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Abstract

The static and predetermined capabilities of many knowledge�based design sys�

tems prevent them from acquiring design experience for future use� To overcome this

limitation� techniques for reasoning and learning by analogy that can aid the design

process have been developed� These techniques� along with a nonmonotonic reason�

ing capability� have been incorporated into Argo� a tool for building knowledge�based

systems� Closely integrated into Argo�s analogical reasoning facilities are modules
for the acquisition� storage� retrieval� evaluation� and application of previous expe�

rience� Problem�solving experience is acquired in the form of problem�solving plans

represented as rule�dependency graphs� From increasingly abstract versions of these

graphs� Argo calculates sets of macrorules� These macrorules are partially ordered

according to an abstraction relation for plans� from which the system can e�ciently

retrieve the most speci�c plan applicable for solving a new problem� Knowledge�

based applications written in Argo can use these plan abstractions to solve problems

that are not necessarily identical� but just analogous to those solved previously� Ex�

periments with an application for designing VLSI digital circuits are yielding insights

into how design tools can improve their capabilities as they are used�



� Introduction and Background

A number of knowledge�based systems for design have been developed recently ��� �� 		�
	
� ��� �
� �
�� These systems are particularly suited to situations in which heuristic
expert knowledge must be employed because algorithmic techniques are unavailable or
prohibitively expensive� Restrictions on the types of problems or domains handled by
such design systems are progressively being eased� Unfortunately� the knowledge embodied
in many of these systems is static� it fails to capture the iterative aspects of the design
process that involve solving new problems by building upon the experience of previous
design e�orts� Given the same problem ten times� these systems will solve it the same way
each time� taking as long for the tenth as for the �rst�

The work reported here is based on the contention that a truly intelligent design system
should improve as it is used� i�e�� it should have the means for remembering the relevant
parts of previous design e�orts and be able to employ this accumulated experience in solving
future design problems� Learning from experience is a powerful technique used by humans
to improve their problem�solving ability� For a design tool� the remembered experience
should consist of 
� design results� 	� design plans� and �� preferences among these results
and plans� These constitute di�erent aspects of previous design e�orts that the design tool
can use as training examples�

��� Learning from Experience

Existing approaches to learning from experience attempt to generalize these training exam�
ples in order to obtain more widely applicable results� The STRIPS �

� 
	� problem�solving
system incorporates a technique for generalizing plans and their preconditions based on the
formation of macro�operators �MACROPs�� In this technique� an existing plan� consisting
of a sequence of operators whose execution yields a goal state� is stored in a data structure
called a triangle table� This table represents the preconditions and postconditions for each
operator in the plan� The plan is generalized by replacing all precondition constants by
distinct parameters� and then correcting for overgeneralization by substituting for incon�
sistent parameters� The resultant generalized plan� a MACROP� is stored and later used
as either a plan� a set of subplans� or an execution monitor�

A better procedure for generalization� developed in the context of learning from exam�
ples� uses a proof�based explanation �or veri�cation� mechanism �
� 	�� 	�� 	�� 	��� often
termed explanation�based generalization �EBG�� It is an improvement over the use of a
triangle table in that it does not require any heuristics to compensate for possible over�
generalizations� The proof employed comprises information about why a training example
satis�es a particular goal� The procedure involves �rst a modi�ed regression of the goal
through the proof structure ���� �	�� whereby su�cient constraints on the domain of train�
ing examples for which the proof holds are computed� These constraints are based on
the codomain of goals allowed� The second stage of the procedure is to reapply the proof
structure to the resultant generalized domain to obtain a generalized codomain� In the
terminology used above� a plan is like a proof� a plan precondition is the domain for the
proof� and the resultant design is the codomain�

For design problems� EBG�like generalizations are limited in that they arbitrarily give






equal weight to all portions of the examples� without regard to whether each portion is
relevant or important to solving future problems� More abstract generalizations can be
obtained by taking this factor into account� Abstract planning� i�e�� choosing a partial
sequence of operators to reach a goal �
��� is accomplished in ABSTRIPS ���� by ignoring
operator preconditions considered to be details� Criticality values are attached to the
preconditions of operators to determine their importance� These values are computed based
on the presumed di�culty of satisfying each precondition if it is not already satis�ed� Only
if a plan succeeds at an abstract level is it expanded by the addition of subplans to handle
the details at a subsequent level�

Another technique for reusing past design experience is to �replay� a previously recorded
plan� or design history ��	� ���� This approach is interesting in its �exibility with respect
to replaying portions of a stored plan to solve� or at least partially solve� a new problem�
Unfortunately� the correspondence between the stored plan and subproblems of a partial
design is di�cult to establish automatically�

The transfer of experience from previous problem�solving e�orts to new problems has
also been accomplished via analogical reasoning methods ��� 

� ��� ���� Analogical reason�
ing is a mapping from a base domain to a target domain that allows the sharing of features
between these domains� With respect to problem�solving� many of the previously reported
methods are limited by their requirements that either new problems be very similar to
previously solved ones or analogies be supplied by a user and match perfectly�

��� Argo

The primary objective of our work has been to develop a robust and domain�independent
system for applying analogical reasoning to solving search�intensive problems� such as those
in the domain of design �
�� Search e�ciency is increased by using past experience cap�
tured in the form of design plans� a new design problem can be solved by applying a
design plan from an analogous old problem� Two problems are considered exactly anal�
ogous if the same design plan can be applied to solve either� Past experience� however�
should also be useful for solving a new problem when a stored design plan �almost� applies�
A fundamental hypothesis employed is that inexact analogies at one level of abstraction
become exact analogies at a higher level of abstraction� Thus� techniques have been de�
veloped for automatically computing and storing increasingly abstract versions of design
plans and subsequently employing them in solving new problems� These analogical reason�
ing and learning mechanisms are integrated into Argo� a tool for building knowledge�based
systems�

In Argo� a design plan is represented using a rule�dependency graph� Abstractions of
this design plan are obtained by deleting rules from this graph� Macrorules for a plan
and its abstractions are calculated using an explanation�based scheme and inserted into
a partial order of rules according to an abstraction relation� This allows the system to
retrieve e�ciently the most speci�c plan applicable to solving a new problem� The use of
abstraction allows Argo to apply its previous problem�solving experience to problems that
are analogous to those it has solved previously�

