components are specified.

Implementation neutrality. The interface is what matters. We cannot de-
pend on the details of the implementations of the interacting components.
In particular, the approach cannot be specific to a set of programming lan-
guages.

Flexible configurability. The system is configured late and flexibly. In other
words, the different components are bound to each other late in the process
and the configuration can change dynamically.

Long lifetime. to be useful to external applications, components must have
a long lifetime. Morever, since we are dealing with computations among
autonomous heterogeneous parties in dynamic environments, we must always
be able to handle exceptions. This means that the components must exist
long enough to be able to detect any relevant exceptions, to take corrective
action, and to respond to the corrective actions taken by others. Components
must exist long enough to be discovered, to be relied upon, and to engender
trust in their behavior.

Granularity. The participants in an SOA should be understood at a coarse
granularity. That is, instead of modeling actions and interactions at a de-
tailed level, it would be better to capture the essential high-level qualities
that are (or should be) visible for the purposes of business contracts among
the participants. Coarse granularity reduces dependencies among the partic-
ipants and reduces communications to a few messages of greater significance.

Teams. Instead of framing computations centrally, it would be better to think
in terms of how computations are realized by autonomous parties. In other
words, instead of a participant commanding its partners, computation in
open systems is more a matter of business partners working as a team. That
is, instead of an individual, a team of cooperating participants is a better
modeling unit. A team-oriented view is a consequence of taking a peer-to-
peer architecture seriously.

Web services, viewed as encapsulated and well defined pieces of software func-
tionality accessible to remote applications via a network, are expected to be a
fundamental aspect of many future software applications. Many claims have been
made about the benefits of Web services for enterprise information systems and

10 M.N. Huhns

next-generation network-based applications, but the widespread availability and
adoption of Web services have not yet occurred. The development, deployment,
and proliferation of other new computing technologies can be seen as having
occurred in stages as developers and users become familiar with the features of
the technology and learn how to exploit them. The development of Web services
is likely to progress according to the following four stages.

Stage 1. The first stage in the development of Web services, which is the stage
that we are in currently, is that a few specific Web services will be available,
mostly on intranets. There will be little or no semantics describing them. Because
of this, their discovery will occur manually, their invocation will be hardcoded,
and their composition with other Web services will be either nonexistent or
done manually. There will be no fees for their use. The resultant applications
that make use of the Web services will be brittle and static, but large ones can
be crafted relatively quickly. There will be some examples of unexpected uses
and utilities.

Stage 2. The second stage in the development of Web services will be char-
acterized by many services being available across the Internet. There will be
sufficient semantics, via the use of standardized keywords for narrow domains,
to enable semi-automatic discovery. Compostion of services will still be arranged
manually. There might be some fees for use, but they will be negotiated off-line
by humans. The resultant applications might be dynamic via the substitution of
Web services that are explicitly mirrored or via the use of alternative equivalents,
most likely where the service functionality is common and straightforward. The
desirability of this form of dynamism, and its concomitant robustness, might
serve as a major motivation for the further proliferation of Web services and for
improved semantics to enable dynamic discovery and a limited form of compo-
sition. The scope of the dynamic composition would be one-to-one replacement
for a malfunctioning component service.

Stage 3. In the third stage, many Web services will be available, each with
a rich semantic description of its functionality. The semantics will enable Web
services to be discovered and invoked dynamically and on-demand.

Stage 4. During the fourth stage, some of the many available Web services will
be active, instead of passive, and will have many of the capabilities that char-
acterize software agents. By being active, they will be able to bid for their use
in applications, requiring them to be able to negotiate over Quality-of-Service
(QoS) and non-functional semantics. This will include negotiation over fees. In
some applications, a candidate Web service could be tried and tested for ap-
propriate functionality and QoS. Comparable services could not only substitute
for each other, but also be used redundantly for improved robustness. Moreover,
services would self-organize, possible on-demand, into service teams to provide
aggregate functionality.

