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Abstract. Traditional businesses are finding great advantages from the incorporation of E-business ca-
pabilities, especially for participation in the global economy. The global economy is inherently open and
dynamic, which imposes a requirement that businesses must coordinate with each other if they are to be
most efficient and successful. To aid in this coordination and achieve seamless and autonomic interoperation,
e-business partners are choosing to be represented by service agents. However, before service agents are able
to coordinate well with each other, they need to understand each others’ service descriptions. Ontologies
developed by service providers to describe their service can help in this. Unfortunately, due to the het-
erogeneity implicit in independently designed ontologies, distributed e-businesses will encounter semantic
mismatches and misunderstandings. In this chapter, we introduce a compatibility vector system, created
upon a schema-based ontology-merging algorithm, to determine and maintain ontology compatibility, which
can be used as a basis for businesses to select candidate partners with which to interoperate.

1 Introduction

Because of its potential to provide new opportunities and unparalleled efficiencies, e-business is increasingly
being utilized by enterprises. Broadly speaking, e-business can be regarded as any business process that relies
on an automated information system, which typically incorporates Web-based technologies. The Web-based
technologies within e-business enable companies to link their internal and external data processing systems
in more efficient and flexible ways, so that they can be more agile and responsive to their customers.

E-business is usually conducted using the dynamic environment of the Internet and the World-Wide Web.
Therefore, to introduce agents into e-business, i.e., to represent services or business partners by agents, might
increase the extent to which the data process is automated. This possible advantage results from agents’
autonomy and proactiveness.

1



It has been discovered that exposing formerly internal activities to external business collaborators can
yield increased value. Although there is value in accessing the service provided by a single agent through
a semantically well-founded interface, greater value is derived through enabling a flexible composition of
e-businesses, which not only creates new services, but also potentially adds value to existing ones (Singh
and Huhns, 2005). As the first step of communication and integration of e-business activities, mutual
understanding of semantics among services plays an important role in the composition process.

An ontology serves as a declarative model for the knowledge and capabilities possessed by an agent or
of interest to an agent. It forms the foundation upon which machine-understandable service descriptions
can be obtained and, as a result, it makes automatic coordination among agents possible. By providing a
more comprehensible and formal semantics, the use of and reference to ontologies can help the functionalities
and behaviors of agents to be described, advertised, discovered, and composed by others. Eventually, these
agents would be able to interoperate with each other, even though they have not been designed to do so.

However, because it is impractical to force all agents to adopt a global ontology that describes every
concept that is or might be included as part of their services, ontologies from different agents typically
have heterogeneous semantics. Due to this basic characteristic, agents need to reconcile ontologies and form
a mutual understanding when they interact with each other. Only via this means will agents be able to
comprehend and/or integrate the information from different sources, and enhance process interoperability
thereafter.

In this chapter, we focus on an important but mostly neglected research topic—how to select suitable
business partners with which to interact. More compatible ontologies are likely to yield better understanding
among the partners. In this sense, ontology compatibility is used as a basis for businesses to select candidate
partners. Based on this insight, we design a compatibility vector system, built upon an ontology-merging
algorithm, to measure and maintain ontology compatibility.

2 Related Work

2.1 Related Work in Ontology Matching

The need for automatic or semi-automatic mapping, matching, and merging of ontologies from different
sources has prompted considerable research, such as GLUE (Doan et al., 2003), PROMPT (Noy and Musen,
2000), Cupid (Madhavan et al., 2001), COMA (Do and Rahm, 2002), Similarity Flooding (Melnik et al.,
2002), S-Match (Giunchiglia et al., 2005), and Puzzle (Huang et al., 2005). Here we briefly describe these
systems. The more detailed information about their comparisons can be found in our other publications
about ontology matching algorithms, http://www.cse.sc.edu/∼huang27/paper/JPCC.pdf for example.

PROMPT is a tool that uses linguistic similarity matches between concepts for initiating the merging
or alignment process, and then uses the underlying ontological structures of the Protégé-2000 environment
to inform a set of heuristics for identifying further matches between the ontologies. PROMPT has good
performance in terms of precision and recall. However, user intervention is required, which is not always
available in many applications.

Similarity Flooding utilizes a hybrid matching technique based on a measure of similarity spreading from
similar nodes to their adjacent neighbors. Before a fix-point is reached, alignments between nodes are refined
iteratively. This algorithm considers only simple linguistic similarity between node names, ignoring node
properties and inter-node relationships.

