
Software Agents: The Future of Web Services

Michael N. Huhns

University of South Carolina, Department of Computer Science and Engineering,
Columbia, SC 29208, USA

Huhns@engr.sc.edu

http://www.cse.sc.edu/∼huhns

Abstract. The World-Wide Web is evolving from an environment for
people to obtain information to an environment for computers to ac-
complish tasks on behalf of people. The resultant Semantic Web will
be computer-friendly through the introduction of standardized Web ser-
vices. This paper describes how Web services will become more agent-
like, and how the envisioned capabilities and uses for the Semantic Web
will require implementations in the form of multiagent systems. It also
describes how the resultant agent-based Web services will yield unprece-
dented levels of software robustness.

1 Introduction

I recently transfered the title for my daughter’s car from my name to hers.
This straightforward transaction involved the following flurry of documents and
interactions with various agencies: I needed tax receipts from my county and my
state, a cancelled check for taxes paid, a driver’s license verification from the
motor vehicle department, a new license plate for the car from the license plate
bureau, a proof of disposal of the old license plate, the old title, and, finally,
the new title. The county tax agency has strict rules about issuing duplicate
receipts, but these rules are difficult to understand and not fully known by my
state motor vehicle department.

What does this have to do with Web services? Well, the organizations partic-
ipating in my tax-and-title transaction might have implemented their capabili-
ties as on-line Web services. By invoking each other’s functionalities, the Web
services could have determined the necessary forms, the required fees, and the
verification of the identities of myself and my daughter. A single visit to exchange
license plates physically would have been sufficient, I would have received a new
title on-line, and I could have authorized payment via an automatic debit from
my bank account.

Because of the potential illustrated above, Web services are the hottest trend
in information technology: it is hard to find a computer magazine today that
doesn’t feature them. Web services are XML-based, work through firewalls, are
lightweight, and are supported by all software companies. They are a key com-
ponent of Microsoft’s .NET initiative, and are deemed essential to the business
directions being taken by IBM, Sun, and SAP.

2 Huhns

Web services are also central to the envisioned Semantic Web [1], which
is what the World Wide Web is evolving into. But the Semantic Web is also
seen as a friendly environment for software agents, who will add capabilities and
functionality to the Web. What will be the relationship between agents and Web
services?

1.1 The Semantic Web

The World-Wide Web was designed for humans. It is based on a simple concept:
information consists of pages of text and graphics that contain links, and each
link leads to another page of information, with all of the pages meant to be
viewed by a person. The constructs used to describe and encode a page, the
Hypertext Markup Language (html), describe the appearance of the page, but
not its contents. Software agents don’t care about appearance, but rather the
contents.

There are, however, some agents that make use of the Web as it is now. A
typical kind of such agent is a shopbot, an agent that visits the on-line catalogs of
retailers and returns the prices being charged for an item that a user might want
to buy. The shopbots operate by a form of “screen-scraping,” in which they
download catalog pages and search for the name of the item of interest, and
then the nearest set of characters that has a dollar-sign, which presumably is
the item’s price. The shopbots also might submit the same forms that a human
might submit and then parse the returned pages that merchants expect are
being viewed by humans. The Semantic Web will make the Web more accessible
to agents by making use of semantic constructs, such as ontologies represented
in DAML, RDF, and XML, so that agents can understand what is on a page.

The World-Wide Web was designed for people to get information, such as
finding out about books; the Web also supports people getting work done, such
as buying a book. In its current form, the Web has the following characteristics:

– HTML describes how things appear
– HTTP is stateless
– Sources are independent and heterogeneous
– Processing is asynchronous and client-server
– There is no support for integrating information
– There is no support for meaning and understanding

The envisioned Web services of the Semantic Web are expected to be

– Robust
– Composable
– Dynamic
– Distributed
– Aware of client’s needs so that they can volunteer their services.

Software Agents: The Future of Web Services 3

1.2 Current Standards for Web Services

There are a number of definitions for Web services. For example, a Web service
is said to be

– ...a piece of business logic accessible via the Internet using open standards...”
(Microsoft)

– Loosely coupled software components that interact with one another dynam-
ically via standard Internet technologies (Gartner)

– A software application identified by a URI, whose interfaces and binding are
capable of being defined, described, and discovered by XML artifacts and
supports direct interactions with other software applications using XML-
based messages via Internet-based protocols (W3C)

My working definition is: A Web service is functionality that can be engaged
over the Web.

Web services are currently based on the triad of functionalities depicted in
Figure 1. The architecture for Web services is founded on principles and stan-
dards for connection, communication, description, and discovery. For providers
and requestors of services to be connected and exchange information, there must
be a common language. This is provided by the eXtensible Modeling Language
(XML).