A Research Agenda for Agent-Based Service-Oriented Architectures 11

The above four stages of development are driven by limitations of current Web
services. These can best be described and understood in the context of the well
known “Web service triangle,” as shown in Figure [Il In a subsequent section,
we consider each of the triangle’s vertices and edges and point out the desired
enhancements, and thus research, needed for advancement to the next stages.

Service
Broker
Publish Find
(WSDL) (UDDI)
Bind
Service (So0ap/HTTP) Service
Provider Requestor

Fig. 1. The familiar Web service triangle. Its limitations can be revealed by considering
each of its vertices and edges.

2 An Example of Current SOA Success

To put the above stages in perspective, let’s consider a currently successful ex-
ample of a service-oriented architecture, that of Amazon.com, which serves to
explain the great interest in this approach to application development.

Originally, Amazon.com consisted of a large monolithic application that im-
plemented all of the functionality that was made available through its Web site,
including the front-end display, back-end database, and business logic [7]. But
the monolithic reached a point where it could not be easily scaled to handle the
volume of transactions that had to be processed. So, Amazon reengineered it
into what became a service-oriented architecture.

Service orientation meant encapsulating the data with the business ligic that
operates on it, with the only access through a well defined interface. The ser-
vices did not share data and did not allow any direct access to the underlying
database. The result is hundreds of services and a smaller number of servers
that aggregate information from the services. The servers render the Web pages

12 M.N. Huhns

for the Amazon.com application, as well as serve the customer service applica-
tion, the seller interface, the external interface to Amazon’s Web services, and
Amazon-hosted third-party applications. When a user visits the Amazon site,
over 100 services are typically invoked in constructing the user’s personalized
Web page.

The end result is that Amazon can build complex applications quickly out of
primitive services, and then scale them appropriately. Moreover, third parties can
use the services to build their own applications, primarily for e-commerce, but
some for applications unforeseen by Amazon. For example, the Web site “The
Amazing Baconizer” invokes Amazon’s recommendation seervice for entertain-
ment purposes to list the connections between two items. The connections are
done by looking at “people who bought item A also bought item B.” Here is a
sample result for the connection between the book “Surely You're Joking, Mr.
Feynman!” and the DVD “Real Genius”:

“Surely You’re Joking, Mr. Feynman!” = “Real Genius” (11 hops):
“Surely You're Joking, Mr. Feynman!” — R. Feynman
—> “Genius: The Life and Science of Richard Feynman,” — J. Gleick
= “Weird Science” (DVD) — John Hughes

= “Top Secret!” (DVD) — Val Kilmer

— “Real Genius” (DVD) — Val Kilmer

Another interesting third-party service can be accessed from a camera phone.
When shopping, a user can take a photo of the bar code for a product, send it to
the service, and receive via amazon’s services reviews, information on comparable
products, and the price.

3 Needed Research for Each Aspect of Web Services

Figure [1 shows the generic architecture for Web services. Although this is a
simple picture, it radically alters many of the problems that must be solved in
order for the architecture to become viable on a large scale.

— To publish effectively, we must be able to specify services with precision
and with greater structure. This is because the service would eventually be
invoked by parties that are not from the same administrative space as the
provider of the service and differences in assumptions about the semantics
of the service could be devastating.

— From the perspective of the registry, it must be able to certify the given
providers so that it can endorse the providers to the users of the registry.

— Requestors of services should be able to find a registry that they can trust.
This opens up challenges dealing with considerations of trust, reputation,
incentives for registries and, most importantly, for the registry to understand
the needs of a requestor.

A Research Agenda for Agent-Based Service-Oriented Architectures 13

— Once a service has been selected, the requestor and the provider must develop
a finer-grained sharing of representations. They must be able to participate in
conversations to conduct long-lived, flexible transactions. Related questions
are those of how a service level agreement (SLA) can be established and
monitored. Success or failure with SLAs feeds into how a service is published
and found, and how the reputation of a provider is developed and maintained.

