
Contents

1 High-Level Language Support 1

1.1 Introduction 1

1.2 Languages in the MDBS Environment 3

1.2.1 LSYS Languages 4

1.2.2 MDBS Query Language 5

1.2.3 Transaction Control Speci�cation 7

1.2.4 Static Information Representation 8

1.2.5 MDBS and MDI Implementation Language 8

1.2.6 Summary of MDBS Language Requirements 9

1.3 Software Support for Coordination 10

1.4 Work-Flow Management with the IPL Language 12

1.4.1 A Brief Introduction to the Flex Transaction Model 12

1.4.2 IPL Language Components 13

1.4.3 Objects and Types 13

1.4.4 De�nition of Subtransactions 14

1.4.5 Dependency Description 16

1.5 The Design Issues of IPL 16

1.5.1 Double Typed Subtransactions 17

1.5.2 The Detection of Contradictory Dependencies 17

1.5.3 Data Flow and Circular Dependencies 18

1.5.4 Function Replication 18

1.5.5 Maintaining Semantic Atomicity of Subtransactions 19

1.5.6 Uninterpreted Code with IPL Variables and Methods 20

1.6 The

V

P

L

Coordination Language 21

1.6.1 Coordination Concepts 21

1.6.2 Object-Oriented Programming in

V

P

L

26

i

ii Contents

1.6.3

V

P

L

for I 29

1.6.4

V

P

L

for Q, C, and R 32

1.7 Conclusions 34

2 Carnot Prototype 45

2.1 Introduction 45

2.2 Carnot Architecture 46

2.3 Using Carnot for Integration of Heterogeneous Databases 49

2.4 Enterprise Modeling Infrastructure|MIST 51

2.4.1 Approach to Model Integration 51

2.4.2 Development of Articulation Axioms using MIST 52

2.5 Information Management Infrastructure|ESS and DSQTM 56

2.5.1 Extensible Services Switch (ESS) 57

2.5.2 Distributed Semantic Query and Transaction Manager 62

2.5.3 Semantic Augmentation of Query Graphs 64

2.6 Building Applications Using Carnot 72

2.7 Acknowledgments 74

Chapter 2

Carnot Prototype

Darrell Woelk, Philip Cannata, Michael Huhns, Nigel Jacobs, Tomasz

Ksiezyk, R. Greg Lavender, Greg Meredith, KayLiang Ong, WeiMin

Shen, Munindar Singh, and Christine Tomlinson

Microelectronics and Computer Technology Corporation

3500 West Balcones Center Drive

Austin, Texas 78759, USA

fwoelk,huhns,jacobs,ksiezyk,ong,wshen,msingh,tomlicg@mcc.com

2.1 Introduction

The Carnot Project at MCC was initiated in 1990 with the goal of addressing the

problem of logically unifying physically-distributed, enterprise-wide, heterogeneous

information. Carnot provides a user with the means to navigate information ef-

�ciently and transparently, to update that information consistently, and to write

applications easily for large, heterogeneous, distributed information systems. A

prototype has been implemented that provides services for (1) enterprise modeling

and model integration to create an enterprise-wide view, (2) semantic expansion of

queries on the view to queries on individual resources, and (3) interresource consis-

tency management. Carnot also includes technology for 3D visualization of large

information spaces, knowledge discovery in databases, and software application de-

sign recovery.

A key technical problem addressed by Carnot is the need to simplify the develop-

ment of enterprise-wide applications that access information and keep information

consistent. This requires that the Carnot system maintain a semantically rich un-

derstanding of the information used to run the enterprise. This understanding, in

the form of a model of the enterprise, is kept in a knowledge base that is part of

the Carnot system. Of course, the real data about the operation of the enterprise

are maintained in various physical resources, such as databases, �les systems, and

application programs.

45

46 Carnot Prototype Ch. 1

Once a model of the enterprise has been created, the database schemas can be

individually related to this model. When this step is completed, each operation on

an individual database schema has an equivalent operation on the enterprise model

and an operation on the enterprise model can map into operations on multiple

databases.

Furthermore, business rules that in the past were embodied in application pro-

grams can be represented in the enterprise model where the Carnot system can

enforce them, thus simplifying the development of new application programs. Also,

as new computer hardware, database management systems, or databases are added

to the enterprise, they are also individually related to the enterprise model. The

result is a powerful system that enables an unlinking of applications from physical

resources. Applications do not need to change as a business expands, or when two

businesses merge.

The implementation of the Carnot system has required unique advances in two

technology areas. First, innovative techniques for knowledge representation have

been developed to capture and maintain an enterprise model and to map opera-

tions between an enterprise model and the physical databases. Creative new tools

have also been developed to discover new knowledge in existing databases, code,

and other artifacts. Second, a
exible, dynamic, distributed processing environment

has been developed that supports the automatic generation of program scripts that

execute on heterogeneous, distributed systems. The scripts control the
ow of pro-

cessing and can be recon�gured dynamically to respond to changes in the hardware

environment or to the incorporation of additional information resources. The scripts

are embedded in autonomous computing agents that can be dispatched to remote

sites.

The remainder of this chapter describes the Carnot architecture, along with ex-

amples of software modules that have been developed over the last four years. Then,

the use of the Carnot prototype software for heterogeneous database integration is

described in more detail.

2.2 Carnot Architecture

Carnot has developed and assembled a large set of generic facilities that are focused

on the problem of managing integrated enterprise information. These facilities are

organized as �ve sets of services as shown in Figure 2.1: communication services,

support services, distribution services, semantic services, and access services.

The communication services provide the user with a uniform method of inter-

connecting heterogeneous equipment and resources. These services implement and

integrate various communication platforms that may occur within an enterprise.

Such platforms are considered to provide functionality up to the application layer

of the ISO OSI reference model. Examples of such platforms include ISO OSI session

and presentation layer protocols running on top of ISO TP4 with CLNP, TCP/IP

via a convergence protocol, or X.25. Other possible platforms are OSF's DCE and

UI's Atlas. While the communication services provide the interconnection, it is the

S
e
c
.
2
.
2
.
C
a
r
n
o
t
A
r
c
h
i
t
e
c
t
u
r
e

4
7

Access Services -
•2D & 3D Graphical Interaction

Environment
•Deductive Computing
•Application Frameworks

AP

UI

A
c
c
e
s
s
 S

e
rv

ic
e
s

Communication Services

Support Services

 Semantic Services

Distribution Services

Semantic Services -

•Enterprise Modeling and Model Integration
•Knowledge Discovery
•Application Dredging

Distribution Services -
•Relaxed Transaction Processing
•Distributed Query Processing
•Communicating Agents
•Workflow Manager
•Legacy System Access
•Distributed Administration
•Declarative Resource Constraint Base

Support Services -
•Extensible Services Switch •RDA •TP •IRDS •ORB
•X.500 •X.400 •Security •SNMP •CMIP •EDI

Communication Services -
•OSI •Internet •X.25 •SNA •DCE •Atlas
•SMDS •Frame Relay •FDDI •BISDN

F
i
g
u
r
e
2
.
1
.
C
a
r
n
o
t
A
r
c
h
i
t
e
c
t
u
r
e

48 Carnot Prototype Ch. 1

services above them that allow for their e�ective use.