Section 	 of this paper contains a discussion of reasoning and learning by analogy and
its application to the process of design� Section � describes the functional characteristics

	



of Argo� as well as an application to VLSI digital circuit synthesis �Argo�V�� Descriptions
of the fundamental mechanisms in Argo that allow it to reason and learn e�ciently are
presented in Section �� Section � lists and discusses some experimental results obtained
using the Argo�V application� Finally� conclusions and directions for future research are
presented in Section ��

� Analogical Reasoning and Learning

Analogy involves a transfer of information from a base domain to a target domain� Re�
search into how people are able to reason and solve problems by analogy reveals that the
relationships among domain objects� not the attributes of these objects� are what is trans�
ferred between the base and target domains� The particular relationships transferred are
those obeying a systematicity principle �
��� having a causal link ���� ���� or sharing a sim�
ilar purpose �	��� Di�culties in adding analogical reasoning to knowledge�based systems
stem from the formalization of the systematicity principle� identi�cation of causal links� or
speci�cation of the purpose of a base domain example�

Two important issues in overcoming these di�culties for problem�solving are analogy
recognition and analogical transformation� This section contains a discussion of these issues
and their relation to the domain of design� as well as Argo�s use of analogical reasoning
with learned design experience�

��� The Use of Analogy for Solving Design Problems

Using analogy for solving problems is something that people appear to do very well and
that machines currently do poorly �
�� 
�� ���� After several attempts �	� �� 	
�� it has
begun to provide limited assistance in automatically proving mathematical theorems� Why
should analogy be successful in design� a domain with a weaker underlying theory�


� Design problems are typically represented by functional speci�cations that provide
constraints on admissible solutions� These speci�cations are typically incomplete�
allowing many �correct� solutions and� consequently� making the search for one of
these easier�

	� Because the design domain is essentially hierarchical� transformations and decompo�
sitions that can be applied to functional speci�cations lead to increasingly simpler�
and often independent� subproblems� Thus� even if a design system lacks the knowl�
edge to completely solve a problem� partial designs generated by the system might
be easily patched to yield a complete design�

�� Rules in the design system can be viewed as complex special�purpose inference pro�
cedures that match special structures in the functional speci�cations and construct
instances of one or more design artifacts� By using these larger chunks of knowledge
about design and problem decomposition� the complexity of design by analogy is
reduced �����
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The domain of design thus provides an appropriate environment for the development and
use of analogical reasoning�

We classify analogies as being either exact or inexact� Where there is an exact match
between a past experience and a new problem�solving situation� an exact analogy exists
and the new problem can be solved either by executing the old plan or by directly using
the old results� Where an exact match does not exist� the two problems that arise are

� analogy recognition� �nding the most similar past experience� and 	� analogical trans�
formation� adapting this experience to the new problem situation� Several techniques have
been suggested for recognizing the most similar past experience�


� Develop an analytical similarity measure ���� this requires that the domain have a
metric� which is not typical for design domains�

	� Find a past experience whose �rst stage is identical to the current problem situa�
tion ���� this technique fails to �nd past experiences that di�er by only an initial
detail and requires that the initial reasoning be done without assistance from past
experiences�

�� Find a past experience that has the same causal connections among its components
as does the current problem ��� 
�� ��� ���� since there may be many causal networks
that describe each past experience� all of which have to be computed and stored� this
technique may discover too many analogous situations and be unable to determine
the most appropriate one� More importantly� this makes analogy too dependent on
a proper problem representation�

�� Find a past experience that has the same purpose as does the current problem sit�
uation �	��� this requires an advance enumeration of possible purposes for which an
experience can be analogically employed� a di�cult task to conduct automatically�

The second problem� the adaptation of old experiences to new problem situations� has
been attempted previously by employing heuristically�guided� incremental perturbations
according to primitive transformation steps ���� These steps are generally problem and
domain speci�c and are not amenable to automation� If used properly� however� di�erences
between the old and new situations can guide the analogical transformation� Other ap�
proaches to analogical transformation include heuristic�based analogical inference �

� and
user intervention ��	��

��� Analogical Reasoning in Argo Using Design Experience

The primary motivation for using analogical reasoning in Argo is to allow previous design
experience to aid in solving new problems� even when there is only a partial match between
old and new problems� Three questions that must be resolved in developing such a system
are


� In what form should the past experience be stored�

	� How can the most similar and relevant past experience among all those that are stored
be found�
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�� How can this past experience be used in solving the new problem�

For the second of these questions there are two possible approaches� First� an old solved
problem that is �most similar� to a new unsolved problem can be located by comparing
the new problem�s description to a description of each old problem� Unfortunately� a
metric or similarity measure for the the domain of design problem descriptions is di�cult
to quantify� The second approach is to compare a description of the new problem to a
calculated precondition for a plan to solve each old problem� The precondition for a plan
constitutes exactly those aspects of the problem that are relevant to its solution�

This last approach is the one employed by Argo� Hence� answers are provided to the
other two questions� 
� past experience is stored in the form of design plans with their
corresponding preconditions and postconditions� and 	� when a new problem satis�es the
precondition for a plan� the postcondition of the plan can be directly executed to solve� at
least partially� the new problem�

It has been postulated that humans discover and comprehend analogies at an abstract
level� a level where both the base and target domains are identical �
��� Based on this
notion� Argo generates increasingly abstract plans by deleting rules in a design plan�
those corresponding to details of the problem solution� Because abstract plans apply to
broader classes of design problems� this approach leads to the solution of problems that are
analogous� but not necessarily identical to the original problem� As explained in Section ��
Argo�s analogical reasoning capability has been developed with these concepts in mind�

� The Argo Development Environment

Argo is a generic development environment for the use of analogical reasoning and learning
in solving problems� particularly in design domains� It is a derivative of the Proteus expert
system tool ����� which includes a rich set of knowledge representation techniques and
inferencing strategies�

��� Knowledge Representation and Inference in Argo

Knowledge is represented in Argo using a combination of predicate logic and frames� Data
can consist of ground assertions� general assertions� forward rules� backward rules� or slot
values in frames� Each datum is included in a justi�cation�based truth�maintenance system
�JTMS�� and as such� has a set of justi�cations and a belief status of IN or OUT �
��� Frames
are organized into an inheritance lattice� enabling multiple inheritance for slot values� The
slots may be single�valued or multiple�valued�

Rules primarily deal with relations� which may be either predicates or slots� In addition�
forward rules allow Lisp functions to appear in both their antecedents and consequents�
Antecedents may also include the second�order predicates forget �used to prevent the in�
clusion of antecedents in the justi�cations for the consequents of a rule� and unless �which
implements negation�by�failure and is used for nonmonotonic reasoning�� Consequents may
include the second�order predicate erase �used to invalidate existing justi�cations of a da�
tum� enabling an emulation of rewrite rules�� Backward rules allow Lisp functions and
unless to appear in their antecedents�
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The primary inference mechanisms available to Argo are forward chaining� backward
chaining� inheritance through the frame system� truth maintenance� and contradiction res�
olution� Forward chaining is typically used as the strategy for design� the system applies
forward rules deductively to hierarchically transform and decompose speci�cations or par�
tial designs� In order for a forward rule to be eligible for �ring as an action �forward rule
instance�� its antecedents must be provable by either the explicit existence of assertions or
slot values in the database� or by proving their implicit existence in the database through
backward chaining� Consequently� backward rules are usually used as support rules for
searching� computation� and parsing�

��� Argo Control Strategy for Design

A variety of arti�cial intelligence techniques is available for solving design problems� The
following control strategy for solving a problem P is based on classifying these techniques
according to the amount and speci�city of domain knowledge they require ����


� If knowledge of an artifact that satis�es P is available� then this solution is directly
instantiated�

	� If a speci�c plan for transforming and decomposing P is available� then it is directly
executed�

�� If a plan for solving P � is available� where P � is �similar� to P � then it is analogically
transformed to synthesize an artifact for P �

�� If past experience is unavailable� then weak methods such as heuristic search or
means�ends analysis are employed�

Argo executes this problem�solving strategy by means of the algorithm shown in Fig�
ure 
� This algorithm has two major phases� a problem�solving design phase followed
by a learning phase� The basic control strategy for the design phase conforms to that of
a standard production�system interpreter �cf� OPS� �
���� it executes a production sys�
tem by performing a sequence of rule��ring operations� called the recognize�act cycle� It
is modi�ed for analogical reasoning by requiring that only the most speci�c rules from a
partial order of forward rules �based on the abstraction relation de�ned in Section ���� be
matched and considered for execution� A new cycle can be triggered interactively by a user
or automatically by any JTMS adjustments to the database�

During each cycle� forward rules are considered for execution by attempting to prove
their antecedents using all available data �assertions and backward rules�� Valid rule in�
stances are then placed in a con�ict set� This set consists of those rules 
� whose antecedents
are satis�ed� 	� that have not previously �red on the same data� �� that are not more ab�
stract than another rule in the con�ict set� and �� for which there is no justifying datum
that itself is justi�ed by a forward rule which is a justi�cation for this rule� This last
restriction prevents intermediate rules� which may have contributed to the formation of a
more speci�c rule during learning� from �ring on the data generated by the �ring of that
macrorule�

After a con�ict set is computed� a user may interact with the system by

�



Read a database of domain knowledge� consisting of forward

rules� backward rules� frames� and assertions�

Insert forward rules into a partial order based on �abstraction��

Problem� Loop until Quit asserted

Read a problem specification into working memory�

Compute conflict set�

Design� Loop until conflict set empty or Halt asserted

Resolve Conflicts��Select one forward

rule� R� from the conflict set

�interactively or syntactically��

Act��Perform the consequents of R and

update the JTMS justification network�

Match��Find the conflict set of most specific

applicable rules that have not

previously fired on the same data�

Evaluate design��If unacceptable�

Assert contradiction�

Do dependency�directed backtracking�

Go design loop�

Construct rule�dependency graph �RDG��

Learn� Loop while nodes�RDG� 	 


Compute macrorules from connected subgraphs of RDG�

Insert macrorules into partial order�

Abstract RDG �by deleting leaf rules��

Initialize working memory�

Store updated database�

End�

Figure 
� Argo Control Strategy
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� �ring one or more actions�

	� asking why a particular action is eligible to �re�

�� asserting preferences about rules in order to control the selection of an action from
the con�ict set for �ring� e�g�� asserting �prefer Ri Rj� indicates that rule Ri should
be selected over rule Rj if both rules are in the con�ict set�

�� asserting new facts or rules� which will cause a new �and potentially di�erent� con�ict
set to be computed� and

�� contradicting a result in order to initiate dependency�directed backtracking�

In addition to prefer� rule �rings can be controlled by means of priorities �a number from

�

� assigned statically to rules� Con�ict resolution then involves selecting one rule for
which no other rule in the con�ict set has a higher priority� and for which no other rule
with the same priority is preferred�

This model for forward chaining has the following characteristics and advantages for
analogical reasoning�


� Abstract rules do not have to be considered once a more speci�c rule has been found
to be satis�ed on the current database� of course� these rules are reconsidered if a
consequent of the more speci�c rule is contradicted�

	� The results obtained are independent of the order in which data are asserted� allowing
new rules to be added at arbitrary times� However� as in Prolog� the order among
facts and backward rules is signi�cant�

�� Metalevel reasoning is easier in that an explicit con�ict set clearly indicates which
rules are competing to �re and� thus� which rules require further reasoning steps�
For example� two rules that are meant to �re consecutively should not appear in
the con�ict set at the same time� If they do� then there must be some missing
control knowledge� such as additional antecedents and consequents� triggering rules�
or preferences�

In Figure 
� the learning phase is outside of the control loop of Argo�s production�system
interpreter� and as such� it can be executed as a background task of the problem�solving
system� This improves the system�s problem�solving e�ciency� it does not have to pause to
learn in the middle of a design session� It also prevents the learning of results that might be
subsequently invalidated due to nonmonotonic reasoning triggered by dependency�directed
backtracking while executing the problem�solving design phase� These intermediate results
are stored in the system as a list of asserted actions� The actions have justi�cations so that
they can be managed by the truth�maintenance system� If the problem�solving system
backtracks� causing actions to have a belief status of OUT� then their corresponding rule
instances are not included in the rule�dependency graph used for representing plans� Thus�
the plans that are learned do not incorporate failed lines of reasoning�
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��� Argo Application� VLSI Circuit Design