Cupid combines linguistic and structural schema matching techniques, as well as the help of a precompiled
dictionary. But it can only work with a tree-structured ontology instead of a more general graph-structured
one. As a result, there are many limitations to its application, because a tree cannot represent multiple-
inheritance, an important characteristic in ontologies.

COMA provides an extensible library of matching algorithms, a framework for combining results, and an
evaluation platform. According to their evaluation, COMA is performing well in terms of precision, recall,
and other measures. Although being a composite schema matching tool, COMA does not integrate reasoning
and machine learning techniques.

S-Match is a modular system into which individual components can be plugged and unplugged. The
core of the system is the computation of relations. Five possible relations are defined between nodes:
equivalence, more general, less general, mismatch, and overlapping. Giunchiglia et al. claim that S-Match
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outperforms Cupid, COMA, and Similarity Flooding in measurements of precision, recall, overall, and F-
measure. However, like Cupid, S-Match uses a tree-structured ontology.

GLUE introduces well-founded notions of semantic similarity, applies multiple machine learning strate-
gies, and can find not only one-to-one mappings, but also complex mappings. However, it depends heavily
on the availability of instance data. Therefore, it is not practical for cases where there is an insufficient
number of instances or no instance at all.

2.2 Related Work in Ontology Application in E-Service

The application of ontologies in e-service environments has been studied widely. In (Honavar et al., 2001),
Honavar et al. describe several challenges in information extraction and knowledge acquisition from hetero-
geneous, distributed, autonomously operated, and dynamic data sources when scientific discovery is carried
out in data-rich domains. They outline the key elements of algorithmic and systems solutions for computer-
assisted scientific discovery in such domains, including ontology-assisted approaches to customizable data
integration and information extraction from heterogeneous and distributed data sources. Ontology-driven
approaches to exploratory data analysis from alternative ontological perspectives are also discussed.

An ontology-based information retrieval model for the Semantic Web is presented in (Song et al., 2005).
The authors generate an ontology through translating and integrating domain ontologies. The terms defined
in the ontology are used as metadata to markup the Web’s content; these semantic markups are semantic
index terms for information retrieval. The equivalent classes of semantic index terms are obtained by using
a description logic reasoner. It is claimed that the logical views of documents and user information needs,
generated in terms of the equivalent classes of semantic index terms, can represent documents and user
information needs well, so the performance of information retrieval can be improved when a suitable ranking
function is chosen.

Tijerino et al. introduce an approach (TANGO) to generate ontologies based on table analysis (Tijerino
et al., 2005). TANGO aims to understand a table’s structure and conceptual content; discover the constraints
that hold between concepts extracted from the table; match the recognized concepts with ones from a more
general specification of related concepts; and merge the resulting structure with other similar knowledge
representations. The authors claim that TANGO is a formalized method of processing the format and
content of tables that can serve to incrementally build a relevant reusable conceptual ontology.

2.3 Related Work in Quality of Service

Quality of service (QoS) is becoming a significant factor with the widespread deployment of Web services.
By QoS, we refer to the non-functional properties of services, such as reliability, availability, and security.
Ontology quality consists of many aspects, of which the compatibility is one of the most important ones,
because better compatibility leads directly to better understanding, which is critical during business inter-
actions. Notice that the quality of services themselves is a separate research topic that will not be covered
in this chapter.

(Bilgin and Singh, 2004) proposes a Service Query and Manipulation Language (SWSQL) to maintain
QoS attribute ontologies and to publish, rate, and select services by their functionality as well as QoS
properties. Based on SWSQL, they extend the UDDI registry to a service repository by combing a relational
database and an attribute ontology.

Zhou et al. (Zhou et al., 2004) provide a DAML-QoS ontology as a complement to a DAML-S ontology in
which multiple QoS profiles can be attached to one service profile. In addition, they present a matchmaking
algorithm for QoS properties.

One widely used QoS attribute is user rating, but it is subjective to the perception of an end user and is
limited by the lack of an objective representation of performance history. Kalepu et al. (Kalepu et al., 2004)
introduce reputation, a composition of user rating, compliance, and verity as a more viable QoS attribute.
Ontologies are applied to QoS-aware service selection, execution, and composition. A selected ontology itself
can adopt some QoS measures to facilitate mutual ontology understanding as discussed in this paper.
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3 Example Scenario and Our Solution

3.1 A Running Example

An example scenario of the business interaction within an e-business environment can be envisioned as
follows. E-business partners are represented by service agents, then:

1. A number of agents form an e-business community (EBC) within which services provided by different
agents might be integrated and have the ability to render a more complete and functional service. This
integration requires the mutual understanding of the individual ontologies underlying each agent.