The support services implement basic network-wide utilities that are available

to applications and other higher level services. These services currently include

the ISO OSI Association Control (ACSE), ISO OSI Remote Operations (ROSE),

CCITT Directory Service (X.500), CCITT Message Handling System (X.400), ISO

Remote Data Access (RDA). Additional interfaces include the MIT Project Athena

Authentication Service (Kerberos), the ISO Transaction Processing, OMG's Object

Request Broker (ORB) and Basic Object Adapter (BOA), interfaces to Informa-

tion Resource Dictionary Systems (IRDS), Electronic Data Interchange (EDI), and

Network Management via SNMP and CMIS.

An important component of the support services layer that is unique to Carnot

is a distributed actor environment called the Extensible Services Switch (ESS)

[TOML92]. The ESS provides access to communication resources, local information

resources, and applications at a site. It can be used to coordinate the execution

of work across a variety of heterogeneous resources, including databases, �les, and

other applications used in running a business. The ESS is constructed on top of a

high performance implementation of an interpreter for an enhanced version of the

MIT Actor language.

The distribution services add signi�cant value to the platform-level services

found in the support and communication services. In this layer, relaxed transac-

tion processors (processors that appropriately manage information inconsistency)

and a distributed agent facility interact with client applications, directory services,

repository managers, and Carnot's declarative resource constraint base to build

ESS work
ow scripts designed to carry out some business function [WOEL92]. The

work
ow scripts execute tasks that properly re
ect current business realities and

accumulated corporate folklore. The declarative resource constraint base is a col-

lection of predicates that expresses business rules, interresource dependencies, con-

sistency requirements, and contingency strategies throughout the enterprise. The

declarative resource constraint base can adapt to a changing environment without

modifying the application programs that manage the transactions; new applications

can easily be added to the environment.

The semantic services provide a global or enterprise-wide view of all the resources

integrated within a Carnot-supported system. This view, or portions of the view,

can be compiled for use within the distribution services layer.

The Enterprise Modeling and Model Integration facility uses a large common-

sense knowledge base as a global context and federation mechanism for coherent

integration of concepts expressed within a set of enterprise models [HUHN92]. A

suite of tools uses an extensive set of semantic properties to represent an enter-

prise information model declaratively within the global context and to construct

bidirectional mappings between the model and the global context.

The knowledge discovery methods provide tools to discover useful patterns and

regularities from information resources and check consistency between information

and corresponding models. Carnot's approach combines a patent-pending inductive

learning method with a spectrum of ways of using knowledge, ranging from pure

Sec. 2.3. Using Carnot for Integration of Heterogeneous Databases 49

deductive proof to analogical reasoning.

Application dredging provides tools and methods for extracting information (the

initial focus being database-dependency information) from application code and ar-

tifacts, guided by expectations about the nature of the information and its embed-

ding in the application [BIGE93].

The access services provide mechanisms for manipulating the other four Carnot

services. The access services allow developers to use a mix of user interface software

and application software to build enterprise-wide systems. Some situations (such

as background processing) utilize only application code and have no user interface

component. In other situations, there is a mix of user interface and application code.

Finally, there are situations in which user interface code provides direct access to

functionalities of one or more of the four services.

The user interface software supported by Carnot includes a 2D and 3D model-

based visualization facility and an object-oriented deductive computing environ-

ment, LDL++, that is fully integrated with C++ and optimized for recursive query

processing.

2.3 Using Carnot for Integration of Heterogeneous Databases

This section describes in more detail the application of the Carnot prototype soft-

ware to the problem of integrating heterogeneous databases. Figure 2.2 is a rep-

resentation of the Carnot prototype environment. At the top of Figure 2.2 is the

Carnot runtime Information Management Infrastructure, which supports applica-

tion clients, database servers, and a layer of middleware software.

In the lower left hand corner of Figure 2.2 is a representation of the Enterprise

Modeling Infrastructure, which supports the integration of interfaces, applications,

and databases. The results of enterprise modeling are a global dictionary containing

information on physical location and types of local databases that can be accessed,

descriptions of local schemas of these databases, articulation axioms that describe

equivalence mappings between concepts in a local database and concepts in a global

context, and a declarative resource constraint base that describes interdatabase

update consistency dependencies. These results are available to the Information

Management Infrastructure at runtime, as shown at the top of Figure 2.2.

In the lower right hand corner of Figure 2.2 is a representation of the Application

Dredging Infrastructure. It is based on the DESIRE software prototype developed

previously at MCC [BIGE93]. DESIRE is a system for software design information

recovery. It includes a platform for collaborative investigations in information cap-

ture and use. A user is assisted in these investigations by custom, navigable, analyz-

able, hypermedia views of code and software elements. These ideas have been used

within the Carnot project to recognize database queries in applications, recognize

database update transactions in applications, and to extract interdatabase depen-

dencies from applications. These dependencies can then be stored in the Carnot

declarative resource constraint base, where they can be enforced for all applications.

The following sections describe the Enterprise Modeling Infrastructure and the

50 Carnot Prototype Ch. 1Distributed
Communicating

Agents

SAG
CLI

ESS
CLI

Graphical

Deductive

ESS

RDA

RDA

ESS

SAG

CLI
ITASCA

RDA

ESS

SAG

CLI
Ingres

Other
Applications

Clients MiddleWare Servers

Interaction
Environment

Computing

TreeSpace

TreeSpace

TreeSpace

DSQTM

RDA

TreeSpace

Global
Dictionary

Local

Schemas

Articulation

Axioms

Declarative
Resource
Constraint
Base

 and

RDA

ESS with Test Agent

TreeSpace

Internal

“Data

Existing
Information
ExtractorsPreprocessor

Parser, Modified Code

“Foreign”Syntax and
Semantics

 DB

 Book”

Carnot Enterprise

Environment

Articulation
Axioms

Cyc Ontology
(general context)

Business
Models, LDMs,
and Database
Schema

Modeling and
Model Integration

User

SAG
CLI

ESS
CLI

SAG
CLI

ESS
CLI

SAG
CLI

ESS
CLI

Knowledge

Discovery

SAG
CLI

ESS
CLI

•
••

Information Management Infrastructure

Enterprise Modeling Infrastructure Application Dredging Infrastructure

User

 ESS

Data

Figure 2.2. Carnot Architecture

Sec. 2.4. Enterprise Modeling Infrastructure|MIST 51

Information Management Infrastructure in more detail. The Application Dredging

Infrastructure is not described further.

2.4 Enterprise Modeling Infrastructure|MIST

Carnot has the capability to integrate separately developed information models.

The models may be the schemas of databases, frame systems of knowledge bases,

domain models of business environments, or process models of business operations.

The method achieves integration at a semantic level by using an existing global on-

tology to develop semantic mappings among resources and resolve inconsistencies.

This method is incorporated in a graphical integration tool, the Model Integration

Software Tool (MIST). The integrated models provide a coherent picture of an en-

terprise and enable its resources to be accessed and modi�ed coherently [HUHN92].

2.4.1 Approach to Model Integration

There are two general approaches to integrating models as suggested in [BUNE90].

The composite approach introduces a global schema to describe the information in

the given databases. Users and applications are presented with the illusion of a

single, centralized database. Explicit resolutions are speci�ed in advance for any

semantic con
icts among the databases. However, the centralized view may di�er

from the previous local views and existing applications may not execute correctly

any more. Further, a new global schema must be constructed every time a local

schema changes or is added.

The federated [HEIM85] or the multidatabase [LITW90] approach presents a

user with a collection of local schemas, along with tools for information sharing.