 Service Broker
(agent broker; directory facilitator)

Service Provider
(multiagent system

for cooperative
distributed service)

Service Requestor
(requesting agent)

Bind: SOAP
(ACL)

Find: UDDI
(ACL)

Publish: WSDL
(ACL)

Fig. 1. The general architectural model for Web services. Web services rely on the
functionalities of publish, find, and bind. The equivalent agent-based functionalities are
shown in parentheses, and all interactions are via an agent-communication language
(ACL)

4 Huhns

A common protocol is required for systems to communicate with each other,
so that they can request services, such as to schedule appointments, order parts,
and deliver information. This is provided by the Simple Object Access Protocol
(SOAP) [4].

The services must be described in a machine-readable form, where the names
of functions, their required parameters, and their results can be specified. This
is provided by the Web Services Description Language (WSDL).

Finally, clients—users and businesses—need a way to find the services they
need. This is provided by Universal Description, Discovery, and Integration
(UDDI), which specifies a registry or “yellow pages” of services.

Besides standards for XML, SOAP, WSDL, and UDDI, there is a need for
broad agreement on the semantics of specific domains. This is provided by the
Resource Description Framework (RDF) [7, 8], the DARPA Agent Modeling Lan-
guage (DAML), and, more generally, ontologies [12].

1.3 Directory Services

The purpose of a directory service is for components and participants to be able
to locate each other, where the components and participants might be appli-
cations, agents, Web service providers, Web service requestors, people, objects,
and procedures. There are two general types of directories, determined by how
entries are found in the directory: (1) name severs or white pages, where entries
are found by their name, and (2) yellow pages, where entries are found by their
characteristics and capabilities.

The implementation of a basic directory is a simple database-like mechanism
that allows participants to insert descriptions of the services they offer and query
for services offered by other participants. A more advanced directory might be
more active than others, in that it might provide not only a search service,
but also a brokering or facilitating service. For example, a participant might
request a brokerage service to recruit one or more agents who can answer a
query. The brokerage service would use knowledge about the requirements and
capabilities of registered service providers to determine the appropriate providers
to which to forward a query. It would then send the query to those providers,
relay their answers back to the original requestor, and learn about the properties
of the responses it passes on (e.g., the brokerage service might determine that
advertised results from provider X are incomplete, and so seek out a substitute
for provider X).

UDDI is itself a Web service that is based on XML and SOAP. It provides
both a white-pages and a yellow-pages service, but not a brokering or facilitating
service.

The DARPA DAML effort has also specified a syntax and semantics for
describing services, known as DAML-S. This service description provides

– Declarative ads for properties and capabilities, used for discovery
– Declarative APIs, used for execution
– Declarative prerequisites and consequences, used for composition and inter-

operation.

Software Agents: The Future of Web Services 5

2 Foundations for Web Services

Current Web services have either a database or a programming basis. Both are
unsatisfactory. To illustrate the database basis and its shortcomings, consider the
following simple business-to-customer Web service example: suppose a business
wants a software application to sell cameras over the Web, debit a credit card,
and guarantee next-day delivery. The application must

– Record a sale in a sales database
– Debit the credit card
– Send an order to the shipping department
– Receive an OK from the shipping department for next-day delivery
– Update an inventory database

What if the order is shipped, but the debit fails? What if the debit succeeds, but
the order was never entered or shipped? A traditional database approach works
only for a closed environment:

– Transaction processing monitors (such as IBMs CICS, Transarcs Encina,
BEA Systems Tuxedo) can ensure that all or none of the steps are completed,
and that systems eventually reach a consistent state

– But what if the users modem is disconnected right after he clicks on OK? Did
the order succeed? What if the line went dead before the acknowledgement
arrives? Will the user order again?

The essential problem is that the transaction processing monitor cannot get
the user into a consistent state! The user is part of the software system’s en-
vironment, which is open because it can accommodate any user. In more mod-
ern approaches designed for open environments, a server application could send
email about credit problems, or detect duplicate transactions. A downloaded
applet could synchronize with the server after a broken connection was restored
and then recover the transaction; the applet could communicate using http, or
directly with server objects via CORBA/IIOP or RMI.

If there are too many orders to process synchronously, they could be put
in a message queue, managed by a Message Oriented Middleware server (which
guarantees message delivery or failure notification), and customers would be
notified by email when the transaction is complete. In essense, the server behaves
like an agent!

With a programming basis for Web services, software is partitioned into
composable services, which are invoked by an application using, for example,
RMI. This is illustrated in Figure 2. In this figure, suppose application A invokes
service B, but B is busy and delegates the request to service C. When service C
sends a response to A, A fails because it expected a response from B.