2. The agents outside this EBC can request help from the community and make use of its services,
either the original ones or the integrated one. This request requires not only an understanding of the
related ontologies, but also the ability to choose suitable agent(s), especially under the situations where
resources are limited.

Consider the travel business as an example. Many websites provide services for this business area,
e.g., Expedia.com, Orbitz.com, and Hotels.com. When a customer makes his/her travel plan, it is very
possible that, for some specific dates, one website would provide a flight ticket with the lowest price, while
another website would have the best offer in car rentals, and a third website would offer the cheapest hotel
reservations. Therefore, it is preferable for the services from all these websites to be integrated to render
the best vacation package for each customer. On the other hand, some customers might be interested in one
service alone, only to buy a flight ticket for example. In this case, these customers would find it beneficial if
there is an agent gathering and comparing information from all related websites. In either case, the mutual
understanding among agents representing different websites is necessary.

Two major problems need to be solved. First, during the formation of an EBC, how can it be ensured
that all agents within the community have no problem in understanding each other’s ontology? Second, an
agent seeking coordination from outside this community would like to choose those agents that understand
its ontology best. How can it ensure this selection is a correct one?

3.2 Solution Overview

We design an ontology compatibility vector system to tackle the above challenges. This vector system is
built upon an ontology-merging algorithm. Our main idea is: along with the formation of an EBC, we create
a center ontology by merging all original ones; then the distances (dissimilarities) from original ontologies to
this center are suitably encoded in the compatibility vectors stored in the center. Based on the information
contained in the vectors, partners are supposed to understand the ontology from each other without trouble,
and the partner from outside this community will have no difficulty in choosing candidate partners that have
ontologies with good compatibilities. In addition, these vectors can be adjusted efficiently and dynamically
during the period in which the EBC is formed. In the following sections, we will first briefly introduce our
algorithm in merging ontologies, then we present the compatibility vector system in detail.

4 A Schema-Based Ontology-Merging Algorithm

Our goal is to develop a methodology for constructing a merged ontology from two original ones. This
methodology can then be applied iteratively to merge all original ontologies within an EBC. Our methodology
extends the ontology-merging algorithm presented in (Huang et al., 2005), and is summarized next.

4.1 Top-Level Procedure

The ontology merging is carried out at the schema level. Internally we represent an ontology using a directed
acyclic graph G(V,E), where V is a set of ontology concepts (nodes), and E is a set of edges between two
concepts, i.e., E = {(u, v)|u, v ∈ V and u is a superClass of v}. In addition, we assume that all ontologies
share “Thing” as a common built-in root. In order to merge two ontologies, G1 and G2, we try to relocate
each concept from one ontology into the other one. We adopt a breadth-first order to traverse G1 and pick
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up a concept C as the target to be relocated into G2. Consequently, at least one member of C’s parent set
Parent(C) in the original graph G1 has already been put into the suitable place in the destination graph G2

before the relocation of C itself. The following pseudocode describes this top-level procedure, whose time
complexity is O(n2), with n the number of concepts in the resultant merged ontology.

Input: Ontology G1 and G2

Output: Merged Ontology G2

begin

new location of G1’s root = G2’s root

for each node C (except for the root) in G1

Parent(C) = C’s parent set in G1

for each member pi in Parent(C)

pj = new location of pi in G2

relocate(C, pj)

end for

end for

end

Top-Level Procedure - merge(G1, G2)

4.2 Relocate Function

The relocate function in the top-level procedure is used to relocate C into a subgraph rooted by pj . The
main idea is: try to find the relationship between C and pj ’s direct child(ren) in the following descending
priorities: equivalentClass, superClass, and subClass. Because equivalentClass has most significant and
accurate information, it is straightforward that equivalentClass has been assigned the highest priority. For
superClass and subClass, since we adopt a top-down procedure to relocate concepts, the former has been
given a higher priority than the latter. If we cannot find any of these three relationships, the only option is
for us to let C be another direct child of pj .

4.3 Extensions to Puzzle

In this chapter, two extensions have been applied to Puzzle system. The purpose is to increase the perfor-
mance of this ontology-merging algorithm.