Most of the needed enhancements are related to the scaling of Web services,
not only to larger applications but also to more complex environments [1]. That
is, there will be a multiplicity of requestors, providers, and registries, whereas the
current conception of Web services focuses on just one of each. There will also be
more complex interactions than just a simple remote-procedure call to a service:
the interactions will be characterized as peer-to-peer, rather than client-server [3].

When there are multiple requestors, then a service provider might be able
to share the results of a computation among the requestors, and the requestors
might be able to negotiate a “group rate.” Of course, this requires the requestors
to form a cohesive group and to have a negotiation ability.

Multiple equivalent providers present both a problem and an opportunity.
The problem is that a requestor must have and apply a means to choose among
them. This would likely require an ability to negotiate over both functional
and non-functional attributes (qualities) of the services. The opportunity is that
alternatives can yield increased robustness (described more fully below).

Multiple service registries present problems for providers in deciding where to
advertise their services and for requestors in deciding where to search for services
[416]. Also, each registry might employ different semantics and organizations of
domain concepts.

Other limitations represented by the current simple model for Web services are

— A Web service knows only about itself—not about its users, clients, or cus-
tomers

— Web services are not designed to use and reconcile ontologies used by each
other or by their clients

— Web services are passive until invoked; they cannot provide alerts or updates
when new information becomes available

— Web services do not cooperate with each other or self-organize, although
they can be composed by external systems.

Another fundamental problem arises when Web services are composed. Con-
sider the simple example in Figure of one Web service that provides stock
quotes in dollars and a second that converts dollars into another currency. Cur-
rent Web services must be invoked sequentially by a central controller.

A significantly better model is shown in Figure Bl where an interaction pro-
tocol under development, WSDL-P, would provide for a continuation by passing
a description of an overall workflow through each Web service participating in
the workflow. In this way, the composed services would interact directly, rather
than through a central intermediary.

14 M.N. Huhns

3. WSD
“$100

. 4. “¥800”
1] I BM”

Fig. 2. Composed Web services, which are described traditionally by WSDL

2. WSDL-P
“$100” +
OWL-S

1. WSDL-P
“IBM” +
OWL-S

3. “¥800”

Fig. 3. WSDL-P: Next-Generation Composition. An OWL-S (or BPEL4WS) descrip-

tion of the workflow is communicated through the services

Solutions to the above described problems are under investigation by many
research teams. The keys to the next-generation Web are cooperative services,
systemic trust, and understanding based on semantics, coupled with a declarative
agent-based infrastructure. These concepts are elaborated in the next sections,
beginning with the notion of commitments as the governing principle for the

complex interactions inherent in the later stages of SOA developments.

A Research Agenda for Agent-Based Service-Oriented Architectures 15
4 Commitments

For services to apply naturally in open environments, they should be modeled
as being autonomous. Autonomy is a natural characteristic of agents, and it is
also a characteristic of many envisioned Internet-based services. Among agents,
autonomy generally refers to social autonomy, where an agent is aware of its
colleagues and is sociable, but nevertheless exercises its independence in certain
circumstances. Autonomy is in natural tension with coordination or with the
higher-level notion of a commitment. To be coordinated with other agents or to
keep its commitments, an agent must relinquish some of its autonomy. However,
an agent that is sociable and responsible can still be autonomous. It would at-
tempt to coordinate with others where appropriate and to keep its commitments
as much as possible, but it would exercise its autonomy in entering into those
commitments in the first place.

The first step to structuring and formalizing interactions among service provi-
ders and requestors is to introduce the notion of directed obligations, which
are obligations directed from one party to another. This is certainly a useful
step. Dignum and colleagues describe a temporal deontic logic that helps specify
obligations and constraints so that a planner can take deadlines into account
while generating plans [2]. However, the approach is based on the notion of
obligations, and it does not give operational methods for obligations. Once a
deadline has passed and a certain rule has been violated, the logic has nothing
to say about the effects on the system. Nevertheless, this approach is semantically
rich and detailed in the kinds of deadlines and constraints it allows agents to
model. For example, the deadline “as soon as possible,” can be modeled.