The user resolves con
icts in an application-speci�c manner, and integrates only

the required portions of the databases. This approach yields easier maintenance,

increased security, and the ability to deal with inconsistencies. However, a user

must understand the contents of each database to know what to include in a query:

there is no global schema to provide advice about semantics. Also, each database

must maintain knowledge about the other databases with which it shares informa-

tion, e.g., in the form of models of the other databases or partial global schemas

[AHLS90]. For n databases, as many as n(n-1) partial global schemas might be

required, while n mappings would su�ce to translate between the databases and a

global schema.

We base our methodology on the composite approach, but make four changes

that enable us to combine the advantages of both approaches while avoiding some

of their shortcomings.

1. We use an existing global context|the Cyc knowledge base [LENA90]. The

schemas (models) of individual resources are compared and merged with Cyc

but not with each other, making a global context much easier to construct

and maintain.

52 Carnot Prototype Ch. 1

2. Unlike most previous work on integration, we use not just a structural de-

scription of a local model, but all available knowledge, including (1) schema

knowledge, i.e., the structure of the data, integrity constraints, and allowed

operations; (2) resource knowledge, i.e., a description of supported services,

such as the data model and languages, lexical de�nitions of object names, the

data itself, comments from resource designers and integrators; and (3) orga-

nization knowledge, i.e., the corporate rules governing use of the resource.

3. We capture the mapping between each model and the global context in a set

of articulation axioms: statements of equivalence between components of two

theories [GUHA90]. The axioms provide a means of translation that enables

the maintenance of a global view of all information resources and, at the

same time, a set of local views that correspond to each individual resource.

An application can retain its current view, but use the information in other

resources. Of course, any application can be modi�ed to use the global view

directly to access all available information.

4. We consider knowledge-based systems (KBSs) and process models, as well as

databases. A KBS may be an information resource (similar to a database),

an application that accesses other resources, or a federating mechanism that

serves semantically as an intermediary between applications and databases.

2.4.2 Development of Articulation Axioms using MIST

A key to Carnot's coherent integration of models is its use of the Cyc common-sense

knowledge base as a global context and federating mechanism. Further, Carnot uses

the knowledge representation language of Cyc to express both the static informa-

tion structures and dynamic processes of an enterprise. The broad coverage of

Cyc's knowledge enables it to serve as a �xed-point for representing not only the

semantics of various information modeling formalisms, but also the semantics of

the domains being modeled. The models can be constructed using any of several

popular formalisms, such as IRDS, IBM's AD/Cycle, Bellcore's CLDM, and An-

dersen Consulting's Information Model. The relationship between Cyc and these

formalisms is indicated in Figure 2.3.

In Carnot, the relationship between a domain concept from a local model and one

or more concepts in the global context is expressed as an articulation axiom. Enter-

prise models are then related to each other|or translated between formalisms|via

this global context by means of the articulation axioms. As a result, each enterprise

model can be integrated independently, and the articulation axioms that result do

not have to change when additional models are integrated.

This same technology can also be used to integrate database schemas and

database application views. As the semantics are expressed formally in Cyc's

logic language, they result in automaticallymaintainable constraints on the models.

These same constraints can be extended to the databases underlying the models.

In this way, high-level business rules can automatically generate DBMS-enforced

S
e
c
.
2
.
4
.
E
n
t
e
r
p
r
i
s
e
M
o
d
e
l
i
n
g
I
n
f
r
a
s
t
r
u
c
t
u
r
e
|
M
I
S
T

5
3

Global
Schema

Local
Schema

Local
Schema

Local
Schema

Local
Schema

Local
Schema

Local
Schema

Bellcore
CLDM

Info Model

IBM
AD/Cycle
Info Model

Andersen
Consulting
Info Model

INGRES
DDL

Itasca
DDL

IRDS
Info Model

F
i
g
u
r
e
2
.
3
.
C
y
c
G
l
o
b
a
l
C
o
n
t
e
x
t

54 Carnot Prototype Ch. 1

integrity constraints. Also, besides its common-sense knowledge of the world, Cyc

has knowledge about most data models and the relationships among them. This

enables database transactions to interoperate semantically between, for example,

relational and object-oriented databases.

The Carnot MIST tool automates the routine aspects of model integration,

while clearly displaying the information needed for e�ective user interaction. The

tool produces articulation axioms in the following three phases: representation of

the model, matching of concepts, and construction of articulation axioms.

As shown in Figure 2.4, MIST displays enterprise models both before (lower

right) and after (lower left) they are represented in a local context of Cyc. MIST

enables the Cyc knowledge base to be browsed graphically (middle right) and tex-

tually (upper left), in order to allow the correct concept matches to be located. It

enables a user to create frames in the global context or augment the local context

for a model with additional properties when needed to ensure a successful match.

MIST also displays the articulation axioms (upper right) that it constructs. The

rest of this section describes the three phases of articulation axiom development in

more detail.

Model Representation

In this phase, we represent the model as a set of frames (classes and slots) in a

context created specially for it. These frames are instances of frames describing the

data model of the schema, e.g., (for a relational schema) Relation and DatabaseAt-

tribute.

We de�ne three types of frames for representing models: (1) DatabaseSchema

frames, describing schemas for di�erent data models, (2) DatabaseObject frames,

describing the major components of schemas, such as relations and entities, and (3)

DatabaseAttribute frames, describing di�erent kinds of links used to re�ne and re-

late the major components. Every schema and every one of its components (relation,

attribute, etc.) is an instanceOf these types and belongs to a context characterizing

that schema. The slot dBSchemaMt, de�ned for DatabaseSchema, is used to express

the relationship between an instance of a schema and its context. Information about

the usage of a resource and the functionalities it provides (e.g., management and ac-

cess languages, transactions, etc.) are represented similarly, i.e., using frames such

as RelationalService, ERService, RelationalDDLType, ObjectOrientedMethod, and

ERTransactionType.

Matching

How articulation axioms are generated and how di�erent schemas are integrated

depends crucially on the process of matching them. For resource integration, the

problem of matching is: given a representation for a concept in a local context, �nd

its corresponding concept in the global context. There are several factors that a�ect

this phase: there may be a mismatch between the local and global contexts in the

depth of knowledge representing a concept, and there may be mismatches between

Sec. 2.4. Enterprise Modeling Infrastructure|MIST 55

MassInfo

name* address

numberOfLevels

AmenityInfo

amenityCode*

MassAmenity

HasFloor

View Micro Filter Info

postalAddress

instanceOf
allInstanceOf
makesSenseFor
entryIsA
inverse
entryFormat
allGenlSlots
allSpecSlots

Slot
BinaryRelation
Agent
AddressTheFormat
postalAddressOf
SetTheFormat
postalAddress
postalAddress

Integration Suggestions Inconsistencies File

>> Create Articulation Axiom: address

Articulation axiom created for address:

ERMASS35Mt::
MASSInfo.address
 <--->
LodgingOrganization.postalAddress

Clear Kill File Misc

 . .
 . . .

..
. .

 . . *** Using pointer
over panning area,
place object in
graph inspector

L - create new node and place it under pointer

String

address

MASSInfo

Integer

name

numberOfLevels

String

String

numberOfFloors

Floor

Integer
mASSAmenity

AmenityInfo

amenityCode

hasFloors

Agent

PerceptualAgent

IntelligentAgent

Animal

Cyclist

postalAddress

address

Computer

IndividualAgent

Android

Figure 2.4. Sample MIST Screen

56 Carnot Prototype Ch. 1

the structures used to encode the knowledge. For example, a concept in Cyc can

be represented as either a collection or an attribute [LENA90].