As noted� Argo is a generic environment for the use of analogical reasoning and learning
in problem�solving systems� Argo is customized for a particular application by building a
knowledge base of rules� assertions� and frames� The primary application that has been used
for building and testing Argo is a system for VLSI digital circuit design� Design problems
have been a motivation and justi�cation for the approach to analogical reasoning described
above because of the large search space by which they are typically characterized�a space
consisting of both incomplete and complete design solutions�

The Argo VLSI design application� Argo�V� re�nes circuit speci�cations to synthesize
circuits in terms of elementary digital components� A design problem speci�cation is a set
of assertions in �rst�order logic describing a digital logic circuit� This set of assertions

� describes the behavior of the circuit

� is organized into a lattice of frames�

A solution to a design problem is also a set of assertions in �rst�order logic that

� describes the structure of the digital logic circuit

� may be a superset of the set describing the speci�cation�

� is less �abstract� than the set describing the speci�cation

The assertions and frames are based on VHDL �VHSIC Hardware Description Lan�
guage� ���� �
��� Since VHDL is designed to deal with abstraction� its declarative facilities
provide a natural medium for describing design hierarchies� An entity in VHDL corresponds
to a component that is described by an interface body and one or more architectural bod�
ies� The interface body is used to de�ne externally visible ports and parameters of an
entity� The architectural bodies are used for describing entities in terms of behavior and or
structure� The two primary types of statements used in architectural bodies are 
� signal
assignment statements �behavioral�� which assign waveforms to signals� and 	� component
instantiation statements �structural�� which instantiate substructure components�

The design knowledge base in Argo�V is structured as follows�

Frame De�nitions� de�ning structures for VHDL modules �e�g�� entities� interface bod�
ies� and architectural bodies��

Frame Instantiations� primitive library components �e�g�� logic gates� transistors� in�
verter loop memory cells��

Assertions� library component slot values and other general knowledge�

Forward Rules� primary design rules�

Backward Rules� support rules for parsing signal assignments and computing ports�

�The system does not explicitly use VHDL syntax� rather� it employs a one�to�one translation of VHDL
statements into Argo frames and assertions�






Argo�V�s design knowledge currently consists of �	 frames� �� frame instances� 	� backward
rules� and �� forward rules� Figure 	 shows the hierarchical relationship among some of
the frame de�nitions and instances� A design problem�s speci�cation is entered into the
system by instantiating frames for its top level VHDL modules and asserting slot values
for its internal features� including signal assignment statements and signal declarations�

Most of the design rules in Argo�V either transform� instantiate� or decompose� A
transformation rule is used to convert one or more signal assignment statements of an
architectural body into other signal assignment statements having a simpler or more con�
venient form� An instantiation rule converts one or more signal assignment statements into
statements specifying library components� A decomposition rule removes one or more sig�
nal assignment statements from an architectural body and associates them with newly built
entities that are instantiated from the architectural body� Decomposition rules are used for
grouping logically related signal assignments so that they can be treated as independent
subproblems� Figures ��� contain examples of each of these types of rules�

In these rules� signal assignment statements are matched with antecedents of the form

�signal�assignment �body ��lhs ��signal
 �delay
 �condition�

��signal
 �delay
���

where �body is the architectural body of an entity� ��signal
 �delay
 �condition�

means that �lhs is assigned the value of �signal
 after a delay of �delay
 if �condition
is satis�ed� and ��signal
 �delay
� is the default assignment of �lhs if �condition
is not satis�ed� The Pass�Partition rule� shown in Figure �� describes how the ANDed
conditions of a signal assignment statement can be transformed into a cascade of pass tran�
sistor networks� Components for pass transistors and exclusive�OR transistor networks are
instantiated using the rules in Figure �� A decomposition rule for statements requiring
memoried components due to signal feedback appears in Figure ��

� Analogy Mechanisms in Argo

The �ve facets of Argo�s analogical reasoning mechanism involve the acquisition� storage�
retrieval� evaluation� and application of previous experience� A plan is acquired by the
system as it solves a problem and is represented using a graph of rule dependencies� In�
creasingly abstract versions of the plan are obtained by deleting rules from it� Macrorules�
consisting of relevant preconditions and postconditions� are computed for each plan and
stored in a partial order according to the abstraction relation� The partial order facilitates
retrieval and evaluation of the most speci�c plan to apply en route to solving an analogous
problem�

��� Rule�Dependency Graphs

To implement the problem�solving strategy of Section ��	� Argo must be capable of formu�
lating� remembering� and executing problem�solving plans� A plan in Argo is a directed
acyclic graph having nodes corresponding to forward rules and edges indicating dependen�
cies between the rules� Thus� the terms plan and rule dependency graph �RDG� are used
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Note	 Boxes indicate classes and unboxed items indicate class instances�

Figure 	� Hierarchy of classes for digital circuit design in Argo�V







���� Pass�Partition Transformation Rule �PP�

����

��architecture �entity�entity �body�architectural�body�

�unless �type �entity hardware�module��

�signal�assignment �body

��output ��input
 �delay
 �signal� �hi�z �delay
���

�signal�assignment �body

��signal ��BIT�AND �input
 �input�� �delay����

����	

�� �new�signal �new signal��

�erase �signal�assignment �body

��output ��input
 �delay
 �signal� �hi�z �delay
����

�erase �signal�assignment �body

��signal ��BIT�AND �input
 �input�� �delay�����

�type �new�signal bit�passive�

�signal�declaration �body �new�signal�

�signal�assignment �body

��new�signal ��input
 �delay� �input
�

�hi�z �delay����

�signal�assignment �body

��output ��new�signal �delay
 �input��

�hi�z �delay
����

Figure �� Example of a transformation rule in Argo�V


	



���� Rule for Instantiating an Exclusive�OR Transistor Net �XTN�

����

��architecture �entity�entity �body�architectural�body�

�unless �type �entity hardware�module��

�signal�assignment �body

��output ��input
 �delay
 �signal� �hi�z �delay
���

�signal�assignment �body

��signal ��BIT�NOTEQUAL �input
 �input�� �delay����

����	

�erase �signal�assignment �body

��output ��input
 �delay
 �signal� �hi�z �delay
����

�erase �signal�assignment �body

��signal ��BIT�NOTEQUAL �input
 �input�� �delay�����

�component �body �XOR�NET ��input
 �input
 �input� �output����

���� Rule for Instantiating a Pass�Transistor �PASS�

����

��architecture �entity�entity �body�architectural�body�

�unless �type �entity hardware�module��

�signal�assignment �body

��lhs ��signal �delay
 �condition�signal�

�hi�z �delay
���

����	

�erase �signal�assignment �body

��lhs ��signal �delay
 �condition�

�hi�z �delay
����

�component �body �PASS�TRANSISTOR ��signal �condition �lhs����

Figure �� Examples of instantiation rules in Argo�V
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���� Decomposition Rule for Memoried vs� Combinational Logic �MD�

����

��architecture �entity�entity �body�architectural�body�

�type �entity abstract�module�

�signal�assignment �body ��lhs � �rhs��

�is�contained�in �lhs �rhs�

����	

�erase �signal�assignment �body ��lhs � �rhs���

�� �new�entity �new entity��

�� �new�interface �new interface�body�� �for new entity

�� �new�architecture �new architectural�body�� �for new entity

�� assert attribute values for new entity

�predecessor �new�entity �entity�

�type �new�entity memory�module�

�interface �new�entity �new�interface�

�architecture �new�entity �new�architecture�

�signal�assignment �new�architecture ��lhs � �rhs��

�� add the proper ports and signals to this entity

�assign�input�ports �new�entity�

�assign�output�ports �new�entity �entity�

�assign�local�signals �new�entity�

�� add the new entity to the structure of its predecessor entity

�component �body ��new�entity �ports �rhs� � �lhs���

Figure �� Example of a decomposition rule in Argo�V
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interchangeably throughout this discussion� Because a plan is implicitly represented by the
justi�cations maintained by the JTMS� no overhead is incurred by Argo�s inference engine
for plan maintenance� Only when the learning phase is invoked is an explicit representation
of the plan built�

One example from Argo�V involves the design of a content�addressable�memory �CAM�
cell� very similar to the one used in �	
�� The speci�cation for the CAM�cell design problem
can be seen in Figure �� Note that the entity CAM�CELL has one interface� CAM�

Interface� and one architectural body� CAM�Architecture� CAM�Architecture is a
behavioral problem speci�cation because it only makes use of signal assignment statements�

Argo�V solves circuit design problems by deductively applying rules that hierarchically
re�ne behavioral speci�cations� In the process� Argo�V constructs a hierarchical design tree
representing a partial solution� Each node of this design tree is an entity� or component�
that is described in terms of its interface and one architectural body� A design is completed
when all the statements in the design tree are instantiations of library components� The
hierarchical design tree for the solution of the CAM�cell problem appears in Figure ��
Figure � contains a circuit diagram for this solution�

Once a design� or partial design� has been completed� the learning phase of Argo can
be invoked� Its �rst task is to build a plan according to the justi�cations for �red actions�
The design plan for solving the CAM�cell problem� consisting of 

 forward rule instances�
is shown in Figure 
�

��� Abstract Plans

The analogical reasoning model used by Argo comprises solving new problems by making
use of plans for previous design experiences at appropriate levels of abstraction� In this vein�
the primary function of the system�s learning phase is to compute and store abstractions
for the plan of a solved problem� This task is accomplished by computing macrorules for
increasingly abstract versions of the plan and inserting these rules into a partial order�
The issue of how to formulate plan abstractions is discussed in this section� Macrorule
computation and the partial order of rules are presented in succeeding sections�

A number of domain�dependent and domain�independent techniques for automatically
generating plan abstractions are possible� For a given plan� these techniques include�


� Deleting a rule having no outgoing edges� i�e�� one upon which no other rule in the plan
is dependent� For design domains� such rules typically instantiate details� it seems
plausible that deleting these rules will yield plan abstractions because the resultant
plans will make fewer commitments to implementation details�

	� Replacing a rule by a more general rule that refers to fewer details of a problem�
A more general rule might be one having fewer antecedents or consequents� fewer
constants� more variables� more general domain constants� etc� As achieved in AB�
STRIPS ����� these rules can be generated from the initial domain knowledge using
criticality measures�

�� Replacing a sequence of rules or a subgraph by a single� more general rule�
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CAM�CELL is an instance of ENTITY

Type� ABSTRACT�MODULE

Predecessor� NONE

Interface� CAM�INTERFACE

Architecture� CAM�ARCHITECTURE

CAM�INTERFACE is an instance of INTERFACE�BODY

Input�Port� COMPARE� PHI�� PHI�� LOAD� ENABLE� DATA�IN

Output�Port� MATCH

CAM�ARCHITECTURE is an instance of ARCHITECTURAL�BODY

Signal�Declaration� PHI��LOAD� STATE

Signal�Assignment� 	MATCH 	PASSED�LOW 

NS
	BIT�AND 	BIT�EQUAL ENABLE HIGH�

	BIT�NOTEQUAL STATE COMPARE���

	HI�Z �NS���

	STATE 	DATA�IN 
�NS 	BIT�EQUAL PHI��LOAD HIGH��

	STATE �NS���

	PHI��LOAD 		BIT�AND PHI� LOAD� �
NS��

Component� no known values

ENABLE is an instance of SIGNAL

Type� BIT�ACTIVE

Object�Class� none

Static�Expression� none
Characteristic�Indication� none

Constraint� none

MATCH is an instance of SIGNAL

Type� BIT�PASSIVE

Object�Class� none

Static�Expression� none

Characteristic�Indication� none

Constraint� none

Figure �� Behavioral speci�cation for the CAM�cell design problem
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Figure �� Hierarchical description of the �nal design for the CAM�cell
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Figure �� Schematic diagram for the CAM�cell
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Macrorule��

Macrorule��

Macrorule���

�
�

�
�AND

DC� Decompose conditional�signal�assignment statements

NEW� Construct new signal�assignment statements from decomposed statements

DU� Decompose unconditional�signal�assignment statements

EQ� Transform a statement containing an equality into a simpler statement

WIRE� Instantiate a connection between two components

PP� Transform a block of signal�assignment statements into ones representing a cascade of pass�transistor
networks

XTN� Instantiate an exclusive�OR pass�transistor network

PASS� Instantiate a pass transistor

MD� Decompose an entity into one containing memoried statements and one containing combinational
logic

MS� Complete the speci
cation of an entity containing memoried statements

MEM� Instantiate an inverter loop for a one�bit memory

AND� Instantiate an AND gate

Figure 
� Design plan �rule�dependency graph� for the CAM�cell design problem







�� Computing and generalizing a macrorule for the plan without reference to the com�
ponents of the original plan�

Some of the questions that must be carefully considered in choosing an appropriate ab�
straction scheme include the following�


� How independent is the technique from the application domain�

	� Are the abstractions generated within the deductive closure of the system�

�� How automatic is the technique�

�� How easy is it to implement�

�� How useful are the abstractions for solving analogous problems�

In keeping with these guidelines� the abstraction scheme currently employed in Argo is
a variation of the �rst option listed above� It involves automatically formulating a plan
abstraction by deleting all of its leaf rules� which are those having no outgoing dependency
edges� For many design domains� the leaf rules trimmed from a plan tend to be those
that deal with design details at the plan�s level of abstraction� Thus� increasingly abstract
versions of a plan are obtained by iteratively trimming it until either one or zero nodes
remain �see Figure 
�� A sequence of abstractions for the CAM�cell example� generated by
this technique� appears in Figure 
� Note that all of the rules deleted by trimming one level
from the original plan are rules that handle the details of instantiating library components�

One possible drawback of Argo�s automatic abstraction scheme is that deleting all leaf
rules might eliminate potentially useful abstract plans in which only part of the leaf rules
should be deleted� Except for the very smallest plans� however� it is clearly not practicable
to automatically generate macrorules for all possible subgraphs of the RDG� although these
would be valid and potentially useful� In addition� although additional forward chaining
might be required� it is always possible for the system to start with a plan�s previously
computed abstraction� followed by instantiations of the relevant trimmed rules� to obtain
the appropriate �abstraction� required to solve a new problem�

Argo computes abstractions during its learning phase�after a problem is solved� In
contrast� it is possible to save a plan and only compute abstractions when necessary� i�e��
when solving new problems in which an abstract version of an original plan is applicable�
There are di�culties with using this approach� including identi�cation of the most suitable
previous plan using some type of partial match procedure and analogical transformation
of the selected plan based upon the partial match results� Consequently� Argo uses an a
priori approach to generating abstractions�

��� Macrorules

During the learning phase� the design plan or abstract plans for a solved problem are not
explicitly learned by the system� Instead� the rule instances of each plan are compiled into
a set of macrorules that embody the relevant preconditions and postconditions of the plan�
These macrorules are built by regressing through the component rules of the plan using
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a variant of explanation�based generalization �
� 	��� The antecedents and consequents of
these macrorules can be viewed� respectively� as �variabilized� problem speci�cations and
design solutions��

The Argo generalization scheme involves computing macrorules for each edge in the
plan� followed by a merging operation in which macrorules for connected subgraphs of each
abstraction level of the plan are calculated for all sets of compatible edge macrorules� This
merging is accomplished by incrementally merging each set of edge macrorules into a set
of cumulative macrorules for previously merged edges� When an edge and a cumulative
macrorule are merged� constraints on variable bindings are maintained by modifying a
cumulative substitution list� rather than explicitly making substitutions in the individual
antecedents and consequents of the cumulative macrorule� Substitution lists are also used
for e�ciently detecting incompatibilities between macrorules� This scheme does not require
that a plan be restricted to being a tree or a connected graph�

A brief example of this procedure is illustrated with the plan in Figure 
�� consisting
of an instance of the Pass�Partition �PP� rule followed by the rules for instantiating an
exclusive�OR transistor network �XTN� and a pass transistor �PASS�� �Notice that this
RDG is a subgraph of the plan for the CAM�cell design problem in Figure 
�� Macrorules
for this RDG are obtained by independently computing macrorules for the two edges in
the graph� PP � XTN and PP � PASS� These edge macrorules are subsequently merged�
yielding the two macrorules in Figure 

� Two macrorules are computed because� depending
on the speci�cation� the resultant design can have the pass transistor appear before or after
the exclusive�OR transistor network�

�
�

�
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�
�

�
�XTN

�
�

�
�PASS

�
�
�
�
�
�
�
�
��

J
J
J
J
J
J
J
J
J�

Figure 
�� A subplan of the RDG for the CAM�cell� used to illustrate macrorule formation

The use of macrorule compilation for storing plans has some important advantages�


� only relevant antecedents and consequents of the RDG are preserved�

	� because macrorules are independently computed for connected subgraphs of the RDG�
which correspond to independent subproblems of a design solution� greater �exibility
is available in applying subplans to future design problems�

�Note that if the rules of a plan are rewrite rules� then the macrorule is also a rewrite rule�

	




�Macrorule�A

�architecture �x��entity �x
�architectural�body�

�unless �type �x� hardware�module��

�signal�assignment �x
 ��x
 ��x� �x� �x�� �hi�z �x����

�signal�assignment �x
 ��x� ��BIT�AND �x� �x��signal� �x����

�signal�assignment �x
 ��x� ��BIT�NOTEQUAL �x

 �x
�� �x
����

�� �x
� �new signal��

����	

�erase �signal�assignment �x
 ��x
 ��x� �x� �x�� �hi�z �x�����

�erase �signal�assignment �x
 ��x� ��BIT�AND �x� �x�� �x�����

�erase �signal�assignment �x
 ��x� ��BIT�NOTEQUAL �x

 �x
�� �x
�����

�type �x
� bit�passive�

�signal�declaration �x
 �x
��

�component �x
 �XOR�NET ��x� �x

 �x
� �x
����

�component �x
 �PASS�TRANSISTOR ��x
� �x� �x
����

�Macrorule�B

�architecture �x��entity �x
�architectural�body�

�unless �type �x� hardware�module��

�signal�assignment �x
 ��x
 ��x� �x� �x�� �hi�z �x����

�signal�assignment �x
 ��x� ��BIT�AND �x��signal �x�� �x����

�signal�assignment �x
 ��x� ��BIT�NOTEQUAL �x

 �x
�� �x
����

�� �x
� �new signal��

����	

�erase �signal�assignment �x
 ��x
 ��x� �x� �x�� �hi�z �x�����

�erase �signal�assignment �x
 ��x� ��BIT�AND �x� �x�� �x�����

�erase �signal�assignment �x
 ��x� ��BIT�NOTEQUAL �x

 �x
�� �x
�����

�type �x
� bit�passive�

�signal�declaration �x
 �x
��

�component �x
 �XOR�NET ��x
� �x

 �x
� �x
���

�component �x
 �PASS�TRANSISTOR ��x� �x� �x
�����

Figure 

� Two macrorules computed from a subplan of the RDG for the CAM�cell

		