However, for virtual enterprises and business protocols, it is generally the
case that the obligation of one party to another is bounded by the scope of their
ongoing interaction. In other words, obligations derived from a virtual enterprise
may last no longer than the virtual enterprise in question. Further, there is
always the element of conflict, which means that the parties to a contract may
be in the need for some adjudication. These considerations suggest that there is
an organizational structure to the obligations, which bounds the scopes of the
obligations.

The notion of commitments (for historical reasons, sometimes referred to as so-
cial commitments) takes care of the above considerations. Commitments are a le-
gal abstraction, which subsume directed obligations. Importantly, commitments
(1) are public, and (2) can thus be used as a basis for compliance. Commitments
support the following key properties that make them a useful computational
abstraction for service-oriented architectures.

Multiagency. Commitments associate one agent or party with another. The
party that “owes” the commitment is called the debtor and the other party
is called the creditor. Each commitment is directed from its debtor to its
creditor.

The directionality is simply a representational convenience. In practice,
commitments would arise in interrelated sets. For example, a typical business

16 M.N. Huhns

contract would commit one party to pay another party and the second party
to deliver goods to the first party.

Scope. Commitments arise within a well-defined scope. This scope functions
as the social context of the commitment. In other words, the scope is itself
modeled as a multiagent system within which the debtor and creditor of the
given commitment interact. For example, the parties to a business contract
can be understood as forming and acting in a multiagent system in which
they create their respective commitments and act on them. The multiagent
system may have a short or a long lifetime depending on the requirements of
the application. Conceivably, the multiagent system for a one-off interaction
would be dissolved immediately, whereas some multiagent systems may even
last longer than the specific agents that belong to them.

Manipulability. Commitments can be acted upon and modified. In particular,
commitments may be revoked. If we were to prevent modifying or revoking
commitments, we would end up ruling out some of the most interesting sce-
narios where commitments can be applied. For example, irrevocability would
be too limiting for the kinds of open applications where service-oriented ar-
chitectures make sense. Irrevocability would prevent considering errors and
exceptions that may occur outside of the administrative domain of the given
business partner. For instance, it may simply be impossible for a vendor to
deliver the promised goods on time if the vendor’s factory burns down or
there are difficulties with shipping. However, we must be careful that com-
mitments are not revoked arbitrarily, which would make them worthless.
When restrictions (sensitive to a given context) are imposed on the manip-
ulation of commitments, they can support the coherence of computations.

Services, although collaborative, retain their autonomy. They can exercise their
local policies for most decisions and can be considered as being constrained only
by their commitments.

4.1 A Formalization of Commitments

We write commitments using a predicate C'. A commitment has the form
C(z,y.p,G)

where x is its debtor, y its creditor, p the condition the debtor will bring about, and
G a multiagent system, which serves as the organizational context for the given
commitment. A commitment has a simple form, e.g., C(b, s, pay(b, s, $10), D),
where a buyer b commits to pay $10 to a seller s a seller within the context of
a particular business deal D between b and s.

4.2 Operations on Commitments

It helps to treat commitments as an abstract data type. This data type associates
a debtor, a creditor, a condition, and a context. The following are then natural
for commitments.

A Research Agenda for Agent-Based Service-Oriented Architectures 17

— create(x, c) establishes the commitment ¢ in the system. This can only
be performed by c¢’s debtor . For example, x promises to pay $10 to y.

— cancel(x, c¢) cancels the commitment c. This can be performed only by
¢’s debtor z, for example, = reneges on its promise to pay $10. Generally,
making another commitment compensates cancellation.

— release(y, c) releases ¢’s debtor z from commitment c. This only can be
performed by the creditor y or a higher authority. For example, = decides to
waive receiving the $10, or the government steps in to say that the agreement
is null and void.

— assign(y, z, c) replaces y with z as ¢’s creditor. For example, = is now
committed to pay $10 to y’s friend z.