If the global context's knowledge is more than or equivalent to that of the local

context's for some concept, then the interactive matching process described in this

section will �nd the relevant portion of the global context's knowledge. If the

global context has less knowledge than the local context, then knowledge will be

added to the global context until its knowledge equals or exceeds that in the local

context; otherwise, the global context would be unable to model the semantics

of the resource. The added knowledge re�nes the global context. This does not

a�ect previously integrated resources, but can be useful when further resources are

integrated.

Finding correspondences between concepts in the local and global contexts is

a subgraph-matching problem. We base subgraph matching on a simple string

matching between the names or synonyms of frames representing the model and

the names or synonyms of frames in the global context. Matching begins by �nding

associations between attribute/link de�nitions and existing slots in the global con-

text. After a few matches have been identi�ed, either by exact string matches or

by a user indicating the correct match out of a set of candidate matches, possible

matches for the remaining model concepts are greatly constrained. Conversely, after

integrating an entity or object, possible matches for its attributes are constrained.

Constructing Articulation Axioms

An articulation axiom is constructed for each match found. For example, the match

between a relational attribute phone in model AAA and the Cyc slot phoneNumber

yields the axiom

ist(Cyc phoneNumber(?L ?N)) , ist(AAA phone(?L ?N))

which means that the phone attribute de�nition determines the phoneNumber slot

in the global schema, and vice versa. Articulation axioms are generated automati-

cally by instantiating stored templates with the matches found. These articulation

axioms (in a simpli�ed format) are stored in the Carnot global dictionary where they

are accessible to the Carnot Distributed Semantic Query and Transaction Manager

(see Section 2.5.2).

2.5 Information Management Infrastructure|ESS and DSQTM

The runtime Information Management Infrastructure is shown at the top of Fig-

ure 2.2. Client applications are shown on the left-hand side of the �gure. These

applications access database services through the Extensible Services Switch (ESS).

Applications written in the C language use function calls to an implementation of

the SQL Access Group Call Level Interface (SAG CLI) to request database access.

The middle portion of Figure 2.2 is the Carnot implementation of middleware that

connects client applications with the servers on the right side of the �gure. A client

application can connect to an ESS through the SAG CLI and access a speci�c re-

Sec. 2.5. Information Management Infrastructure|ESS and DSQTM 57

ESS

Carnot Support Services

O/S

OSI
Upper Layers

OSI
Lower Layers

Internet
Protocols

X.400

Various
Subnetwork Technologies

X.500

Rosette

C
a
rn

o
t

C
o
m

m
u

n
ic

a
ti

o
n

 S
er

v
ic

es

Figure 2.5. Carnot Communication and Support Layers

mote database through either the Remote Database Access protocol or through the

ESS TreeSpace protocol. This simple type of access does not require any of the

results of the enterprise modeling that were discussed in the previous section.

If a client application wishes to have a more abstract view of the information

space, it can connect to the DSQTM ESS shown at the bottom of the center of

Figure 2.2. The DSQTM uses the global dictionary, local schemas, articulation

axioms, and declarative resource constraint base to translate an abstract request

into a set of queries against a set of physical databases. The following sections will

describe the ESS and the DSQTM in more detail.

2.5.1 Extensible Services Switch (ESS)

The Carnot Extensible Services Switch (ESS) provides interpretive access to com-

munication resources, information resources and applications resident at a site in a

distributed system. There are two sorts of paradigms that may pro�tably be used

to understand the ESS. First, the ESS can be thought of as a component of a dis-

tributed command and control interpreter that is used to implement heterogeneous

distributed transaction execution and generalized work
ow control. Second, the

ESS may be viewed as a programmable application layer communication front-end

for applications and other resources within a distributed information system. The

ESS is essentially a programmable glue for binding software components to one

another in a manner that enhances interoperability. The coarse structure of the

communication and support service layers is summarized in Figure 2.5.

58 Carnot Prototype Ch. 1

Rosette Implementation of the Actor Model

The ESS is constructed on top of a high-performance implementation of an inter-

preter for the Actor model [AGHA86], [AGHA90], enhanced with object-oriented

mechanisms for inheritance and re
ection. The language of the interpreter is called

Rosette [TOML92] and has been developed over a period of �ve years for both re-

search in parallel algorithm development and interpretive control of distributed ap-

plications. Rosette is a prototype-based, object-oriented command language based

on the Actor model. The syntax of the Rosette language is similar to Lisp or Scheme

and the sequential aspects of the language model may be usefully compared with

Self [UNGA87].

The Rosette interpreter is harmonized to the speci�c operating system facilities

of a variety of platforms, and enhanced with a variety of distributed processing

and communications facilities such as remote evaluation, tree spaces, and virtual

synchrony. The workstation platforms on which Rosette is supported include: Sun3,

Sun4, DEC5100, Hewlett Packard 700 and 800, IBM RS6000 running AIX, Silicon

Graphics IRIS, and various Intel 386/486 based systems running UNIX System V

Release 3 or 4 or 4.3 BSD Unix. The virtual machine, byte-code compiler, and a

variety of primitive actors are implemented in C++.

There are two features of the Actor model that make it particularly well suited

as the basis for an integration tool such as the ESS:

1. the basic semantics of the Actor model of computation is asynchronous com-

munication among actors, which concurrently executing entities.

2. the Actor model includes a simple and powerful model for synchronizing and

controlling the interference among concurrently executing threads of control.

In the Actor model everything is executed concurrently by default. It is neces-

sary to explicitly indicate where there are data or control
ow dependencies among

steps. In Rosette this leads to ultra-lightweight threads that can be used:

1. to express the concurrent execution of components of a distributed job in a

simple manner, and

2. to multiplex many independent activities through a single instance of the

interpreter at a site.

The latter is important, because it permits more e�ective control of the pro-

cessor resources at a site than traditional approaches using shell programs, where

a new operating system process is instantiated for each nested activity that is ex-

pressed in the command language. This can become a signi�cant drain on processor

resources at a site. Rosette can perform multiple independent activities on behalf

of arbitrary clients. Further, Rosette may be used to multiplex access to separate

information resources under the control of a single instance of an ESS. This allows

for sophisticated control of multiple resources to be expressed simply in the com-

mand language. Essentially, control at this level is used to e�ect policies of one sort

or another concerning how resources are to be used in the enterprise.

Sec. 2.5. Information Management Infrastructure|ESS and DSQTM 59

Rosette Integration Facilities

Rosette incorporates several integration facilities that are particularly important

for the interoperation of independent applications and resource managers. These

include:

1. the dynamic de�nition of foreign language storage structures|this facility

permits simple syntactic transformations of C language header �les to be

directly loaded into a Rosette environment so as to de�ne various application

or resource manager speci�c types as actors with the same underlying storage

structure as that de�ned in C. Methods may be attached to these actors so

that the structures may be used just like any other class of actors;

2. type-checked access to procedures generated by foreign language processors

linked statically or dynamically into the runtime environment|this facility

includes features for converting between types in Rosette, such as strings and

numbers and those required or returned by the foreign language procedure,

as well as a capability to clone returned static structures automatically. This

facility uses a simple syntactic transformation of the ANSI C function proto-

type;

3. management of external events among applications|this facility virtualizes

interrupt or signal handling among various threads executing in a single

ESS environment and signi�cantly reduces overhead due to polled interac-

tion among such components as a communication package and a windowing

package. Events are materialized as messages to actors representing one or

another of the integrated resources within an ESS.

These basic integration facilities have been used, for example, to embed the

following services in the ESS environment:

1. Carnot's Graphical Interaction Environment, which integrates X window, Mo-

tif widgets, MCC's 2D modeling system(Germ), and MCC's 3D modeling and

animation system(Mirage) components. These components enable various in-

terface builders to be layered in the ESS environment and can be used to

develop "groupware" as well as conventional graphical interfaces.