3 Composing Cooperative Web Services

Imagine that a merchant would like to enable a customer to be able to track the
shipping of a sold item. Currently, the best the merchant can do is to point the

6 Huhns

�

�

������	����

�

����
�������

�

� ��� ���������

Fig. 2. An illustration of a programming basis for Web services

customer to the shipper’s Web site, and the customer can then go there to check
on delivery status. If the merchant could compose its own production notification
system with the shipper’s Web services, the result would be a customized delivery
notification service by which the customer—or the customer’s agents—could find
the status of a purchase in real time.

As Web uses (and thus Web interactions) become more complex, it will be
increasingly difficult for one server to provide a total solution and increasingly
difficult for one client to integrate solutions from many servers. Web services
currently involve a single client accessing a single server, but soon applications
will demand federated servers with multiple clients sharing results. Cooperative
peer-to-peer solutions will have to be managed, and this is an area where agents
have excelled. In doing so, agents can balance cooperation with the interests of
their owner.

Composing Web services requires capturing patterns of semantic and prag-
matic constraints on how services may participate in different compositions. It
also requires tools to help reject unsuitable compositions so that only acceptable
systems are built. The following challenges have not yet been met by current
implementations and standards for Web services:

Information Semantics The composer and the member services must agree
on the semantics of the information that they exchange.

Collaboration To perform even simple protocols reliably, service providers
must ensure that the parties to an interaction agree on its current state and
where they desire to take it. This requires elements of teamwork through
(1) persistence of the computations, (2) ability to manage context, and (3)
retrying.

Autonomous Interests Services should be able to participate in automated
markets, where various mechanisms are required for effective participation.
This requires abilities to (1) set prices, (2) place bids, (3) accept or reject
bids, and (4) accommodate risks.

Software Agents: The Future of Web Services 7

Personalization Effective usage of services often requires customization of the
compositions in a manner that is context sensitive, especially with respect
to user needs. This requires (1) learning a customer’s preferences, (2) mixed-
initiative interactions, offering guidance to a customer (best if it is not in-
trusive) and letting a user interrupt the composed service, and (3) acting on
behalf of a user, which is limited to ensure that a user’s autonomy is not
violated.

Exception Conditions To construct virtual enterprises dynamically in order
to provide more appropriate, packaged goods and services to common cus-
tomers requires the ability to (1) construct teams, (2) enter into multiparty
deals, (3) handle authorizations and commitments, and (4) accommodate
exceptions.

Service Location Recommendations must be provided to help customers find
relevant, high quality, and trustworthy services. This requires a means to (1)
obtain evaluations, (2) aggregate evaluations, and (3) find evaluations.

Distributed Decision-Making Decision-making will be distributed across the
composed services, which requires intelligent decisions by each service so the
composed services can collaborate and compete appropriately. The objective
is to achieve the desired composition while accommodating exceptions.

With these concerns being addressd by various research efforts, the Web will
evolve from being passive to active, client-server to peer-to-peer to cooperative,
services to processes, and semantics to mutual understanding to pragmatics and
cognition. The result, as indicated in Figure 3, will be a Semantic Web that
enables work to get done and better decisions to be made.

4 Agents Versus Web Services

Typical agent architectures have many of the same features as Web services.
Agent architectures provide yellow-page and white-page directories, where agents
advertise their distinct functionalities and where other agents search to locate
the agents in order to request those functionalities. However, agents extend Web
services in several important ways:

– A Web service knows only about itself, but not about its users/clients/customers.
Agents are often self-aware at a metalevel, and through learning and model
building gain awareness of other agents and their capabilities as interactions
among the agents occur. This is important, because without such aware-
ness a Web service would be unable to take advantage of new capabilities in
its environment, and could not customize its service to a client, such as by
providing improved services to repeat customers.

– Web services, unlike agents, are not designed to use and reconcile ontologies.
If the client and provider of the service happen to use different ontologies,
then the result of invoking the Web service would be incomprehensible to
the client.

8 Huhns

���������
	���
�������������������������������� ��!"��#$�
% &�')(+*,*.-

��� /0�����21 ��34�����657����� #839�:�����;1<���
% = �����;! ���;1 ��3>��? *A@
 % =B'

(#8���;/C�
�21 ��3ED:�����F�21G���IHJ�;#:K4���L����M
% N �;#:KPO2! ��HJ3Q��R (�S
QT N �

?A1 39�2#U1<� �
����� - ������1 �V1 �;�
% ?W����1 3+1 �;��34� ��� (! � ��3

X�Y+Z[Z]\+^Q_ `a\+bdc�\+Zfe�g h2\�iQj
k]l hPY�i l ^Jg ^Qm�g e�g m�Y>n+oPn+^Qm4iqpAn+o oPr�Z l Y+s

t YQ_8Y�Z]\B`4\+bdcu\+Zfe�g h)\�iQj
kfl hPY�i l ^ l Z]r+n+^+g vUnQ_8g l ^Bn+^Qm4i l h9g \Q_xw

yqzU{�|�}

Fig. 3. Beyond the Semantic Web

– Agents are inherently communicative, whereas Web services are passive un-
til invoked. Agents can provide alerts and updates when new information
becomes available. Current standards and protocols make no provision for
even subscribing to a service to receive periodic updates.