— delegate(x, z, c) replaces x with z as the debtor for c. For example, now
2’s friend is committed to pay $10 to y.

— discharge(x, c) means that ¢’s debtor x fulfills the commitment. For ex-
ample, x actually pays $10 to y or the assigned creditor.

Create and discharge are obvious; delegate and assign add some flexibility to
commitments and are also obvious. Cancel and release remove a commitment
from being in effect. Cancel is essential to reflect the autonomy of an agent;
just because it made a commitment does not mean that the commitment is ir-
revocable. However, if commitments could be wantonly canceled, there would
be no point in having them, so cancellations of commitments must be suitably
constrained. Release helps capture various subtleties of relationships among busi-
ness partners. A partner may decide not to insist that another party discharge
its commitments. Alternatively, the organizational context within which the par-
ties interact may find that a commitment should be eliminated. For example,
ordinarily a buyer is expected to pay for goods and a pharmacist is expected to
ship medicines that are paid for. However, if the goods arrive damaged then the
buyer is released from paying for them (but must return them instead); if the
medicine prescription turns out to be invalid, the pharmacist is released from
the commitment to ship the medications.

5 Robust Services Via Agent-Based Redundancy

A major driver behind an agent basis for Web services is the demand for robust-
ness. All approaches to robustness rely on some form of redundancy, and Web
services are a natural source of redundancy for software applications.

Software problems are typically characterized in terms of bugs and errors,
which may be either transient or omnipresent. The general approaches for deal-
ing with them are: (1) prediction and estimation, (2) prevention, (3) discovery,
(4) repair, and (5) tolerance or exploitation. Bug estimation uses statistical tech-
niques to predict how many flaws might be in a system and how severe their
effects might be. Bug prevention is dependent on good software engineering
techniques and processes. Good development and run-time tools can aid in bug
discovery, whereas repair and tolerance depend on redundancy.

18 M.N. Huhns

Indeed, redundancy is the basis for most forms of robustness. It can be pro-
vided by replication of hardware, software, or information, e.g., by repetition
of communication messages. Redundant code cannot be added arbitrarily to a
software system, just as steel cannot be added arbitrarily to a bridge. A bridge is
made stronger by adding beams that are not identical to ones already there, but
that have equivalent functionality. This turns out to be the basis for robustness in
service-oriented systems as well: there must be services with equivalent function-
ality, so that if one fails to perform properly, another can provide what is needed.
The challenge is to design service-oriented systems so that they can accommo-
date the additional services and take advantage of their redundant functionality.

We hypothesize that agents are a convenient level of granularity at which to
add redundancy and that the software environment that takes advantage of them
is akin to a society of such agents, where there can be multiple agents filling each
societal role [§]. Agents by design know how to deal with other agents, so they
can accommodate additional or alternative agents naturally.

Fundamentally, the amount of redundancy required is well specified by infor-
mation theory. If we want a system to provide n functionalities robustly, we must
introduce m xn agents, so that there will be m ways of producing each functional-
ity. Each group of m agents must understand how to detect and correct inconsis-
tencies in each other’s behavior, without a fixed leader or centralized controller.
If we consider an agent’s behavior to be either correct or incorrect (binary), then,
based on a notion of Hamming distance for error-correcting codes, 4 x m agents
can detect m — 1 errors in their behavior and can correct (m — 1)/2 errors.

Redundancy must also be balanced with complexity, which is determined by
the number and size of the components chosen for building a system. That is,
adding more components increases redundancy, but also increases the complexity
of the system.

An agent-based system can cope with a growing application domain by in-
creasing the number of agents, each agent’s capability, or the computational
and infrastructure resources that make the agents more productive. That is, ei-
ther the agents or their interactions can be enhanced, but to maintain the same
redundancy m, they would have to be enhanced by a factor of m.