2. Interfaces to Ingres, Sybase, and Oracle relational database systems and the

Itasca and Objectivity object-oriented database systems. These interfaces pro-

vide query and transaction access to various database resources at a network

site. Multiple resources may be supported via a single ESS, which permits an

ESS to perform as a distributed transaction manager.

3. a distributed query and transaction planner based on the BellCore OMNI-

BASE query optimizer. This component is used to derive work
ow scripts

that perform distributed query and transaction processing.

60 Carnot Prototype Ch. 1

4. Interfaces to ISODE 7.0/8.0, SunLink OSI, SunLink 3270, and DECNet OSI

communications components. These services support the integration of ap-

plications within a sophisticated distributed environment without having to

rework the applications themselves in order for them to participate in the

environment.

5. SQL Access Group Remote Database Access(RDA) clients and servers. This

service permits components connected to or embedded within an ESS to access

database resources via an industry standard application protocol supported

by a variety of independent vendors.

ESS Support for Distributed Processing

The above services are supported within the ESS environment by a variety of com-

munications resource and distributed processing abstractions. These include:

1. ByteStream,

2. RosetteStream,

3. Remote evaluation,

4. TreeSpaces,

5. Virtual Synchrony, and

6. OSI

The ByteStream provides access to an uninterpreted stream of bytes, while

the RosetteStream provides access to a stream of Rosette expressions. This lat-

ter provides basic support for remote evaluation and is used by several of the

client applications of the ESS. The TreeSpace abstraction is a collection of classes

built on RosetteStreams and provides functions similar to those of Linda's tuple

spaces [CARR89] or ActorSpaces [AGHA93]. TreeSpaces are used extensively by

the "distribution services" layer to manage the distribution of work and include a

GroupSpace abstraction that provides a multicast facility obeying a form of virtual

synchrony [BIRM91].

The OSI interfaces are illustrated in Figure 2.6. The interface to Association

Control(ACSE) permits an ESS to act as both an initiator and a responder for

OSI application layer associations. The interface to the Remote Operations Ser-

vice(ROSE) permits an ESS to act as both an invoker and a performer of remote

operations. The ESS provides support for both the ISO/CCITT Abstract Syntax

Notation(ASN.1) and the Remote Operations Notation (RON). These capabilities

are particularly important as they allow an application designer to specify an ap-

plication completely in terms of the formal description of the application protocol,

rather than having to mentally translate into some implementation language repre-

sentation of the corresponding protocol data units.

Sec. 2.5. Information Management Infrastructure|ESS and DSQTM 61

Lower Layers

Presentation

ROSEACSE

Extensible Services Switch (ESS)

RON/
ASN.1

ISO9579

rosy/
acseListener

Isode
RoService

-
RDASQL

asn.1

RDAClient RDAService

Figure 2.6. OSI Application Layer Interfaces in the ESS

The RDA components support the SQL Access Group de�nition of the Remote

Database Access protocol (FAP-92). In an application, there may be a variety of

database resources accessible locally through an ESS and in this case the `applica-

tion entity quali�er' is used to select the appropriate advertised database service

at an ESS. The RDA facility has been used in a variety of application contexts

including providing access to chemical property databases by advanced logic data

language and natural language processors. This example is typical of the o�-loading

of communications from a variety of applications so that there is a net reduction in

maintenance and an increase in
exibility.

The principal components of this facility are illustrated in Figure 2.7. The RDA-

Client actor implements a translation from a common remote evaluation protocol to

the RDA protocol. The remote evaluation protocol is used by a client of the ESS to

access SQL resources within the system. In this case, the client is a Graphical Inter-

face Environment (GIE) developed as part of the Carnot project. The ISO9579-I/F

implements the RDA protocol machine, seeing to it that application protocol data

units are properly encoded and decoded and that state transitions are legal. This

agent was handcrafted for FAP-92, since that protocol is speci�ed without bene�t

of the Remote Operations Notation.

The RDAService actor implements a translation from the RDA protocol to an

SQL remote evaluation protocol. The Itasca actor implements a translation from

62 Carnot Prototype Ch. 1ItascaRDA

RDA-Itasca-ESS

Client RDA-ESS

Hotels

Service

ISO9579 RDA
Client

GIE

I/F

ISO9579
I/F

Figure 2.7. Principal actors implementing RDA support in the ESS

the SQL remote evaluation protocol to a local protocol for accessing the Itasca

object-oriented database system. Other database systems for which interfaces have

been developed include Ingres, Oracle, Objectivity, and Sybase. The SQL remote

evaluation protocol is very simple to implement and well suited for attaching a

variety of clients to the ESS environment. The protocol serves a purpose quite

similar to an API, but for external processes.

2.5.2 Distributed Semantic Query and Transaction Manager

The Distributed Semantic Query and Transaction Manager is our initial implemen-

tation to provide query and relaxed transaction processing services. It dynamically

expands a query to include access to all semantically equivalent and relevant in-

formation resources, and also groups any updates to these resources as a set of

independent transactions that interact according to a dynamically de�ned relaxed

transaction semantics [WOEL93a]. DSQTM is based on the OMNIBASE multi-

database system [RUSI89]. Figure 2.8 is a block diagram of the DSQTM. The

query graph generator module accepts SQL and generates a query graph using in-

formation from a global dictionary. The query graph is annotated with physical

information resource locations that were either provided in the initial SQL query

Sec. 2.5. Information Management Infrastructure|ESS and DSQTM 63

Query Graph
Generator

Query Graph

Semantic
Augmentation

Relaxed
Transaction

Augmentation

Augmented
Query Graph

Optimizer

ESS
Script

Generator

Transaction

Transaction Graph

ESS Scripts
for Resource Servers

Global
Dictionary

(in IRDS,

X.500, etc.)

Local
Schemas

Articulation
Axioms

Declarative Resource
Constraint Base

Graph

with Optimal
Query Plans

*

*

*Based on Omnibase DQM

SQL

Figure 2.8. Block Diagram of DSQTM

64 Carnot Prototype Ch. 1

or that were found in the global dictionary. The query graph is then optionally

passed to the semantic augmentation module, which uses articulation axioms to

expand the query graph to include nodes representing other information resources

that contain relevant information. Articulation axioms are generated by the MIST

tool described in Section 2.4.

Next, if the original query requested modi�cations to an information resource,

the query graph is passed to the relaxed transaction augmentation module, which

uses rules in the declarative resource constraint base to determine update transac-

tions for other information resources that will be necessary to maintain consistency.

The format of the rules is similar to those in [SHET92]. Separate query graphs

are built for each of these transactions. The declarative resource constraint base

also speci�es the relaxed transaction model that will govern the interaction among

the transactions. The model is synthesized from dependencies declared among the

transactions in a language similar to ACTA [CHRY90]. The separate query graphs

are then related to each other within a transaction graph.

The transaction graph is passed to the optimizer module, which generates an

optimal query plan for each query graph node in the transaction graph. The query

plan speci�es the ordering of joins and the
ow of intermediate results among the

remote systems. The query processing strategy is based on a data
ow execution

model similar to the strategy for distributed query processing implemented for the

ORION distributed object-oriented database system [JENQ90]. The query plan(s)

and transaction graph are passed to the ESS script generator, which builds a script

to be executed at each site that will participate in the execution of the transac-

tions.The script controls the execution of subqueries or subtransactions at a site,

controls the
ow of data to and from the site, does necessary data value mapping

between databases, and controls the transaction semantics [TOML93]. The script is

executed under the control of the ESS distributed execution environment described

in Section 2.5.1. Communication with an individual database server is via either

TCP, RDA, or ESS tree space.

