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Abstract

The United States Department of Defense (DoD)
requires an effective, economic method for utilizing
available distribution system to move its personnel,
equipment and supplies in support of military operations
world wide. Recent reductions in the DoD budget have
placed a premium on leveraging technologically
innovative solutions to accomplish this requirement.
This paper examines the integration of cooperative
autonomous computational agent technology with low
cost satellite communications capability. Under this
concept, Intelligent Agents (IA) would be developed and
integrated into the spectrum. of transportation actions
DoD wide. The IA would be divided into two
categories, static (attached to intermodal sites) and
mobile (attached to shipments). The IA act as economic
competitors in routing the shipments through the DoD
transportation network. The result being effective and
efficient transportation of goods and personnel for both
routine operations and unforeseen contingencies. The
global communication system offered by the satellites
would be used to track shipment status and continually
update the shared intermodal knowledge base.

1. Introduction

After the Gulf War, the Department of Defense (DoD)
embarked upon a number of logistics initiatives directed
toward eliminating problems in the movement of personnel
and equipment. Total Asset Visibility (TAV), Intransit
Visibility (ITV), and the Total Distribution Advanced
Technology Demonstration (TDATD) are individual, non-
integrated solutions to the complex problem of physical
distribution. The Defense Transportation System (DTS)
establishes the process by which personnel and materiel
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move from origin to destination. The United States
Transportation Command (USTC) has been established, and
given unified command authority to develop a
comprehensive transportation system for the DoD. The
outline of USTC's approach to accomplishing this task is
contained in the "Reengineering the Defense Transportation
System Action Plan". A key provision of this concept is the
empowered "DTS Agent", those persons who will
ultimately be responsible for the efficiency and
effectiveness of the DTS in peace, war, and Operations
Other Than War (OOTW). Through the developing Global
Transportation Network (GTN), USTC seeks a worldwide
capability to meet customer requirements.

This paper proposes a methodology to address the
Defense distribution problem based on an artificial
intelligence, limited horizon approach, made possible
through the integration of emerging technologies. By
combining autonomous computational agent technology
with the cost effective use of Low-Earth-Orbit (LEO)
satellites for communications, a robust architecture capable
of supporting worldwide power projection is achievable.
The concept of decentralizing logistics control based on the
use of autonomous computational agents was initially
submitted to the Logistics Management Institute (LMI) by
Dr. Michael N. Huhns, in response to a solicitation in the

Commerce Business Daily. In the solicitation, LMI was

seeking new and emerging technology applications to
improve strategic mobility on behalf of the Director for
Logistics, Joint Staff (J4). This proposal expands Dr.
Huhns' concept and combines it with other technologies to
address Defense distribution. - One of the technological
challenges in this proposal is the unique requirement for
agents to learn from and adapt to other agents' decisions.
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By combining these concepts our concept envisions
cooperative Intelligent Agents (JA) strategically placed and
integrated throughout the DTS [Gasser 1991]. Under this
concept, the distribution network will be optimized sub-
locally at each node using a limited look ahead based on
stochastic, historical approximations of the global state of
the system [Lee & Cohen 1985]. Each node in the
distribution network and the shipment umits, e.g. major
weapons systems, containers, being shipped act as IA. The
static 1A (attached to facilities) must be capable of
communicating with adjacent nodes and scheduling the
transportation assets under their control. The mobile IA
(attached to the items being shipped) must be capable of
communicating with the static IA and negotiating their
transportation according to their priorities and the available
transportation assets. (See Figure 1 above.)

2. Description of JA

The IA act as expert systems acquiring new information
and updating their decision making algorithms with each
transaction. The IA make decisions based on the state of
the system. The IA perception of the system comes from
three sources: exogenous parameters, historical data, and
information being passed in real time from other IA.
During routine conditions, the overall goal of the static IA
will be to deliver the materiel as needed using the most
efficient transportation means, consistent with customer
priorities. During crisis situations, the emphasis will shift
from efficiency to maximizing the velocity and agility of the
system. They become the drivers which enable an efficient,
responsive and cost effective Defense Distribution System.
Initially, the rules governing IA behavior will be extracted
from the various regulations and directives that govem
movement under the DTS. The system standards provide
the foundation from which machine learning will occur. The
agents function within the decision support system provided

15

by USTC under their Command, Control, Communications
and Computer Systems (C4S) architecture. This will
eventually be the GTN.