– A Web service, as currently defined and used, is not autonomous. Autonomy
is a characteristic of agents, and it is also a characteristic of many envisioned
Internet-based applications. Among agents, autonomy generally refers to so-
cial autonomy, where an agent is aware of its colleagues and is sociable, but
nevertheless exercises its independence in certain circumstances. Autonomy
is in natural tension with coordination or with the higher-level notion of a
commitment. To be coordinated with other agents or to keep its commit-
ments, an agent must relinquish some of its autonomy. However, an agent
that is sociable and responsible can still be autonomous. It would attempt
to coordinate with others where appropriate and to keep its commitments as
much as possible, but it would exercise its autonomy in entering into those
commitments in the first place.

– Agents are cooperative, and by forming teams and coalitions can provide
higher-level and more comprehensive services. Current standards for Web
services do not provide for composing functionalities.

Software Agents: The Future of Web Services 9

4.1 Benefits of an Agent-Oriented Approach

Multiagent systems can form the fundamental building blocks for software sys-
tems, even if the software systems do not themselves require any agent-like be-
haviors [19]. When a conventional software system is constructed with agents as
its modules, it can exhibit the following characteristics:

– Agent-based modules, because they are active, more closely represent real-
world things

– Modules can hold beliefs about the world, especially about themselves and
others

– Modules can negotiate with each other, enter into social commitments to
collaborate, and can change their mind about their results

– Modules can volunteer to be part of a software system.

The benefits of building software out of agents are [5, 15]

1. Agents enable dynamic composibility, where the components of a system can
be unknown until runtime

2. Agents allow interaction abstractions, where interactions can be unknown
until runtime

3. Because agents can be added to a system one-at-a-time, software can con-
tinue to be customized over its lifetime, even potentially by end-users

4. Because agents can represent multiple viewpoints and can use different de-
cision procedures, they can produce more robust systems. The essence of
multiple viewpoints and multiple decision procedures is redundancy, which
is the basis for error detection and correction.

4.2 Advanced Composition

Suppose an application needs simply to sort some data items, and suppose there
are 5 Web sites that offer sorting services described by their input data types,
output date type, time complexity, space complexity, and quality:

1. One is faster
2. One handles more data types
3. One is often busy
4. One returns a stream of results, while another returns a batch
5. One costs less

An application could take one of the following possible approaches:

– Application invokes services randomly until one succeeds
– Application ranks services and invokes them in order until one succeeds
– Application invokes all services and reconciles the results
– Application contracts with one service after requesting bids
– Services self-organize into a team of sorting services and route requests to

the best one

The last two require that the services behave like agents. Furthermore, the last
two are scalable and robust, because they take advantage of the redundancy that
is available.

10 Huhns

5 Redundancy and Robustness

Redundancy is the basis for most forms of robustness. It can be provided by
replication of hardware, software, and information, and by repetition of com-
munication messages. For years, NASA has made its satellites more robust by
duplicating critical subsystems. If a hardware subsystem fails, there is an iden-
tical replacement ready to begin operating. The space shuttle has quadruple re-
dundancy, and won’t leave the ground without all copies functioning. However,
software redundancy has to be provided in a different way. Identical software
subsystems will fail in identical ways, so extra copies do not provide any benefit.

Moreover, code cannot be added arbitrarily to a software system, just as steel
cannot be added arbitrarily to a bridge. When we make a bridge stronger, we do
it by adding beams that are not identical to ones already there, but that have
equivalent functionality. This turns out to be the basis for robustness in software
systems as well: there must be software components with equivalent functionality,
so that if one fails to perform properly, another can provide what is needed.
The challenge is to design the software system so that it can accommodate the
additional components and take advantage of their redundant functionality.

We hypothesize that agents are a convenient level of granularity at which
to add redundancy and that the software environment that takes advantage of
them is akin to a society of such agents, where there can be multiple agents filling
each societal role [13]. Agents by design know how to deal with other agents, so
they can accommodate additional or alternative agents naturally. They are also
designed to reconcile different viewpoints.