�� greater e�ciency is obtained by applying a single macrorule for a given plan than
by individually applying each of its component rules because a� variable bindings are
preserved and do not have to be reestablished and b� rewritten assertions do not have
to be made and then retracted�

�� correspondence between the parts of a problem and a candidate plan for solving it is
automatically maintained by the variable bindings of the plan�s macrorule��

�� as long as the original domain theory is correct� the resultant macrorules are provably
correct because they lie within the deductive closure of the system�

�� increasingly abstract macrorules� obtained by deleting leaf rules from an RDG� satisfy
the abstraction relation� so they can be organized into a partial order which can be
e�ciently searched during problem�solving� and

�� the most general�i�e�� necessary and su�cient�precondition for a plan is obtained
as a disjunction of the set of antecedents of all macrorules at a given level�

Argo�s use of rule�dependency graphs contrasts with the explanation�based learning
mechanism in �	��� in which explanations consist of proof trees having edges between indi�
vidual antecedents and consequents of dependent rules� While only one macrorule is com�
puted for the technique presented in �	��� Argo computes a set of one or more macrorules for
a given explanation� Although the macrorules are harder to compute� they can be applied
to situations di�ering structurally from the original problem�

The justi�cation for a macrorule in Argo�s truth�maintenance system is a list of its
component rules� If any of these component rules is invalidated by being given an OUT
status� the macrorule is also invalidated� This� in e�ect� gives Argo a nonmonotonic learning
capability �	���

In the CAM�cell example discussed previously� a total of ten macrorules are generated
for the various abstract plans in Figure 
� These are then inserted into the system�s partial
order of forward rules� as de�ned in the next section�

��� Abstraction

A collection of plans� which are represented by their corresponding macrorules� can be
organized into a partial order based on a relation called abstraction� A plan Pi is a mapping
from a domain Di� determined by the antecedents of the macrorule for Pi� to a range Ri�
determined by the consequents of the macrorule for Pi� Intuitively� one plan is more
abstract than another if it applies to more situations and if its execution results in fewer
commitments� More precisely�

Pi � Pj � �Di � Dj� � �Ri � Rj�

where �� the abstraction relation� is to be read �is an abstraction of�� and where

�In some systems for design� a design plan is a tree of rules that have been applied chronologically
to a design component in order to yield a design for it� Because some rules decompose components
into subcomponents� a problem arises in determining correspondence between parts of the plan and the
subcomponents to which they should apply �����
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De�nition � Si � Sj � the set of possible worlds in which Sj is true is a subset of the
set of possible worlds in which Si is true�

This is not a computational de�nition because of the large number of possible worlds that
exist in a typical application� A simpler and su�cient de�nition that has been implemented
in Argo is

De�nition � Si � Sj � �one�way�unify Si Sj��

As de�ned here� abstraction is a transitive� re�exive� and antisymmetric relation� it thus
induces a partial order on a set of rules� Figure 
	 shows the partially�ordered rules used
in Argo�V for designing digital circuits� This �gure includes the macrorules learned from
the CAM�cell example�

��� Redesign

At this point� the system is ready for solving a new problem� If a speci�cation is given to
the system that is exactly analogous to the CAM�cell speci�cation� then� depending upon
the structure of the new problem� Macrorule�
�� the AND�Gate Rule� and Macrorule��
or Macrorule�� in Figure 
 can be applied to completely solve it� Alternatively� if the
speci�cation is for a problem that is inexactly analogous to the CAM�cell� the system
follows specialization paths in the partial order of forward rules in order to choose the least
abstract macrorule that is applicable� i�e�� one that instantiates the largest number of details
without making incorrect design commitments� It is expected that by successively selecting
the least abstract rules� the system will typically �nd the shortest path to a valid design�
The architectural body of an inexactly analogous CAM�cell variation� di�ering in how the
MATCH output is computed� appears in Figure 
�� Using Macrorule�
 and Macrorule�
��
a solution to this CAM�cell variation� as shown in Figure 
�� can be obtained with the plan
illustrated in Figure 
��

� Results

Table 
 shows measurements of the e�ort expended in designing several circuits similar
to the CAM�cell example� both with and without the experience of designing the original
CAM�cell� This experience results in the calculation of ten macrorules� Speci�cations for
the architectural bodies of the examples are shown in Figure 
�� Circuit � and Circuit �
are exactly analogous to the original design problem� di�ering only in the values for several
constants� Thus� the same design plan applies to all three� After the system has been
trained on the CAM�cell example� these three circuits can each be solved by executing just
three rules� the least abstract macrorules learned by designing the CAM�cell� Circuit 	
utilizes Macrorule�� and Macrorule�

� Circuit � utilizes Macrorule�	 and Macrorule�

�
and Circuit � utilizes Macrorule�� and Macrorule�

� these design problems are inexactly
analogous to the original example and so can use only abstractions of the original design
plan� Additional rules� which primarily instantiate details� have been located and �red to
complete their designs� Circuit � is exactly analogous to a subproblem of the CAM�cell� so
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Figure 
	� Partial order of forward rules in Argo�V after learning from the CAM�cell
example
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CIRCUIT�� is an instance of ENTITY

Type� ABSTRACT�MODULE

Predecessor� NONE

Interface� CIRCUIT��INTERFACE

Architecture� CIRCUIT��ARCHITECTURE

CIRCUIT��INTERFACE is an instance of INTERFACE�BODY

Input�Port� COMPARE� PHI�� PHI�� LOAD� DATA�IN

Output�Port� MATCH

CIRCUIT��ARCHITECTURE is an instance of ARCHITECTURAL�BODY

Signal�Declaration� PHI��LOAD� STATE

Signal�Assignment� 	MATCH 	PASSED�LOW 

NS

	BIT�NOTEQUAL STATE COMPARE���

	HI�Z �NS���

	STATE 	DATA�IN 
�NS 	BIT�EQUAL PHI��LOAD HIGH��

	STATE �NS���
	PHI��LOAD 		BIT�AND PHI� LOAD� �
NS��

Component� no known values

Figure 
�� Behavioral speci�cation for an analogous design problem

just one of the calculated macrorules� Macrorule�
� is needed to solve it completely� In all
cases� learning resulted in improved design times�

Although the designs generated before learning occurred are correct� they are not opti�
mal in terms of a minimum number of transistors� After being trained by a designer to �nd
an optimal design for the CAM�cell� Argo applies the knowledge it has learned to the other
circuit design problems� resulting in better quality designs for them� The improvements�
shown as Design Quality in Table 
� are substantial�

In this experiment� Argo possessed su�cient metaknowledge� in the form of static prior�
ities on rules� dynamic preferences about rules� and selective erases of assertions� to achieve
a correct design without ever having to backtrack� It is unrealistic to expect that for large
applications a design system will have enough metaknowledge to guarantee correct designs
without search� If Argo possessed none of the above metaknowledge� then it would have
to explore many possible paths leading to a design solution in order to locate a correct
and complete design� Even for the simple examples considered here� this would require a
prohibitively long time �billions of years�� However� the use of macrorules reduces this time
by estimated factors
 ranging from 	����� to �� 
���� This behavior of a system for VLSI
design� and the possibility of exhaustively exploring such a huge space� are also unrealistic�
but they emphasize the large size of a typical design space and the importance of �nding
ways to reduce the size of this space� Macrorules and their abstractions provide just such

�The estimates are based on using the average size of the con
ict set as the branching factor of a search
tree whose depth is the number of rules 
red�
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Figure 
�� Schematic diagram for the analogous design problem
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XOR� Instantiate an exclusive�OR gate

AND� Instantiate an AND gate

Figure 
�� Rule�dependency graph for the analogous design problem

a capability�
Macrorules� however� are a supplement to� not a replacement for� the initial rules in

an application system� The initial rules apply in many situations when macrorules do
not� For applications requiring little or no search� the presence of macrorules may actually
cause the system to run more slowly because it has more possibilities to consider at each
problem�solving step �i�e�� it attempts to satisfy the antecedents of more rules� �	��� The
slowdown has been apparent in other examples on which Argo�V was tested� In particular�
one circuit was unable to use any of the macrorules learned from designing the CAM�cell�
The time needed to �nd a design increased by ��! because the presence of macrorules
increased the size of the rule base by 	�!� However� when an application requires a search
through many alternative paths� macrorules� constituting compiled paths that have proven
to be successful in the past� provide dramatic improvements in e�ciency�

� Conclusions and Future Research Directions

The work reported here is based on developing the fundamental methodology for a system�
Argo� that reasons and learns by analogy for solving problems in design� This methodology
includes the use of design plans to e�ect the analogical transfer of knowledge from a base
problem to a target problem� the use of abstract plans to allow the transfer of experience to
inexactly analogous target problems� an algorithm for calculating macrorules for a design
plan that allows the plan to be retrieved and applied e�ciently� and the formal de�nition
of an abstraction relation for partially ordering plans�

If design is viewed as state�space problem solving� then the knowledge in any knowledge�
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Figure 
�� Partial behavioral speci�cations for analogous design examples

	




Table 
� E�ects of Learning on VLSI Design
Before Learning After Learning

Design Time Rules Fired Design Quality
�seconds� �transistors�
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� � �	 
�
Circuit � �
�� 	
�� 

 � �� 	�
Circuit � 	��� ��� 
� 
 
� 


Note	 Timings were made on a Symbolics �����

based system for design can be categorized into three fundamental types� design knowledge�
control knowledge� and patching knowledge� Design knowledge is used to re�ne a particular
state of the problem�solving process by means of transformations� decompositions� and
instantiations� Patching knowledge is used to move to a new state� when re�nements to
the current state are evaluated as being unacceptable� Control knowledge is used to 
�
evaluate a given state and determine whether to halt� backtrack to a previous state� re�ne
the current state� or patch the current state� and 	� choose among possible alternatives
for re�ning or patching the current state� Based on these categorizations� Argo learns
control knowledge� This knowledge is implicit in the design plans and their corresponding
macrorules� It is biased by user preferences when Argo is guided interactively to a solution
and by rule priorities and preferences when Argo searches automatically� Because Argo
stores plans as rule�dependency graphs� the control knowledge preserves user and system
choices based on logical� not temporal� precedence�

Argo is typically used as follows� a designer trains an application system on a set
of representative examples by making choices as to which solution paths to pursue and
manually controlling its backtracking� essentially producing acceptable plans for achieving
correct designs� Argo compiles these plans� at various levels of abstraction� into a set
of macrorules and maintains these macrorules in the justi�cation network of its JTMS�
A knowledge�based contradiction�resolution mechanism is used to revise and update this
network� Note that as macrorules get more abstract� the number of details that must
be �lled in to solve a given problem increases� Hence� given a speci�cation for a new
design� Argo attempts to �nd and apply the least abstract macrorule that is appropriate�
Using macrorules in this manner� Argo drastically reduces the amount of automatic search
required for new design problems while still producing a correct design�

In order to provide an environment for developing and evaluating Argo� a knowledge�
based system has been implemented for designing VLSI digital circuits� Argo�V re�nes
VHDL behavioral speci�cations into structural modules by building hierarchical design
trees� This re�nement is accomplished by executing plans composed of transformation�
instantiation� and decomposition rules� With use� the system accumulates design knowl�
edge resulting in an increase of both its performance and its ability to synthesize digital
circuits� At present� Argo�V has rules for designing circuits comprised of elementary digital

��



components� including transistors� logic gates� and memory cells� A previous version of the
system has designed switch�level circuits of up to several hundred transistors �
��

Argo�s use of automatic�but�rigid versus manual�but��exible mechanisms limits it in
several ways� As with other systems employing explanation�based generalization� it cannot
learn to design anything outside of the deductive closure of its rule base� because plans
�explanations� are built from an application�s domain rules� Its scheme for abstracting
plans is in�exible not only in its uniform deletion of all leaf rules� but in preventing Argo
from making use of arbitrary parts of a plan� The system does� however� gain leverage
by independently computing macrorules for connected subgraphs of the rule�dependency
graph �corresponding to design solutions for independent subproblems��

The overall goal of our work has been to develop techniques for reasoning and learning
by analogy and incorporate these techniques into a knowledge�based system for design� To
overcome the limitations cited above� alternative procedures for formulating plan abstrac�
tions and constructing plan hierarchies are being investigated� We are conducting larger
experiments in order to assess Argo�s potential for continuous learning� Other work in
progress includes studying and implementing design system architectures embodying ana�
logical reasoning along with more explicit representations of goals� plans� constraints� and
contradictions �
���
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