From a macroeconomics standpoint, we can view each of
the IA as a producer. Each producer attempts to maximize
its utility, and given a sufficiently competitive system, the
overall system achieves a stable, optimal macroscopic
solution [Hahn 1982]. In the context of this problem
sufficiently competitive means a relatively large number of
shipments with varying priorities and adequate available
transportation modes and assets at the distribution systems
decision points. The shipment units' utility is inversely
related to the time it takes them to reach their destination in
a safe, undamaged condition. The static IAs' utility is
measured in terms of minimizing cost under routine
conditions and a function of shipment priorities and arrival
times under crisis situations [Ferguson, et. al. 1989].

We could describe the objective of the mobile IA to be:

Min {Arrival Date + M¢ }

VAction
Equation 1

where Arrival Date is the date the shipping unit arrives at

its destination, f represents the condition of the shipment
(e.g. the smaller is the better), and M is the penalty for
delivery of the shipment in less than perfect condition.

The static IA have an objective function which is
dependent on both the cargo flowing through their areas of
responsibility and the transportation assets the IA assign to
that cargo. A sample objective function for a static IA is
given below in Equation 2.
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where IT2{P,, P,, -+ }a vector of weightings (or priorities)
{Arrival Date + Mo},
for the various shipments, ¥ 24 {Arrival Date + M}, 1,

B = weighting for the condition violations, ®(s)= a function

relating violations of shipping and storage conditions to a

numerical value (e.g. storing ammunition at too great a density,

sending refrigerated goods in non - refrigerated vehicles), ¥ = weighting
for shipping costs, and Cost = cost of shipping from this node forward

Equation 2

Note in both the case of the static and the mobile IA, the
IA will be making inferential decisions, i.e. the IA's
objective functions are not fully determined until the
shipments all reach their.destinations, but the IA make
decisions in real time while the shipment units are still in
the transportation pipeline. Therefore, the IA are forced to
make inferences about what the optimal decisions are from
an objective function standpoint. The IA will base these
decisions on the three sources of information already
mentioned: exogenous parameters, historical data, and
information being passed in real time from other IA. Of
particular note here is the historical data; as IA complete
transactions the historical data base will be updated, and
future IA decisions will be modified based on these updates.
For example, imagine a situation where a particular carrier
is very unreliable. Every time an IA assigns a shipment unit
to the carrier, the shipment unit is lost. Very quickly the
system would start to avoid this carrier, because the
expected value for the shipment unit cost would rise.

The mobile and static IA would vary in complexity as
well as function. The mobile IA could be relatively simple.
The mobile TA could carry a database consisting of few
elements. For example, it might contain: a unique
identifier, a pointer to the detailed contents (manifest), brief
aggregate description of contents, current location,
destination, priority and condition. The identifier is the
distribution system's method of distinguishing that
particular shipping unit. The shipping unit does not need to
implicitly have all of its cargo identified in great detail, but
it must be able to tell the user where the information is. The
brief description helps human managers when intervention
is required. Current location of the shipping unit and its
destination are used to aid in routing decisions. The priority
is the relative importance of the shipment. Condition covers
special storage and cargo handling issues such as: explosive,
requires refrigeration, fragile, etc.

The mobile 1A are required to perform two tasks. First,
they must be able to query and respond to the queries of
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other IA in the distribution system. Second, as rules
surrounding their shipments are violated, the IA must
identify those violations to decisions makers. For example,
IA might complain if: the shipment needed to be
refrigerated and it was too hot; it was fragile, and it was at
the bottom of a stack; or the shipment has exceeded its
required delivery date.