Fundamentally, the amount of redundancy required is well specified by infor-
mation and coding theory. Assume each software module in a system can behave
either correctly or incorrectly. Then two modules with the same intended func-
tionality are sufficient to detect an error in one of them, and three modules are
sufficient to correct the incorrect behavior (by voting, or choosing the best two-
out-of-three). This is exactly how parity bits work in code words. Unlike parity
bits, and unlike bricks and steel bridge beams, however, the software modules
can’t be identical, or else they would not be able to correct each other’s errors.

If we want a system to provide n functionalities robustly, we must introduce
m×n agents, so that there will be m ways of producing each functionality. Each
group of m agents must understand how to detect and correct inconsistencies
in each other’s behavior, without a fixed leader or centralized controller. If we
consider an agent’s behavior to be either correct or incorrect (binary), then,
based on a notion of Hamming distance for error-correcting codes, 4m agents
can detect m− 1 errors in their behavior and can correct (m− 1)/2 errors.

Fundamentally, redundancy must be balanced with complexity, which is de-
termined by the number and size of the components chosen for building a system.
That is, adding more components increases redundancy, but might also increase
the complexity of the system. This is just another form of the common software
engineering problem of choosing the proper size of the modules used to imple-
ment a system. Smaller modules are simpler, but their interactions are more
complicated because there are more modules.

Software Agents: The Future of Web Services 11

An agent-based system can cope with a growing application domain by in-
creasing the number of agents, each agent’s capability, the computational re-
sources available to each agent, or the infrastructure services needed by the
agents to make them more productive. That is, either the agents or their inter-
actions can be enhanced, but to maintain the same degree of redundancy n, they
would have to be enhanced by a factor of n.

To underscore the importance being given to redundancy and robustness,
several initiatives are underway around the world to investigate them. IBM has
a major initiative to develop autonomic computing—“a systemic view of com-
puting modeled after the self-regulating autonomic nervous system.” Systems
that can run themselves incorporate many biological characteristics, such as
self-healing (redundancy), adaptability to changing environments (reconfigura-
bility), identity (awareness of their own resources), and immunity (automatic
defense against viruses). An autonomic computing system will adhere to self-
healing, not by “cellular regrowth,” but by making use of redundant elements to
act as replenishment parts. By taking advantage of redundant services located
around the world, a better range of services can be provided for customers in
business transactions.

5.1 N-Version Programming

N-version programming, also called dissimilar software, is a technique for achiev-
ing robustness first considered in the 1970’s. It consists of N disparate and sepa-
rately developed implementations of the same functionality. Although it has been
used to produce several robust systems, it has had limited applicability, because
(1) N independent implementations have N times the cost, (2) N implementa-
tions based on the same flawed specification might still result in a flawed system,
and (3) the resultant system might have N times the maintenance cost (e.g., each
change to the specification will have to be made in all N implementations).

5.2 Transaction Checkpointing, Rollback, and Recovery

Database systems have exploited the idea of transactions for maintaining the
consistency of their data. A transaction is an atomic unit of processing that
moves a database from one consistent state to another. Consistent transactions
are achievable for databases because the types of processing done are very regular
and limited.

Applying this idea to general software execution requires that the state of
a software system be saved periodically (a checkpoint) so that the system can
return to that state if an error occurs. The system then returns to that state and
processes other transactions or alternative software modules. This is depicted in
Figure 4.

There are two ways of returning to a previous state: (1) reloading a saved
image of the system before the recently failed computation, or (2) rolling back,
i.e., reversing and undoing, each step of the failed computation. Both of the ways
suffer from major difficulties:

12 Huhns

�����������
	�� ��
�������� ������� � ��� ����� � ���

	���� � ��� ��� ��� � !"��� �$#&%���� ��� � ���

'����(�*) ����+�� �

) ���,� ��� �$��� ��� �

-�.0/ 1 20354

�6�����7� ��� � !"��� �$��� ��� �

8:9

Fig. 4. A transaction approach to correcting for the occurrence of errors in a software
system

Software Agents: The Future of Web Services 13

1. The state of a software system might be very large, necessitating the saving
of very large images

2. Many operations cannot be undone, such as those that have side-effects. Ex-
amples of these are sending a message, which cannot be un-sent, and spend-
ing resources, which cannot be un-spent. Rollback is successful in database
systems, because most database operations do not have side-effects.

5.3 Compensation

Because of this, compensation is often a better alternative for software systems.
Figure 5 depicts the architecture of a robust software system that relies on
compensation of failed operations.