DSQTM has been implemented as an ESS actor object. The DSQTM actor re-

sponds to a set of messages that include the typical functions provided by a database

server (connect to database, begin transaction, execute query, etc.). Much of the

functionality of DSQTM is provided by C and C++ functions, which are called

through the ESS foreign function interface. This allows ESS to control concurrent

execution of functions while implementing individual functions in C and C++.

The following sections describe semantic augmentation and relaxed transaction

augmentation modules in more detail.

2.5.3 Semantic Augmentation of Query Graphs

Using the articulation axioms, the semantic augmentation module modi�es and ex-

pands the query graph. This is similar to expanding a relational query on a view

into an equivalent query on a set of base relations. However, additional transfor-

mations must also be made. For example, a predicate in one relation describing

Sec. 2.5. Information Management Infrastructure|ESS and DSQTM 65

EAST

WEST

Hotels
 name, story, suitecount.

HotelInv

Story
id, level, roomcount, ..

id, hotelname, datebuilt ...

EUROPE

 Fodor

name category

Figure 2.9. Example databases

hotels might be expressed as "rate > 200" and in another relation as "category

= expensive". Furthermore, the "rate" value of 200 may have to be changed to

"expensive" before returning it to the user.

Articulation axioms are grouped to de�ne "semantic closures." A query associ-

ated with a semantic closure will be expanded using only the articulation axioms

that are in the semantic closure. Thus, by specifying a proper set of articulation

axioms, users can control whether their query will be expanded or shrunk, and how

far the expansion/shrinkage will go.

To illustrate the semantic augmentation module, let us consider three travel

databases, EAST, WEST, and EUROPE, shown in Figure 2.9.

We assume these databases are integrated through a knowledge base containing

knowledge about lodging organizations. The concept of "hotel" is represented as

a table "Hotels" in EAST, a table "HotelInv" (Hotel Inventory) in WEST, and

a class "Fodor" in EUROPE. The integration of these di�erent representations is

66 Carnot Prototype Ch. 1

AXIOM2 EAST::Hotels.story <==> GLOBAL::LodgingOrganization.physicalQuarter.hasLevels.level

AXIOM7 WEST::Story.level <==> GLOBAL::LevelOfABuilding.level

= 1
= 2
= 3
... ...

= one
= two
= three
... ...

= 1
= 2
= 3
... ...

= 1
= 2
= 3
... ...

Figure 2.10. Axioms for Example Databases

accomplished by a set of articulation axioms that includes the following:

AXIOM1 EAST::Hotels.name, GLOBAL::LodgingOrganization.name

AXIOM2 EAST::Hotels.story ,

GLOBAL::LodgingOrganization.physicalQuarter.hasLevels.level

AXIOM3 EAST::Hotels.suitecount ,

GLOBAL::LodgingOrganization.physicalQuarter.hasLevels.rooms

AXIOM6 WEST::HotelInv.hotelname, GLOBAL::LodgingOrganization.name

AXIOM7 WEST::Story.level, GLOBAL::LevelOfABuilding.level

AXIOM8 WEST::HotelInv.id 1 Story.id,

GLOBAL::LodgingOrganization.physicalQuarter.hasLevels

AXIOM9 WEST::Story.roomcount, GLOBAL::LevelOfABuilding.rooms

AXIOM11 EUROPE::Fodor.name, GLOBAL::LodgingOrganization.name

Articulation axioms can be used in a number of ways to translate from con-

cepts in one database to concepts in other databases. The simplest way is a

concept-to-concept mapping. For example, Fodor.name is matched to LodgingOr-

ganization.name, which is in turn matched to Hotels.name in the EAST database.

The match can also be concept-to-chain. For example, Hotels.story is mapped to

LodgingOrganization.physicalQuarter.hasLevels.level, which takes a chain of two

axioms (LodgingOrganization.physicalQuarter.hasLevels from AXIOM8 and Level-

OfABuilding.level from AXIOM7) to be translated into HotelInv(joined)Story.level.

Furthermore, the mappings can be fork-like. In AXIOM8, for example, the two re-

lations HotelInv and Story are joined to match to the global concept LodgingOrga-

nization.physicalQuarter.hasLevels. Finally, articulation axioms can be associated

with value mappings, which specify how the values in one local concept should be

translated into the values of concepts in other local databases. For example, sup-

pose that the values of Story.level in WEST are "one", "two", "three", etc., the

values of Hotels.story are 1, 2, 3, etc., and the values of LevelOfABuilding.level are

1, 2, 3, etc., then the value mappings associated with the relevant axioms are as

Sec. 2.5. Information Management Infrastructure|ESS and DSQTM 67

 Hotels

[proj.]

 name

[sel.]

 suitecount>100story
story=1

Figure 2.11. Query Graph for Example Databases

shown in Figure 2.10.

With these value mappings, Hotels.story=1 in the EAST database can be trans-

lated to Story.level="one" in the WEST database. In general, each set of value

mappings is represented as a table that maps (operation

i

value

i

) to (operation

j

value

j

).

The semantic augmentation module accepts a query graph that is generated by

parsing the original query. A query graph is a tree of nodes that represent relations

and that specify how these relations are tailored (by projections on columns and

selections on rows) before they are joined through some expressions.

Given a query graph, the semantic augmentation module searches through the

projections and selections of each existing relation node, and checks if it can be

expanded, through the articulation axioms in the current semantic closure, to new

projections and selections on new relations. A projection or a selection is expandable

if it matches to some articulation axioms in the current closure. The other "end"

of matching are the projections or selections to be created.

Consider, for example, the following SQL query against the EAST database:

SELECT name, story FROM Hotels WHERE story=1 AND suitecount >100.

The query graph generated from this query is as shown in Figure 2.11.

This graph is expanded into the graph shown in Figure 2.12 by the semantic

augmentation module based on the axioms given above.

HotelInv.hotelname is created because of the mappings (AXIOM1 and AXIOM6)

from Hotels.name in the original graph. The join between HotelInv and Story is

created because of the mapping (AXIOM2, AXIOM7 and AXIOM8) triggered by

Hotels.story in the original graph. The value mappings associated with this path

also translate story=1 to level = "one". Finally, the selection Story.roomcount

> 100 is created through AXIOM3 and AXIOM9 from the original selection Ho-

tels.suitecount > 100. (In this case, there is no value mapping associated with the

path, so "> 100" is translated to "> 100" by default.)

Relaxed Transaction Augmentation

The relaxed transaction augmentation module generates a transaction graph that

may include updates to additional information resources and constraints on the

execution of these updates [WOEL93b]. For example, Figure 2.13 represents a task

graph that has been created when the deletion of a booking is requested in a travel

6
8

C
a
r
n
o
t
P
r
o
t
o
t
y
p
e

C
h
.
1

Hotels

[proj.]

 name

[sel.]

 suitecount>100story

story=1

 Story

[proj.] [sel.]

 roomcount>100
level="one"

Assembler

(Join)
id = id

HotelInv

[proj.]

hotelname level

VMap

F
i
g
u
r
e
2
.
1
2
.
A
u
g
m
e
n
t
e
d
Q
u
e
r
y
G
r
a
p
h
f
o
r
E
x
a
m
p
l
e
D
a
t
a
b
a
s
e
s

Sec. 2.5. Information Management Infrastructure|ESS and DSQTM 69

delete
booking

decrement
summary

increment
summary

update
alarm
(u?a)

(iS)

(dS)(dB)

DELETE
BOOKING

update
alarm
(u?a)

Figure 2.13. Task Graph for the Delete Booking Example

database. Assuming that there is a booking relation in one database that represents

the bookings for each travel agent and that there is a summary relation in another

database that keeps a count of the number of bookings per agent, then, when a

booking is deleted, the booking count for the agent should also be decremented. If

the count falls below some speci�ed value, an icon should
ash red.