N-version programming, also called dissimilar software, is a technique for
achieving robustness first considered in the 1970s. It consists of N separately de-
veloped implementations of the same functionality. Although it has been used to
produce several robust systems, it has had limited applicability, because (1) N in-
dependent implementations have N times the cost, (2) N implementations based
on the same flawed specification might still result in a flawed system, and (3)
each change to the specification will have to be made in all N implementations.

Database systems have exploited the idea of transactions: an atomic process-
ing unit that moves a database from one consistent state to another. Consistent
transactions are achievable for databases because the types of processing done
are regular and limited. Applying this idea to software execution requires that
the state of a software system be saved periodically (a checkpoint) so the system
can return to that state if an error occurs.

A Research Agenda for Agent-Based Service-Oriented Architectures 19

5.1 Architecture and Process

Suppose there are a number of services, each with strengths, weaknesses, and
possibly errors. How can the services be combined so that the strengths are
exploited and the weaknesses or flaws are compensated or covered?

Three general approaches are evident in Figure[dl First, a preprocessor could
choose the best services to perform a task, based on published characteristics of
each service. Second, a postprocessor could choose the best result out of several
executing services. Third, the services could decide as a group which ones should
perform the task.

Single Task

éoose service based on: (1) functionality, (2) QoS)

Service #N

(Service #1> (Service #2

@ompare Results and Select Best)

Single Result

Fig. 4. Improving robustness by combining multiple implementations of a service

The difficulties with the first two approaches are (1) the preprocessor might
be flawed, (2) it is difficult to maintain the preprocessor as services are added
or changed, and (3) the postprocessor wastes resources, because several services
work on the data and their results have to be compared.

The third approach requires distributed decision-making, which is not an abil-
ity of conventional Web services. What generic ability could be added to a service
to enable it to participate in a distributed decision? The generic capability has
the characteristics of an agent, so distributing the centralized functions into the
different modules creates a multiagent system. Each agent would have to know
its role as well as (1) something about its own service, such as its time and space

20 M.N. Huhns

complexity, and input and output data structures; (2) the complexity and relia-
bility of other agents; and (3) how to communicate, negotiate, compare results,
and manage reputations and trust.

5.2 Experimental Results

Huhns and colleagues collected one set of 25 algorithms for reversing a dou-
bly linked list and another set for sorting a list. Different novice programmers
wrote each algorithm. For sorting, no specifications were given to the program-
mers (beyond that the problem was sorting), so the algorithms all have different
data and performance characteristics. For list reversing, the class structure (i.e.,
method signatures) was specified, so the differences among the algorithms are
in performance and correctness.

Each algorithm was converted into an agent, composed of the algorithm writ-
ten in Java and a wrapper written in Jade. The wrapper knows only about the
signature of its algorithm, and nothing about its inner workings.

Our experiments verified that the same wrapper can be used for both the sort-
ing and list-reversing domains. We also verified our hypothesis that more algo-
rithms give better results than any one alone. Further, we investigated both a dis-
tributed preprocessor and a centralized postprocessor for combining the agents’
functionality, and found that the postprocessor is generally better, but performs
worse for large data sets or selected algorithms with long execution times.

The eventual outcome for application development is that service developers
will spend more time on functionality development and less on debugging, be-
cause different services will likely have errors in different places and can cover
for each other.

6 Conclusion and Agenda

Service-oriented computing (SOC) represents an emerging class of approaches
with multiagent-like characteristics for developing systems in large-scale open
environments. Indeed, SOC presents several challenges that cannot be tackled
without agent concepts and techniques. Viewed in this light, SOC offer many
ways in which to change the face of computing.

As services become increasingly like agents and their interactions become in-
creasingly dynamic, theyll begin to do more than just manage information in
explicitly programmed ways. In particular, services acting in concert can function
as computational mechanisms in their own right, thus significantly enhancing our
ability to model, design, build, and manage complex software systems. Think of
such MASs as providing a new approach for constructing complex applications
wherein developers concentrate on high-level abstractions, such as overall be-
havior and key conceptual structures (the active entities, their objectives, and
their interactions), without having to go further into individual agents details or
interactions. This vision becomes more compelling as the target environments
become more

A Research Agenda for Agent-Based Service-Oriented Architectures

21

— populous (a monolithic model is intractable, whereas developers can con-

struct an MAS modularly)

— distributed (pulling information to a central location for monitoring and con-
trol is prohibitive, whereas techniques based on interaction among agents and
the emergence of desired system-level behaviors are much easier to manage)

— dynamic (an MAS can adapt in real time to changes in the target system
and the environment in which it is embedded).