�����������
	�� ��
�������� ������� � ��� ����� � ���

	���� � ��� ��� ��� � !"��� �$#&%���� ��� � ���

'����(�*) ����+�� �

�,���-%��������.� �/#"%���� ��� � ���

02143 5 687:9
;=<

Fig. 5. An architecture for software robustness based on compensating operations

6 Architecture and Process

Suppose there are a number of sorting algorithms available. Each might have
strengths, weaknesses, and possibly errors. One might work only for integers,

14 Huhns

while another might be slower but be able to sort strings as well as integers.
How can the algorithms be combined so that the strengths of each are exploited
and the weaknesses or flaws of each are compensated or covered? In solving this
in a general way, we hypothesize that the end result is an “agentizing” of each
algorithm.

A centralized approach, as shown in Figure 6, would use an omniscient pre-
processing algorithm to receive the data to be sorted and would then choose
the best algorithm to perform the sorting. Each module’s characteristics have
to be encoded into the central unit. The central unit can use a simplistic algo-
rithm for determining the best, based on known facts about each of the modules.
The difficulties with this approach are (1) the preprocessing algorithm might be
flawed and (2) it is difficult to maintain such a preprocessing algorithm as new
algorithms are added and existing algorithms become unavailable. Also, only one
module at-a-time executes, there is low CPU usage, and results are taken as-is
when completed.

�����������
	��
���� � � ��������������������� ��������� �
� �!���"�� #��$� � �%��&'��!���()��(������*� � ��� �)� �

+,��� ��-.� +/��� ��-�# +/��� ��-�0 +/��� ��-�1 +/��� ��-�2

3%4 5�687 9;:=<�>�?

3@4 5�687 9'A%9/>�B/7 C

Fig. 6. Centralized architecture for combining N versions of a sorting algorithm into a
single, more robust system for sorting, where a preprocessing algorithm chooses which
sorting algorithm will execute

An improvement might be a postprocessing algorithm, as shown in Figure 7,
that receives the results of all sorting algorithms and chooses the best result to

Software Agents: The Future of Web Services 15

be the output. Results have to be compared and voted on to determine the best.
This approach is also centralized and suffers from a waste of CPU resources,
because all algorithms work on the data. However, due to the comparison of
outcomes, it is likely to produce better results.

����� ���	� �
��� ���
� �
��� ���
� �
��� ���
� �
��� ���
�

��� ����� ���������

��� ����� �! ��
��"
� #

$%��&('�)�� *,+	*�-�.�/ � -�)�0�12�
*
/ *�34��5
*�-4�

Fig. 7. Centralized architecture for combining N versions of a sorting algorithm into a
single, more robust system for sorting, where a postprocessing algorithm chooses one
result to be the output

A combination of the preprocessing and postprocessing centralized systems
could also be used. Since the characteristics of each module are known, a sub-
group could be selected to perform the desired task based on known factors such
as speed, time, and space. This subgroup would then have its results compared
to determine the best results as above. Because certain modules will be selected
every time the same set of circumstances come up, a better way of develop-
ing a conventional system would be to hard-wire these sets of circumstances to
eliminate the need for a central intelligent filtering unit.

A fourth approach is a distributed solution, where the algorithms jointly
decide which one(s) should perform the sorting, and if there is more than one
qualified algorithm, they jointly decide on the best result. Conventional algo-
rithms do not typically have such a distributed decision-making ability, so we
investigated whether there is a generic capability that can be added to an algo-

16 Huhns

rithm to enable it to participate in a distributed decision. We discovered that
the result has the characteristics of a software agent.

We collected a number of sorting algorithms, each written by different people
and therefore having different characteristics (such as input data type, output
data type, and time and space complexity). For our experiments, we converted
each algorithm into a sorting agent.

Each sorting agent is composed of a sorting algorithm and a wrapper for that
algorithm. The wrapper knows nothing about the inner workings of the algorithm
with which it is associated. It has knowledge only about the characteristics of
its algorithm, such as the data type(s) it can sort, the data type it produces, its
time complexity, and its space complexity. The sorting algorithms were written
in Java and the wrappers in JADE [18].

The system sends data to be sorted to all the sorting agents. Their responsi-
bility (as a group) is the sorting of the data, and they should be able to do this
better than any one of them alone. Upon receiving data to be sorted, each agent
determines whether or not it can sort it successfully (based on the type of the
data and its own knowledge of what types it can sort) and if the agent can, it
broadcasts a message to every other agent specifying its intention, along with a
measure of performance for its algorithm (based on time and space complexity).

The decision of which agent (i.e., algorithm) to choose (among those that
are capable of sorting the input data) is made in a distributed manner: upon
receiving the estimates from the other agents, each agent compares its own per-
formance measure against those received in the messages. If the agent has the
best performance measure, it will run its algorithm and send the results back to
the system. If it does not have the best performance measure, it will do nothing.
The results, not surprisingly, showed that the agent-based composition of sorting
algorithms performed better than any individual algorithm.