In addition to the tasks performed by the mobile IA, the
static IA must be able to select modes for the various
shipping units entering its zone of responsibility. Further,
the static IA are responsible for maintaining the inferential
data. Each time a transaction is completed, the static IA
must refresh its associate database. The location of the
various IA will be illustrated in the following paragraphs.

All requests for DTS shipments must initially be
processed through a Transportation Office. This is the first
organization in the transportation hierarchy that has the
authority to commit Government funds for the movement of
DoD materiel and personnel. The procedures are essentially
the same for both peacetime and wartime shipments. We
envision the information system in the Transportation
Office as being the first IA. The purpose of these IA will be
to facilitate the process of receiving requests for
transportation and arranging for the movement of the
associate cargo Of passengers. Examples include:
household goods, privately owned vehicles, general freight,
individual and group moves. The IA would be expected to
perform the following tasks: process routine requests for
movement under established pguidelines (priority of
shipment, type of service, mode of transportation, least costs
for requested service, etc.); develop the ability to gradually
assist with more complicated shipment procedures (e.g.
shipment consolidations, mode selection, etc.); interface
with the next higher echelon of control for unit moves, with
respect to granting approval of the shipment to begin
moving (port call phasing to prevent port congestion);
acquiring information about previous shipment movement
performance for the purpose of optimizing future shipments
(faster service, better carrier, less cost, etc.).

The next series of IA would be associated with the
shipment units themselves. This capability is what was
envisioned by [Huhns 1994], where the cargo would
actually route itself through the distribution network. It will
be useful to explore the problem by examining the
transportation network in more detail. The Advanced
Research Projects Agency (ARPA) has an initiative called
TRANSTECH which will explore modeling the
transportation infrastructure to include both information,
transportation asset and cargo flow. One of the most
important aspects of the DoD transportation system is that
the components must be able to communicate world wide.
The integration of intelligent agents with the use of low
earth orbit (LEO) satellites for communications, appears to
offer great military potential.



There are numerous options as to the level of shipment
unit (piece, container, etc.) the agent(s) would be assigned.
The IA associated with the cargo would be required to
perform the following tasks: interface with the distribution
system according to the priority established by higher
authority; communicate status by LEO satellite to adjacent

and higher echelons of control; function under established
performance criteria, and notify appropriate control
echelons when the criteria has not been met or has been
exceeded (e.g. sent to the wrong port, in port too long, etc.);
notify its consignee of its status. An example of how the IA

could apply rules is shown in the following table.

and destination

interchange point?

an interchange
point (i.e. port)

LOCATION OFIA  |STATE OF TRANSITION ACTION |[IA QUERY IA TRIGGER 1A ACTION
SYSTEM
Shipping Activity Loading Order Transportation Is container Location of IAis |Notify OPNS Center;
[Static TA] moving? within 1km of last |catrier to pickup, and
location . shipper
Intransit within Movement Is container at East |Location of IA Notify OPNS Center;
JCONUS {Mobile TA] or West Coast port |compared to East |request carrier determine
within 4 days? or West coast port |problem and notify shipper
and number of
days from stuffing
Port [Static 1A] Cargo arrives at Transfer to new mode If location is a port |Location of IA Notify OPNS Center and
transportation node and location static |and number of carrier
days static
Intransit over ocean  |[Movement Is container on Location of Notify OPNS Center,
{Mobile IA] schedule? container at least |carrier, and "ship to"
432 NM from addressee
|previous location
at current time
minus 24 hours
[Mobile and Static 1A] Divert cargo to new mode |Is location an Location of IA is |Notify carrier to offload

container and divert to new
mode and destination;

notify old and new "ship
to" addressee; notify
OPNS Center

Table 1
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Fax ronne Hic best ransporiation mode
rev s prnrity and iy atthle
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Figure 2
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There are two primary types of intelligent agents, static
and mobile. (See Figure 2 to the left.) The mobile
intelligent agents are attached to shipments of cargo and
passengers while the static intelligent agents are associated
with the distribution nodes.