4.3.1 Enriched Contextual Matching

relocation value = wlinguistic × vlinguistic + wcontextual × vcontextual. (1)

In (Huang et al., 2005), Equation (1) is used to figure out the likelihood of correctly relocating a concept.
vcontextual, calculated based on a concept’s contextual feature, considers a concept’s properties and its
subClassOf relationship. We enrich the contextual matching by including a concept’s other relationships,
such as disjointWith, partOf , and contains, etc. By taking into account more relationships, we gain more
complete semantics of concepts of interest.
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4.3.2 Weight Learning through Artificial Neural Networks

In (Huang et al., 2005), different weights for the linguistic matching and the contextual matching, i.e.,
wlinguistic and wcontextual, are specified by a developer based on trial-and-error. Here we apply an artifi-
cial neural network (ANN) technique to learn these weights. For simplicity, we rewrite wlinguistic as w1,
wcontextual as w2, vlinguistic as v1, and vcontextual as v2. Our learning problem is designed as follows.

• Task T : match two ontologies

• Performance measure P : Precision and Recall with regard to manual matching

• Training experience E: a set of equivalent concept pairs by manual matching

• Target function V : a pair of concepts → <

• Target function representation: V̂ (b) =
2∑

i=1

(wivi)

In this learning problem, the hypothesis space is a two-dimensional space consisting of w1 and w2. For
every weight vector ~w in our hypothesis space, our learning objective is to find the vector that best fits the
training examples. We adopt gradient descent (delta rule) as our training rule, and our searching strategy
within the hypothesis space is to find the hypothesis, i.e., weight vector, that minimizes the training error
with regard to all training examples. The training error E and the weight update rule are given in Equations
(2) and (3), respectively.

E(~w) ≡ 1
2

∑
d∈D

[(tr − od) + (tc − od)]2. (2)

∆wi = η
∑
d∈D

[(tr − od) + (tc − od)]vid. (3)

D is the set of training examples; od is the output of the network for a specific training example d; η is the
learning rate; and vid is the vi value for d. tr and tc are explained here. We have a matrix M recording the
relocation values for pairwise concepts (one from G1, the other from G2). A given pair of manually matched
concepts corresponds to a cell [i, j] in M, and tr and tc are the maximum value for row i and column j,
respectively.

5 Compatibility Vector System

We first create a center ontology, then we calculate the concept distance from original ontologies to this
center. Finally, compatibility vectors are created and stored in the center. Notice that this whole process is
carried out incrementally, along with the joining of partners into an EBC.

5.1 Center Ontology and Concept Distance

5.1.1 Formation of a Center

As mentioned before, the center is generated by merging all original ontologies, step by step, as each new
partner joins an EBC. At the beginning, when there is only one partner, its ontology is regarded as the
center. With new partners join the community, the new ontologies are merged with the current center. The
resultant merged ontology is the newly obtained center.
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Figure 1: Graphical Representations for O1 and center1

5.1.2 Concept Distance Calculation

Being the result of merging original ontologies, the center contains information from all sources. With
respect to whether or not a specific original ontology, Oi, understands each concept in the center, there are
two situations. The first one is that for one specific concept in the center, Oi can understand it, but possibly
with less accurate and/or complete information. The second situation is that Oi is not able to recognize that
concept at all. In either case, the concept distance is represented by the amount of information missing, i.e.,
the number of relationships not known in Oi. Equation (4) formalizes the concept distance d.

d =
2∑

i=1

(wini), (4)

where n1 is the number of sub/superClassOf relationships not known in Oi, n2 is the number of other
relationships not known; wi’s are corresponding weights, and w1 + w2 = 1. Notice that wi’s could be
specified by users, or learned through an ANN similar to the one in Section 4.3.2.

Consider the ontologies in Figure 1. In O1 (left part), concept “Intangible” has one subClassOf (“Ab-
stractThing”); four superClassOf (“TemporalThing”, “SpatialThing”, “Mathematical”, and “IntangibleIn-
dividual”); and one disjointWith (“PartiallyTangible”). On the right part, merged center1 (center is built
incrementally, therefore, we have different centeri’s), the concept “Intangible” has more information from
other ontologies: one more subClassOf (“PartiallyIntangible”); one more disjointWith (“Tangible”); and
one more superClassOf (“OtherIntangibleStuff”). Thus, the concept distance from “Intangible” in O1 to
“Intangible” in center1 is w1 × 2 + w2 × 1. Notice that one “isa” link in Figure 1 corresponds to a pair
of relationships. That is, if C1 “isa” C2, then C1 has a subClassOf relationship with C2, and C2 has a
superClassOf relationship with C1. Also notice that Equation (4) is suitable for both situations, i.e., inde-
pendent of whether or not the original ontology recognizes that concept. For example, if in O1 there is no
concept “Intangible”, then the distance becomes w1 × 7 + w2 × 2.