Table 1. Reasons for Complex System Development Based on Multiagent Service-

Oriented Systems

Multiagent System Properties

Benefits for System Development

Autonomous, objective-oriented behavior;
agent-oriented decomposition

Dynamic composition and customization
Interaction abstractions; statistical or
probabilistic protocols

Multiple viewpoints, negotiation, and col-
laboration
Social abstractions

Autonomous, active functionality that
adapts to the users needs; reuse of whole
subsystems and flexible interactions
Scalability

Friction-free software; open systems; in-
teractions among heterogeneous systems;
move from sophisticated and learned e-
commerce protocols to dynamic selection
of protocols

Robustness and reliability

High-level modeling abstractions

Table 1 shows the ways in which MAS properties can benefit the engineer-
ing of complex service-oriented systems. Potential applications and application
domains that can also benefit from this approach include meeting scheduling,
scientific workflow management, distributed inventory control and supply chains,
air and ground traffic control, telecommunications, electric power distribution,

water supplies, and weapon systems.

References

. Mark Burstein, Christoph Bussler, Tim Finin, Michael Huhns, Massimo Paolucci,

Amit Sheth, Stuart Williams, and Michael Zaremba, “A Semantic Web Services Ar-
chitecture,” IEEE Internet Computing, vol. 9, no. 5, pp. 72-81, September/October

2005.

F. Dignum, H. Weigand, and E. Verharen, “Meeting the Deadline: On the Formal

Specification of Temporal Deontic Constraints,” Foundations of Intelligent Systems,
9th Intl Symp., (ISMIS ’96), vol. 1079, Lecture Notes in Computer Science, Springer,

1996, pp. 243-252.

A. Eberhart, “Ad-Hoc Invocation of Semantic Web Services,” Proc. IEEFE Intl Conf.

Web Services, IEEE CS Press, 2004; www.aifb.uni-karlsruhe.de/WBS/aeb/pubs/

icws2004.pdf.

22 M.N. Huhns

4. K. Sycara et al., “Dynamic Service Matchmaking among Agents in Open Informa-
tion Environments,” J. ACM SIGMOD Record, Special Issue on Semantic Interoper-
ability in Global Information Systems, vol. 28, no. 1, 1999, pp. 47-53; http://www-2.
cs.cmu.edu/ softagents/papers/ACM99-L.ps.

5. M. Singh and M. Huhns, Service-Oriented Computing: Semantics, Processes, Agents,
John Wiley & Sons, 2005.

6. K. Sivashanmugam, K. Verma, and A. Sheth, “Discovery of Web Services in a Feder-
ated Registry Environment,” Proc. IEEFE Intl Conf. Web Services, IEEE CS Press,
2004; http://lsdis.cs.uga.edu/lib/download /MWSDI-ICWS04- final.pdf.

7. Werner Vogels, “Learning from the Amazon Technology Platform,” ACM Queue,
May 2006, pp. 14-22.

8. R.L. Zavala and M.N. Huhns, “On Building Robust Web Service- Based Applica-
tions,” in Extending Web Services Technologies: The Use of Multi-Agent Approaches,
L. Cavedon et al., eds., Kluwer Academic, 2004, pp. 293-310.

	Introduction
	An Example of Current SOA Success
	Needed Research for Each Aspect of Web Services
	Commitments
	A Formalization of Commitments
	Operations on Commitments

	Robust Services Via Agent-Based Redundancy
	Architecture and Process
	Experimental Results

	Conclusion and Agenda

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