How the agents cooperate within the distribution
network and compete for limited movement resources is at
the center of our cutrent research. Dr. Huhns suggested a
method for achieving control and concomitantly efficiency,
by making use of a market mechanism [Wellman 1992]. In
this technique, each intelligent entity would be given a sum
of "money" that it can use to purchase transportation,
storage, or whatever other resources it might need. The
amount of "money" available would vary with the priority
of the shipment unit within the distribution network, and
could change dynamically. An example might be specific



repair parts moving through the systems as "general
resupply” when they are elevated to "critical commodity” to
support weapons system repair for pending operations. The
key here, is that the LEO satellite network can function as
an interrogator for the information about each shipment
unit. The system: offers global coverage, can link players
from around the world, and is therefore ideally suited to the
military requirement to support force projection.

The next location where intelligent agent technology
would be employed is at the distribution control level. This
level of activity is difficult to define, because much of what
is envisioned is currently only in the conceptual phases. As
the designated CINC for transportation in both peace and
war, USTRANSCOM is now developing the capability to
perform its statutory functions in the 21st century. A vision
of the future exists in USTRANSCOM's concept of "DTS
2010". This document describes the future environment,
without describing specifically how it will be achieved. The
use of IA can contribute significantly to developing the
required capabilities for the next century. The first task
facing USTRANSCOM is to integrate data from numerous
sources into an effective decision support system.

This task will begin with the development of GTN. It
should become the command and control system for the
DTS. The challenge facing GTN development is the
meaningful integration of data from a variety of sources,
both within and external to the Department of Defense
(DoD). USTRANSCOM is composed of a headquarters and
three component commands; the Military Traffic
Management Command (MTMC) (land transportation and
sea port operations); the Military Sealift Command (MSC)
(sealift operations); and the Air Mobility Command (AMC)
(airlift operations). Each of these organizations interface
with each other and each relies on the commercial sector to
provide transportation services. The problem remaining is
the vertical integration of data for each of the component
commands and their many supporting automated systems
and their association with the private sector and their suite
of automated systems. Likewise, the horizontal integration
of data among the component commands remains a
challenge. Some components have complex systems, such
as AMC, while some are relatively unsophisticated, as
MSC, while MTMC deals almost exclusively with the
commercial sector. USTRANSCOM headquarters, and the
GTN prototype, have made some effort toward collecting
data from a variety of sources and displaying it. The thrust
as been to gain intransit visibility, without developing the
underlying management structure. Currently, there is no
effort underway to begin linking all the data into a
comprehensive decision support system. Here, we believe,
is the potential for the greatest payoff.

A would be developed to remotely monitor the real-time
performance of the DTS at the shipment unit level and alert
the decision makers when problems occur so cormrective
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action can be taken. Data is currently available from a
variety of sources; DoD owned systems as well as
commercial systems which support the movement of
military equipment and supplies. IA would be expected to:
monitor cargo from origin to destination (using LEO
satellites), and alert the human managers when expected
performance criteria are not met; avoid port congestion, and
automatically hold or re-route cargo; recommend cargo
routing based on the availability of lift assets and there
schedules; recommend how to accomplish cargo diversion
at the least cost using the fastest method; anticipate and
react to problems; and interface with the IA at the
transportation office and with the cargo to facilitate the
efficiency of movement.

At this level, the IA act as the network controllers. They
are interested in the overall performance of the system from
origin to destination. As described, these IA are helped
along the way by other agents.

The final series of supporting agents concern themselves
with ensuring that the cargo reaches its final destination
(referred to in the military as the "theater"). The locations
of these agents is not static, but rather they are placed to
support the concept of force projection. They must
accompany a force physically or provide support
electronically. These IA would be expected to keep track of
unit locations and assist incoming cargo to find its way to
intended recipients. The IA would also: recommend cargo
clearance actions based on priorities and the distribution
scheme in theater; respond to other IA concerning the
ability to move cargo in theater; assist with optimizing
available in theater lift assets to meet expected cargo arrival
volumes; recommend the most effective manner to
accomplish a cargo diversion; generally manage
distribution. Inherent in this requirement is the linkage
between the supply, maintenance, and transportation
systems.  Collectively, they comprise the distribution
function. As our concept matures, its principles can be
adapted to assist in managing both theater supplies and
transportation assets. The theater system is nothing more
than the strategic system, only confined to a smaller
physical area. The process and procedures are exactly the
same.