5.2 Compatibility Vectors

Inside the center, there is a set of compatibility vectors, one for each original ontology. A compatibility vector
consists of a set of dimensions, each corresponding to one concept in the center. Therefore, all compatibility
vectors have identical number of dimensions, i.e., equaling to the number of the concepts in the center. Each
dimension has three sub-dimensions. The first sub-dimension tells us whether or not the original ontology
understands this concept; the second sub-dimension records the concept name in the original ontology if the
latter does recognize that concept; the third sub-dimension encodes the distance from the concept of the
original ontology to the concept of the center. An example of compatibility vectors is shown in Figure 2.

For the first concept (“Spatial”) in the center, Agent1 knows it as “Spatial” and has a concept distance
of 2.7; Agent3 also understands this concept, but with a different name (“Space”) and a bigger concept
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Figure 2: Compatibility Vectors

Figure 3: Dynamic Adjustment of Compatibility Vectors
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distance of 4.5; neither Agent2 nor Agentm recognizes concept “Spatial”, therefore, they have the same
concept distance (5.0).

5.3 Dynamically Adjusting Vectors

As mentioned before, when there is only one partner, its compatibility is perfect. In the compatibility vectors
stored in the center, each concept distance has a value of zero. However, with the adding of new partners
into this EBC, the compatibilities for existing partners might be changed, because newly joined partners
could contain ontologies with more accurate and/or complete information.

An example is shown in Figure 3, demonstrating the process of dynamic distance adjustment. After
ontology1 and ontology2 are merged to generate center1, the distance between these two original ontologies
and the merged one (center1) is calculated and stored in the compatibility vectors of center1. Upon the
joining of ontology3 and the generation of center2, the compatibility vector for center1 in center2 is calculated
and integrated with the compatibility vectors for ontology1 and ontology2 in center1; then we generate the
compatibility vectors for ontology1 and ontology2 in center2. This is explained in detail next.

For example, we have compatibility vectors in both center1 and center2. Now we want to update the
compatibility vectors in center2. Originally there are two compatibility vectors in center2: one for ontology3,
and the other for center1. The former will remain the same as is; while the latter will be replaced by several
new vectors, the number of which is determined by the number of the vectors in center1 (two in our example).

Remember that center1 has one vector for each agent when center1 is generated. Each vector in center1

will be integrated with the vector for center1 in center2, therefore creating a new vector correspondingly in
center2. The following procedure describes the generation of such a new vector.

Input:

• compatibility vector v for center1 in center2

• compatibility vector u for partneri in center1

Output:

• compatibility vector w for partneri in center2

begin

for each dimension d in v

yn = d’s first sub-dimension’s value

nm = d’s second sub-dimension’s value

dis = d’s third sub-dimension’s value

create a new dimension nd in w

if yn = “Yes”

find in u the dimension od for concept nm

yn old = od’s first sub-dimension’s value

nm old = od’s second sub-dimension’s value

dis old = od’s third sub-dimension’s value

nd’s first sub-dimension = yn old
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Figure 4: Example of New Vector Generation

nd’s second sub-dimension = nm old

nd’s third sub-dimension = dis + dis old

else (yn = “No”)

nd’s first sub-dimension = yn

nd’s second sub-dimension = nm

nd’s third sub-dimension = dis

end if

end for

end

Pseudocode for New Vector Generation

It is not difficult to figure out that the time complexity for the above procedure is O(nlogn), because
there are n dimensions in each vector, requiring n steps for the loop. Within each loop, all steps take
constant time, except for the one finding dimension in u. Suppose in u the dimensions are indexed by the
concept names, then a binary search is able to locate a specific dimension within O(logn).

Figure 4 exemplifies how the above pseudocode works. There are two source vectors, u and v, and we
traverse the second one, one dimension each time.

1. The values for the first dimension are “Yes”, “Intangible”, and “2.3”. We then find the dimension for
“Intangible” in u, and obtain (“Yes”, “Intang”, and “1.6”). Finally we calculate the values for the new
dimension in the resultant vector w, which are “Yes”, “Intang”, and “3.9” (the result of 1.6 + 2.3).