These semantics can be captured with an integrity constraint that the number

of rows in the booking relation should equal the number of bookings stored for that

agent in the summary relation. The maintenance of this constraint can be assured

by executing updates to each database as atomic multidatabase transactions using

a protocol such as two-phase commit. However, the database systems we are using

do not necessarily provide visible two-phase commit facilities.

Instead, we may assume that the interdatabase integrity is maintained by exe-

cuting separate tasks that obey the appropriate intertask dependencies. Realistic

dependencies for this example state that if a delete task on the booking relation

commits, then a decrement-summary task should also commit. Furthermore, if a

delete task aborts, while its associated decrement-summary task commits, then we

must restore consistency by compensating for the spurious decrement. We do this by

executing an increment-summary task. Figure 2.2 shows the tasks involved in this

example; where dB, dS, iS, and u?a denote the delete-booking, decrement-summary,

increment-summary, and update-alarm tasks, respectively.

There are dependencies among the task boxes in Figure 2.13. These dependen-

cies determine the allowable orderings of execution of the tasks. There are three

potential strategies for controlling the ordering of execution of these tasks. The �rst

70 Carnot Prototype Ch. 1

strategy is to give a name to this pattern of tasks and dependencies and implement

a transaction scheduler speci�cally for this pattern. This is the strategy normally

used for traditional two-phase commit implementations. The second strategy is

to give a name to each of the dependencies and implement a scheduler that inter-

acts with tasks based on a programmed semantics for the named dependency. An

example is a scheduler for traditional
at transactions (where all subtransactions

must either all commit or all abort), where each subtask has a Commit Dependency

(see de�nition below) on every other subtask. The third strategy is to identify the

signi�cant internal states of each subtask, identify a few simple types of depen-

dencies among these internal states, and implement a scheduler that enforces these

dependencies. We have chosen the third strategy, described further below.

The speci�cation and enforcement of intertask dependencies has recently re-

ceived considerable attention [CHRY90, ELMA90, ELMA92, KLEI91]. Following

[CHRY90] and [KLEI91], we specify intertask dependencies as constraints on the

occurrence and temporal order of certain signi�cant events speci�ed on a per-task

basis. Klein has proposed the following two primitives [KLEI91]:

1. e

1

! e

2

: If e

1

occurs, then e

2

must also occur. There is no implied ordering.

2. e

1

< e

2

: If e

1

and e

2

both occur, then e

1

must precede e

2

.

Examples of execution dependencies de�ned in the literature include:

1. CommitDependency [CHRY90]: transaction A is commit-dependent on trans-

action B, i� if both transactions commit, then A commits before B commits.

Let the relevant signi�cant events be denoted as cm

A

and cm

B

. This can be

expressed as cm

A

< cm

B

.

2. Abort Dependency [CHRY90]: Transaction A is abort-dependent on transac-

tion B, i� if B aborts, then A must also abort. Let the signi�cant events here

be ab

A

and ab

B

, so this can be written ab

B

! ab

A

.

The relationships between signi�cant events of a task can be represented by a

task state transition diagram, which is an abstract representation of the actual task

that hides irrelevant details of its sequential computations. Execution of the event

causes a transition of the task to another state. Figure 2.14 shows an example

task state transition diagram taken from [KLEI91]. From its initial state (at the

bottom of the diagram), the task �rst executes a start event (st). Once the task

has started, it will eventually either abort, as represented by the ab transition, or

�nish, as represented by the dn transition (for "done"). When a task is done, it can

either commit, i.e., make the cm transition, or abort, i.e., make the ab transition.

Using the state transition diagrams and signi�cant events de�ned above, we can

represent the travel agent application described in the previous section as shown in

Figure 2.15. The intertask dependencies are shown as "links" between signi�cant

events of various tasks. For example, the dependency (ab(dB) < dn(dS))! ab(dS)

Sec. 2.5. Information Management Infrastructure|ESS and DSQTM 71

Not executing

Executing

CommittedAborted

Done

st

dn
ab

ab
cm

Figure 2.14. An Example Task State Transition Diagram

st(dB) -> st(dS)
cm(dS) -> st(u?a)
cm(iS) -> st(u?a)
(ab(dB) & cm(dS)) -> st(iS)
(ab(dB) < dn(dS)) -> ab(dS)

&

->

<

->

->

->

->

Figure 2.15. Dependencies between Signi�cant Events

72 Carnot Prototype Ch. 1

states that if the dB task aborts before the dS task is done executing, then the dS

task will also abort.

The formal speci�cation of these dependencies using a Computation Tree Logic

[EMER82] and the implementation of a scheduler to enforce these dependencies

is described in [ATTI93]. The scheduler is implemented in the concurrent actor

language Rosette. We are continuing to enhance this approach by exploiting results

in action logics [PRAT90] and to experiment with the construction of advanced

transaction models.

2.6 Building Applications Using Carnot

A number of sponsors of the Carnot research have started development of appli-

cations using the Carnot prototype, including Eastman Kodak, Boeing Computer

Services, Bellcore, and Ameritech. The focus of these applications varies from an

emphasis on heterogeneous database access to an emphasis on more generalized

work
ow processing.

A demonstration application has been developed at MCC that focuses on in-

teroperability among database servers. MCC has made a strong commitment to

comply with industry standards and to actively in
uence industry standards to in-

sure that standards will not hinder future advances in technology. As part of this

commitment, Carnot has participated in the SQL Access Group, a consortium of

leading software and hardware companies working together to develop a standard

SQL interface for database management systems and standard protocols for inter-

operability among clients and servers. The SQL Access Group is attempting to

accelerate the acceptance of the ISO Remote Database Access (RDA) protocol. In

July 1991 a group of 15 SQL Access Group members, including MCC, demonstrated

interoperability among their various hardware and software systems using the RDA

protocol. Figure 2.16 describes the vendors that participated in the demonstration.

The MCC database server was an Itasca object-oriented database system with

an Object SQL interface, a subset of which provides standard SQL functionality.

The Object SQL was written by the Carnot project as an enhancement to the

existing Itasca query language. Itasca is a commercial product marketed by Itasca

Systems that is based on the MCC ORION prototype. The MCC client was an

application developed using the Carnot Graphical Interaction Environment (GIE)

and the Carnot DSQTM.