7 Conclusion: Challenges and Implications for Developers

Producing robust software has never been easy, distributing it across the Web
makes it much more difficult, and the approach recommended here would have
major effects on the way that developers construct software systems:

– It is difficult enough to write one algorithm to solve a problem, let alone n
algorithms. However, algorithms, in the form of agents, are easier to reuse
than when coded conventionally and easier to add to an existing system,
because agents are designed to interact with an arbitrary number of other
agents.

– Agent organizational specifications need to be developed to take full advan-
tage of redundancy.

– Agents will need to understand how to detect and correct inconsistencies in
each other’s behavior, without a fixed leader or centralized controller.

– There are problems when the agents either represent or use nonrenewable
resources, such as CPU cycles, power, and bandwidth, because they will use
it n times as fast.

Software Agents: The Future of Web Services 17

– Although error-free code will always be important, developers will spend
more time on algorithm development and less on debugging, because different
algorithms will likely have errors in different places and can cover for each
other.

– In some organizations, software development is competitive in that several
people might write an algorithm to yield a given functionality, and the “best”
algorithm will be selected. Under the approach suggested here, all algorithms
would be selected.

Web services are extremely flexible, and a major advantage is that a developer
of Web services does not have to know who or what will be using the services
being provided. They can be used to tie together the internal information systems
of a single company or the interoperational systems of virtual enterprises. But
how Web services tie the systems together will be based on technologies being
developed for multiagent systems.

Acknowledgements

The US National Science Foundation supported this work under grant number
IIS-0083362.

References

1. Berners-Lee, Tim, James Hendler, and Ora Lassila: “The Semantic Web,” Scientific
American, vol. 284, no. 5, May 2001, pp. 34–43.

2. Beugnard, Antoine, Jean-Marc Jezequel, Noel Plouzeau, and Damien Watkins:
“Making Components Contract Aware,” IEEE Computer, Vol. 32, No. 7, July 1999,
pp. 38–45.

3. Booch, Grady, James Rumbaugh, and Ivar Jacobson: The Unified Modeling Lan-
guage User Guide. Addison-Wesley, Reading, MA, 1999.

4. Box, D., et al.: “Simple Object Access Protocol (SOAP) 1.1,” 2000.
http://www.w3.org/TR/SOAP

5. Coelho, Helder, Luis Antunes, and Luis Moniz: “On Agent Design Rationale.” In
Proceedings of the XI Simposio Brasileiro de Inteligencia Artificial (SBIA), Fort-
aleza (Brasil), October 17–21, 1994, pp. 43–58.

6. Cox, Brad J.: “Planning the Software Industrial Revolution.” IEEE Software,
November 1990, pp. 25–33.

7. Decker, Stefan, et al.: “The Semantic Web: The Roles of XML and RDF,” IEEE
Internet Computing, vol. 4, no. 5, September-October 2000, pp. 63–74.

8. Decker, Stefan, P. Mitra, and S. Melnik: “Framework for the Semantic Web: An
RDF Tutorial,” IEEE Internet Computing, vol. 4, no. 6, November-December 2000,
pp. 68–73.

9. DeLoach, S.: “Analysis and Design using MaSe and agentTool.” In Proceedings of
the 12th Midwest Artificial Intelligence and Cognitive Science Conference (MAICS
2001), 2001.

18 Huhns

10. Dignum, Frank, Barbara Dunin-Keplicz, and Rineke Verbrugge: “Dialogue in team
formation: a formal approach” In van der Hoek, W., Meyer, J. J., and Wittenveen,
C., Editors, ESSLLI99 Workshop: Foundations and applications of collective agent
based systems, (1999).

11. Hasling, John: Group Discussion and Decision Making, Thomas Y. Crowell Com-
pany, Inc. (1975).

12. Heflin, Jeff and James A. Hendler: “Dynamic Ontologies on the Web,” In Proceed-
ings American Association for Artificial Intelligence (AAAI), AAAI Press, Menlo
Park, CA, 2000, pp. 443–449.

13. Holderfield, Vance T. and Michael N. Huhns: “A Foundational Analysis of Soft-
ware Robustness Using Redundant Agent Collaboration.” In Proceedings Interna-
tional Workshop on Agent Technology and Software Engineering, Erfurt, Germany,
October 2002.

14. Huhns, Michael N. and Vance T. Holderfield: “Robust Software,” IEEE Internet
Computing, vol. 6, no. 2, March-April 2002, pp. 80–82.