2. The values for the second dimension are “Yes”, “Tangible”, and “1.7”. After we obtain the values for
dimension “Tangible” in u (“No”, “N/A”, and “6.7”), we figure out the values for the new dimension
in w are “No”, “N/A”, and “8.4” (the result of 6.7 + 1.7).
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3. The values for the third dimension are “No”, “N/A”, and “5.9”. We simply copy these three values
into the new dimension in w.

4. This continues until we finish the traverse of all dimensions in v.

5.4 Utilities of Compatibility Vectors

5.4.1 Ontology Understanding within the EBC

The center maintains the compatibility vectors for all original ontologies; in addition, the vectors themselves
contain such information as whether or not an original ontology understands a specific concept, what is the
concept name in the original ontology, and so on. Therefore, if two partners would like to try to understand
each other’s ontology, they can simply refer to the center and obtain the corresponding compatibility vectors.
By this means, compatibility vectors help partners in their mutual understanding of ontological concepts.

5.4.2 Partner Selection from Outside the EBC

When a partner from outside this EBC requests for partner(s) to coordinate with, it would like to choose
those that understand its ontology best. The requesting partner first compares its own ontology with
the center, and then searches in the compatibility vectors to find all partners understanding the concept
of its interest. If there is more than one candidate, the coordination request will be sent to those with
good compatibilities, that is, with low concept distances. Because the compatibility vectors are stored and
maintained by the center, the partners have no way to modify or manipulate the vectors. In this sense, the
selection of partner(s) is objective and without bias.

5.5 Features of Compatibility Vectors

5.5.1 Correctness of Compatibility Vectors—A Precise Approach

In this section, we prove that our approach obtains correct compatibilities for partners. To record and
maintain the proper compatibility of each partner inside an EBC, the key is to obtain a correct center by
which to evaluate the distance from it to each original ontology, and thereby acquire the corresponding
compatibility vector. When a new partner joins the EBC, instead of communicating with each existing
partner, it only talks with the center. Therefore, if we can prove that the newly merged ontology is a correct
new center, the correctness of compatibility vectors is guaranteed.

First, we point out that according to the merging algorithm in Section 4, each time we merge two on-
tologies, the resultant one will contain all information from both original ones. Next, we introduce Lemma
1 and Theorem 1.

Lemma 1. When we merge two ontologies A and B using the algorithm in Section 4, the result is the
same regardless of whether we merge A into B or merge B into A.

Proof by induction:

1. Base Case: Both A and B contain two concepts, i.e., besides one common built-in root, “Thing”, A
contains C1 and B contains C2.
If we merge A into B according to the Top-Level Merging Procedure in Section 4, “Thing” in A is
considered equivalent with “Thing” in B; then C1 is compared with all the direct children of the root
in B, in this case C2, to determine where to put C1 in B. This is based on the relocate function inside
the Top-Level Merging Procedure. On the contrary, if we merge B into A, “Thing” in B is considered
equivalent with “Thing” in A; then C2 is compared with C1 to determine where to put C2 in A.
Obviously, we obtain the same merged ontology in both cases.

2. Induction: Assume that Lemma 1 holds for all cases where the numbers of concepts contained in A
and B are less than (i+1) and (j+1), respectively. Now consider the case where A and B contain (i+1)
and (j+1) concepts, respectively.
Suppose the superClass set of the (i+1)th concept in A, Ci+1, is PA(Ci+1), and suppose the location
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of PA(Ci+1) in merged ontology M is PM (Ci+1). The position of Ci+1 in M is determined by the
relationships between Ci+1 and all the direct children of PM (Ci+1). From the inductive hypothesis we
know that PM (Ci+1) is identical no matter whether we merge A into B or merge B into A. Therefore,
the position of Ci+1 in M will also be the same in both situations. That is, Ci+1 , the (i+1)th concept
in A, will be put into the same position in M in both merging orders. Similarly, the (j+1)th concept
in B will also be put into the same position in M in both merging orders. So in the case where A and
B contain (i+1) and (j+1) concepts, respectively, we still have the same resultant ontology regardless
of the merging order taken.

Theorem 1. The final result of merging a number of ontologies is identical no matter by which order the
original ontologies are merged using the algorithm in Section 4.

Proof by induction:

1. Base Case: There are two ontologies to be merged.
According to Lemma 1, when we merge two ontologies A and B, the result is the same no matter
whether we merge A into B, or merge B into A.