We believe it possible to employ intelligent agent
technology to integrate the distribution process from origin
to destination in a manner which ensures synergy.
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Abstract

Learning in a multiagent environment can help
agents improve their performance. Agents, in
meeting with others, can learn about the part-
ner’s knowledge and strategic behavior. Agents
that operate in dynamic environments could re-
act to unexpected events by generalizing what
they have learned during a training stage.

In this paper, we propose several learning rules
for agents in a multiagent environment. Each
agent acts as the teacher of its partner. The
agents are trained by receiving examples from
a sample space; they then go through a gener-
alization step during which they have to apply
the concept they have learned from their in-
structor.

Agents that learn from each other can some-
times avoid repeatedly coordinating their ac-
tions from scratch for similar problems. They
will sometimes be able to avoid communication
at run-time, by using learned coordination con-
cepts.

Subtopic: Learning in multiagent systems, Coordi-
nation

1 Introduction

Distributed Artificial Intelligence (DAI) is concerned
with effective agent interactions, and the mechanismns
hy which these interactions can be achieved. One of the
central issues in multiagent covironments is that of ap-
propriate coordination technigues. Much DAI research
deals with this issue by giving pre-computed solutions to
specific problems. For every new problem, the agents will
start from scratch and derive the appropriate solution
(even if it is an interaction instance identical to one they
have seen before). For example, researchers have consid-
ered negotiation as a technique for deriving agreements
that determine agent actions [Smith, 1978; Durfee, 1988;
Kraus and Wilkenfeld, 1991; Zlotkin and Rosenschein,
1993]. These negotiation techniques invariably focus on
a single encounter or set of encounters; agents do not (for
example) improve their negotiation performance based
on experience. Qther DAI researchers have focused more

on direct modeling of agents’ beliefs and desires, as an-
other way for an agent to decide what action to per-
form when dealing with others [Grosz and Kraus, 1993].
Again, learning rarely enters into this research; while the
exploitation of a model of the opponent is studied, the
actual derivation of the model rarely is.

Multiagent reactive systems have also been analyzed
within DAI, where solutions are arrived at dynami-
cally by reactive agents in multiagent environments.
Social laws [Tennenholtz and Moses, 1989; Shoham
and Tennenholtz, 1992] and cooperative state-changing
rules [Goldman and Rosenschein, 1994] have been stud-
ied; these conventions give the agents a framework
within which to act, to more harmoniously interact with
the other agents participating in the same world. Learn-
ing has been investigated within this framework, partic-
ularly in [Shoham and Tennenholtz, 1994], which investi-
gated how conventions can evolve when the Highest Cu-
mulative Reward update rule is used (i.e., agents choose
to perform the action that has yielded the highest payoff
until then).

The advantages of having agents learn within a mul-
tiagent environment are clear. In Cooperative Problem
Solving systems, cooperative behavior can be made more
efficient when agents adapt to information about the
environment and about their partners. In competitive
Multiagent Systems, agents’ performance within the en-
vironment can be improved if they can learn about the
strategies and preferences of their opponents.

In this paper, we present a learning algorithm for a
cooperative multiagent environment. The agents in our
model first go through a training step, and are then able
tu choose their actions by generalizing what they have
learned. The agents do not need to re-coordinate their
actions for every new situation or problem. The main
issue in our research is how to train the agents in a way
that minimizes the number of mistakes in the general-
1zation step.

This distributed learning approach to coordination is
useful whenever agents do not have enough time to ne-
gotiate, when they exist in a dynamic environment and
will benefit by adapting to unpredictable situations, and
when the agents face similar problems repeatedly. The
actual utility of having agents use learning instead of,
for example, negotiation, will depend on the tradeoff be-
tween the time it takes to train an agent (which induces
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