15. Huhns, Michael N.: “Interaction-Oriented Programming.” In Agent-Oriented Soft-
ware Engineering, Paulo Ciancarini and Michael Wooldridge, editors, Springer Ver-
lag, Lecture Notes in AI, Volume 1957, Berlin, pp. 29-44 (2001).

16. Iglesias, C. A., M. Garijo, J. C. Gonzales, and R. Velasco: “Analysis and Design of
Multi-Agent Systems using MAS-CommonKADS.” In Proceedings of the AAAI’97
Workshop on agent Theories, Architectures and Languages, Providence, USA, 1997.

17. Iglesias, C. A., M. Garijo, and J. Gonzalez: “A survey of agent-oriented method-
ologies.” In J. Muller, M. P. Singh, and A. S. Rao, editors, Proceedings of the 5th
International Workshop on Intelligent Agents V: Agent Theories, Architectures, and
Languages (ATAL-98). Springer-Verlag: Heidelberg, Germany, 1999.

18. JADE: Java Agent Development Environment,
http://sharon.cselt.it/projects/jade.

19. Jennings, Nick R.: “On Agent-Based Software Engineering” Artificial Intelligence,
117 (2) 277–296 (2000).

20. Juan, T., A. Pearce, and L. Sterling: “Extending the Gaia Methodology for Com-
plex Open Systems.” In Proceedings of the 2002 Autonomous Agents and Multi-
Agent Systems, Bologna, Italy, July 2002.

21. Kalinsky, David: “Design Patterns for High Availability.” Embedded Systems Pro-
gramming (August 2002) 24–33.

22. Kinny, David and Michael Georgeff: “Modelling and Design of Multi-Agent Sys-
tems,” in J.P. Muller, M.J. Wooldridge, and N.R. Jennings, eds., Intelligent Agents
III — Proceedings of the Third International Workshop on Agent Theories, Archi-
tectures, and Languages, Springer-Verlag, Berlin, 1997, pp. 1–20.

23. Kinny, D., M. Georgeff, and A. Rao: “A Methodology and Modeling technique for
systems of BDI agents.” In Proceedings of the 7th European workshop on modeling
autonomous agents in a multi-agent world, LNCS 1038, pp. 56–71, Springer-Verlag,
Berlin Germany, 1996.

24. Laddaga, Robert: “Creating Robust Software through Self-Adaptation,” IEEE In-
telligent Systems, Vol. 14, No. 3, May/June 1999, pp. 26–29.

25. Light, Donald, Suzanne Keller, and Craig Calhoun: Sociology Alfred A. Knopf/New
York (1989).

26. Lorge, I. and H. Solomon: “Two models of group behavior in the solution of Eureka-
type problems.” Psychometrika (1955).

27. Nwana, Hyacinth S. and Michael Wooldridge: “Software Agent Technologies.” BT
Technology Journal, 14(4):68-78 (1996).

Software Agents: The Future of Web Services 19

28. Odell, J., H. Van Dyke Parunak, and Bernhard Bauer: “Extending UML for
Agents.” In Proceedings of the Agent-Oriented Information Systems Workshop, Gerd
Wagner, Yves Lesperance, and Eric Yu eds., Austin, TX, 2000.

29. Padgham, L. and M. Winikoff: “Prometheus: A Methodology for Developing In-
telligent Agents.” In Proceedings of the Third International Workshop on Agent-
Oriented Software Engineering, at AAMAS 2002. July, 2002, Bologna, Italy.

30. Paulson, Linda Dailey: “Computer System, Heal Thyself,”IEEE Computer, (Au-
gust 2002) 20–22.

31. Perini, A., P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos: “A knowl-
edge level software engineering methodology for agent oriented programming.” In
Proceedings of Autonomous Agents, Montreal CA, 2001.

32. Schreiber, A. T., B. J. Wielinga, and J. M. A. W. Van de Velde: ”CommonKADS:
A comprehensive methodology for KBS development,” 1994.

33. Shapley, L. S. and B. Grofman: “Optimizing group judgmental accuracy in the
presence of interdependence” Public Choice, 43: 329-343 (1984).

34. Swap, Walter C., et al.: Group Decision Making, SAGE Publications, Inc., Beverly
Hills, London, New York (1984).

35. Tambe, Milind, David V. Pynadath, and Nicolas Chauvat: “Building Dynamic
Agent Organizations in Cyberspace,” IEEE Internet Computing, Vol. 4, No. 2,
March/April 2000.

36. Wooldridge, M., N. R. Jennings, and D. Kinny: “The Gaia Methodology for Agent-
Oriented Analysis and Design.” Journal of Autonomous Agents and Multi-Agent
Systems, 2000.