2. Induction: Assume that Theorem 1 holds for all cases where the number of ontologies to be merged is
less than (n+1). Now consider the case where we merge (n+1) ontologies.
Let the indexes of these ontologies be: 1, 2, ..., (n+1). Consider two arbitrary orders by which we
merge these (n+1) ontologies: order1 and order2. Suppose the last indexes in order1 and order2 are i
and j, respectively.

• If i equals j, then the first n indexes in order1 and order2 are the same, just in different orders.
We merge the first n ontologies to get Mergedn. According to the inductive hypothesis, Mergedn

in order1 is identical with Mergedn in order2. Then we merge Mergedn with the last ontology in
both order1 and order2, and we will get the same result.

• If i does not equal j, we mutate the first n indexes in order1 and make the nth index be j; then
mutate the first n indexes in order2 and make the nth index be i. Now the first (n-1) indexes in
order1 and order2 are in common (possibly in different orders), and the last two are (j, i) and (i,
j), respectively. Notice that this kind of mutation will not affect the merging result of the first
n ontologies according to our inductive hypothesis. We then merge the first (n-1) ontologies to
get Mergedn−1. According to the hypothesis, Mergedn−1 in order1 is identical with Mergedn−1

in order2. Finally we merge Mergedn−1 with the last two ontologies in both order1 and order2,
and we will get the same result.

5.5.2 Complexity of Compatibility Vectors—An Efficient Approach

• The time complexity of establishing an EBC, along with the achievement of a mutual understanding
of ontological concepts, is on the order of O(mn2), with n the number of the concepts in the center,
and m the number of original ontologies. The process of creating an EBC is the one to generate a
merged center. For the ontology merging, O(mn2) is needed, because we need to merge m ontologies,
and each merging procedure takes time O(n2) as described in Section 4.

• In order to dynamically update the compatibility vectors during the formation of an EBC, extra time
will be spent. According to the previous analysis in Section 5.3, O(nlogn) is needed for updating
one partner, so the extra time for all partners is O(mnlogn). Therefore, the total time complexity of
establishing an EBC becomes O(mn2 + mnlogn), which is still on the order of O(mn2).

• For partner selection, the time complexity is O(n2), because we only need to compare the ontology
from the requesting partner with the center.
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5.6 Comparison to Other Vector-Based Approaches

Vector-based approach is widely adopted in ontology matching and text classification area. Some well known
systems are summarized in the following.

In (Soh, 2002) and (Soh, 2003), description vectors are introduced and adopted in the conceptual learning
during ontology matching. A description vector consists of a list of word-frequency pairs. For each word found
in all the experience cases describing the same concept, the agent manages to find the word’s frequency, and
therefore learns the different significance of the words that describe an ontology concept. The vector fields are
then fed into an inductive learner that parses the input vectors into a decision tree, which deterministically
allocates each example into a semantically unique branch. Finally, these branches are traversed to arrive at
a set of rules.

(Lacher and Groh, 2001) emploies machine learning techniques for text categorization. Their methodology
is: to calculate a representative feature vector for each concept node in an ontology; then to measure similarity
of two of those class vectors by a simple cosine measure. The representative feature vector for one concept
node is calculated as a modified Rocchio centroid vector. By this means, the representative vector for a
concept node represents an average of all documents assigned to that concept node. The feature vectors
are exctracted from the documents and weighted. That is, a word-count feature vector is created and the
features are weighted with a TF/IDF weighting scheme (Term Frequency/InverseDocument Frequency). In
essence, vectors are computed from the instance data.

(Williams, 2004) tackles the issue of sharing meaning in a multiagent system through ontology learning.
The author describes how agents learn representations of their own ontologies using a machine learning
algorithm and then seek to locate and/or translate semantic concepts by using examples of their concepts
to query each other. In this paper, a semantic concept comprises a group of semantic objects that define
each token, i.e., word and HTML tag from the Web page, as a boolean feature. The entire collection of
Web pages that were categorized by a user’s bookmark hierarchy is tokenized to find a vocabulary of unique
tokens. This vocabulary is then used to represent a Web page by a vector of ones and zeroes corresponding
to the presence or absence of a token in a Web page.

Our compatibility vector system is quite different from the systems mentioned above.

• Our system is based on ontology schema (structure) alone, aiming to avoid the difficulty in getting
enough/good quality instance data from real-world ontologies. Ontology schemas usually have a lot
more varieties than instance data, we are therefore dealing with a more challenging problem than those
algorithms that make use of instance as well.

• Our focus is on the comparison between original ontologies and the merged center ontology. By
considering both concept names and concept relationships, we aim to include more complete semantics
for concepts of interest.

• The information contained in our vector system is in great details. This will facilitate the mutual
understanding among agents, by simply referring to the center ontology for the corresponding vectors.

6 Experiment Results

6.1 Test Ontologies

We take ten real-world ontologies, created and maintained by professionals, as our test ontologies:

1. terror: http://www.mindswap.org/2003/owl/swint/terrorism
2. travel: http://opales.ina.fr/public/eon2003/Travel-OilEdExportRDFS.rdfs
3. tour: http://homepages.cwi.nl/∼troncy/DOE/eon2003/Tourism-OilEdExportRDFS.rdfs
4. space: http://212.119.9.180/Ontologies/0.3/space.owl
5. priv: http://www.daml.org/services/owl-s/security/privacy.owl
6. ops: http://moguntia.ucd.ie/owl/Operations.owl
7. obj: http://www.flacp.fujitsulabs.com/tce/ontologies/2004/03/object.owl
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Table 1: Characteristics of Test Ontologies
Features terror travel tour space priv ops obj swap mgm gfo

Max Depth of Ontology 5 7 6 8 5 8 8 7 9 11
Number of Concepts 27 51 53 90 26 91 38 61 72 127

Number of Relationships 41 47 48 158 38 139 70 87 109 162
super/subClassOf Relationships 29 36 33 115 31 110 57 64 75 117
Percentage of super/subClassOf 70% 77% 68% 73% 81% 79% 82% 73% 69% 72%

Figure 5: Ontology Merging Results

8. swap: http://svn.mindswap.org/pychinko/pychinko/allogtests/mindswapRealized.rdf
9. mgm: http://ontologies.isx.com/onts/2005/02/isxbusinessmgmtont.owl

10. gfo: http://www.onto-med.de/ontologies/gfo.owl

These ten ontologies are all in “Business” domain, specified by OWL. Their characteristics are summarized
in Table 1.

6.2 Experiments on Merging Algorithm

We randomly pick up an order to merge these ten ontologies, and we compare the results from our merging
algorithm with those from a manual matching by three ontology experts. We then evaluate on both Precision
and Recall measures, and plot the results in Figure 5. “Precision 1” and “Recall 1” are for the original
algorithm in (Huang et al., 2005), they range from 73% to 83%, and 66% to 81%, respectively. “Precision
2” and “Recall 2” are for the extended version in this chapter, range from 80% to 88%, and 75% to 86%,
respectively. After the extensions discussed in Section 4.3, Precision and Recall have an average increase
of 6.9% and 8.3%, respectively.

6.3 Experiments on Compatibility Vectors

We first fix one original ontology (randomly chosen) as the one from the coordination-requesting partner,
and then simulate an EBC out of the remaining nine ontologies. In our first setting, the requesting ontology
interacts with a randomly chosen ontology; while in our second setting, this interaction always happens with
the ontology with the best compatibility (according to concept distances calculated). We switch the fixed
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Figure 6: Utility of Vectors

ontology from the first one to the tenth one, calculate the average values of Precision and Recall for all
settings, and then plot the results in Figure 6. It is clear that, after adopting our compatibility vectors, both
measures have been improved. Therefore, in cases where sufficient resources are not available and only a
certain number of partners can be chosen for coordination, our approach increases the efficiency by choosing
suitable partners.

7 Conclusion

E-business is having a significant impact on the evolution of the Internet. In order to meet the new demands
of highly dynamic environments and open e-markets, there has been a growing need for e-businesses to
coordinate their activities. The first step towards this coordination is for e-business partners to understand
each other’s service description. Although using ontologies can aid in this understanding, independently
designed ontologies usually have heterogeneous semantics, resulting in each partner having its own unique
semantics. To tackle this emerging challenge, we present an ontology compatibility vector system as a method
to evaluate and maintain ontology compatibilities, thereby handling the problem of how to choose partners
with good compatibilities. We not only prove that our approach is both precise and efficient, but also show
promising results experimentally.

Some future work is envisioned here: (1) how to handle the vulnerability issue inherent in the centralized
solution that our current approach uses, (2) how to update compatibility vectors when existing partners
modify their corresponding ontologies, (3) what kind of mechanism is suitable if we simultaneously consider
qualities of both ontologies and services, and (4) we plan to design a GUI for our algorithm, and we believe
that such a front-end would make it easier for a practitioner to use.
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