The databases used for the SQL Access Group Demo contained information

on bookings for air travel, hotels, and entertainment for a travel agency. Each

of the database servers handled data for a speci�c location. Each of the clients

accessed one or more of the servers to schedule trips, generate reports, or just

browse the databases. The MCC client application consisted of a graphical interface

developed using the GIE, which allowed the user to click on an icon to generate a

query.The query was decomposed into separate subqueries, one for each database

server. Two or three database servers were usually accessed. The subqueries were

sent to the database servers using the RDA protocol. The subqueries were executed

S
e
c
.
2
.
6
.
B
u
i
l
d
i
n
g
A
p
p
l
i
c
a
t
i
o
n
s
U
s
i
n
g
C
a
r
n
o
t

7
3

MCC

GIE &

DSQTM

Ask/Ingres

Ingres Windows

HP

Digital

DECquery

Informix

Wingz

Unisys

Oracle

Graphics

SUN

Unify

HP

Cincom

Mantis

HP

NewWave

Microsoft

Excel

SUN

Simplify

RDA SQL

Digital

Rdb

Fujitsu

RDB2

HP

All Base

Oracle

Sun

Sybase

NCR

Tandem

NonStop

MCC

Itasca

Clients

Teradata

Servers

F
i
g
u
r
e
2
.
1
6
.
S
Q
L
A
c
c
e
s
s
G
r
o
u
p
D
e
m
o
n
s
t
r
a
t
i
o
n

74 Carnot Prototype Ch. 1

concurrently, returning their results to the DSQTM, which assembled the results

into a single answer. The GIE then created instances of Itasca classes to represent

the results. These instances were presented to the user as icons, which could be

further manipulated.

Since the SQL Access Group demo, the Carnot group has enhanced the pro-

totype environment. We have developed RDA, tree space, and TCP servers using

Ingres and Oracle DBMS's. There are now two GIE applications, a Manager Ap-

plication and a Travel Agent Application. The Manager Application enables the

manager in a company to make travel plans directly or to review the company's

travel arrangements. The Travel Agent Application provides similar capabilities for

the travel agency and, additionally, provides active icons for monitoring the status

of travel arrangements by many companies.

In addition to the travel database, a Fodor database containing general informa-

tion on hotels has been added. A query for information about hotels in the travel

database can now be expanded by the DSQTM semantic augmentation module to

also produce a subquery to the Fodor database for additional information. The re-

sults are merged to form an Itasca instance that can be displayed and manipulated.

A Carnot knowledge-based Distributed Communicating Agent (DCA) is used

to implement the declarative resource constraint base. The delete booking example

described in Section 5.2.2 has been implemented as part of this demo.

2.7 Acknowledgments

The following individuals at MCC have also contributed to the design and develop-

ment of the Carnot prototype: Natraj Arni, Paul Attie, Bharat Mitbander, Steven

Tighe, Nicki Turman, C. Unnikrishnan, and Dallas Webster.

Bibliography

[AGHA86] Agha, G. Actors. The MIT Press, Cambridge, MA, 1986.

[AGHA90] Agha, G. "Concurrent Object-Oriented Programming."Communication

of the ACM, September 1990, pp. 125{141.

[AGHA93] Agha, G. and C. Callsen. "ActorSpace: An Open Distributed Program-

ming Paradigm." in Proceedings Principles and Practice of Parallel Pro-

gramming 1993.

[AHLS90] Ahlsen, M. and P. Johannesson, "Contracts in Database Federations,"

in S. M. Deen, ed., Cooperating Knowledge Based Systems 1990, Springer-

Verlag, London, 1991, pp. 293{310.

[ATTI93] Attie, P., M. Singh, A. Sheth, and M. Rusinkiewicz. "Specifying and

Enforcing Intertask Dependencies". Proceedings of the 19th International

Conference on Very Large Data Bases (VLDB), Dublin, Ireland, August

1993.

[BIGE93] Bigersta�, T., Mitbander, B. and D. Webster. "The Concept Assignment

Problem in Program Understanding", 15th Intl Conf. on SWE (ICSE), May

17{21, 1993, pp. 482{498.

[BIRM91] Birman, K., A. Schiper, and P. Stephenson. "Lightweight Causal and

Atomic Group Multicast." ACM Transactions on Computer Systems,

9(3):272{314, August 1991.

[BUNE90] Buneman, P., S. B. Davidson, and A. Watters, "Querying Independent

Databases," Information Sciences, Vol. 52, Dec. 1990, pp. 1{34.

[CARR89] Carriero, N. and D. Gelernter. "Linda in Context." CACM, Volume 32,

number 4, 1989.

[CHRY90] Chrysanthis, P. and K. Ramamritham. "ACTA: A Framework for Spec-

ifying and Reasoning about Transaction Structure and Behavior", Proc.of

ACM SIGMOD, p. 194{203, 1990.

75

76 Carnot Prototype Ch. 1

[ELMA90] Elmagarmid, A., Y. Leu, W. Litwin, and M. Rusinkiewicz. "A Multi-

database Transaction Model for Interbase". Proceedings of the VLDB Con-

ference, August, 1990.

[ELMA92] Elmagarmid, A., editor. Database Transaction Models for Advanced

Applications, Morgan Kaufmann, 1992.

[EMER82] Emerson, A. and E. Clarke. "Using Branching Time Temporal Logic to

Synthesize Synchronization Skeletons". Science of Computer Programming,

vol.2, 1982, 241{266.

[GUHA90] Guha, R.V. "Micro-theories and Contexts in Cyc Part I: Basic Issues,"

MCC Technical Report Number ACT-CYC-129-90, Microelectronics and

Computer Technology Corporation, Austin, TX, June 1990.

[HEIM85] Heimbigner, D. and D. McLeod, "A Federated Architecture for Informa-

tion Management," ACM Transactions on O�ce Information Systems, Vol.

3, No. 3, July 1985, pp. 253{278.

[HUHN92] Huhns, M., N. Jacobs, T. Ksiezyk, W.M. Shen, M. Singh, and P.

Cannata, 1992."Enterprise Information Modeling and Model Integration

in Carnot", in Charles J. Petrie Jr., ed., Enterprise Integration Modeling:

Proceedings of the First International Conference, MIT Press, Cambridge,

MA, 1992.

[JENQ90] Jenq, P., D. Woelk, W. Kim, and W. Lee. "Query Processing in Dis-

tributed ORION", International Conference on Extending Database Tech-

nology, p. 169{187, March, 1990.

[KLEI91] Klein, J. "Advanced Rule Driven Transaction Management." Proceedings

of the IEEE COMPCON, 1991.

[LENA90] Lenat, D. and R. V. Guha, Building Large Knowledge-Based Systems:

Representation and Inference in the Cyc Project, Addison-Wesley Publish-

ing Company, Inc., Reading, MA, 1990.

[LITW90] Litwin, W., L. Mark, and N. Roussopoulos, "Interoperability of Multiple

Autonomous Databases," ACM Computing Surveys, Vol. 22, No. 3, Sept.

1990, pp. 267{296.

[PRAT90] Pratt, V.R. "Action Logic and Pure Induction". Logics in AI: European

Workshop JELIA-90, LNCS 478, Editor: J. van Eijck, Springer-Verlag", pp.

97{120, 1990.

[RUSI89] Rusinkiewicz, M., Elmasri, R., Czejdo, B., Georakopoulous, D., Kara-

batis, G., Jamoussi, A., Loa, L. and Li, Y. 1989. "OMNIBASE: Design and

Implementation of a Multidatabase System". Proceedings of the 1st Annual

Symposium in Parallel and Distributed Processing, pp. 162{169.

BIBLIOGRAPHY 77

[SHET92] Sheth, A., M. Rusinkiewicz, and G. Karabatis, "Using Polytransactions

to Manage Interdependent Data," in Database Transaction Models for Ad-

vanced Applications, edited by A. Elmagarmid, Morgan Kaufmann, 1992.

[TOML92] Tomlinson, C., G. Lavender, G. Meredith, D. Woelk, and P. Cannata.

"The Carnot Extensible Services Switch (ESS) - Support for Service Ex-

ecution," in Charles J. Petrie Jr., ed., Enterprise Integration Modeling:

Proceedings of the First International Conference, MIT Press, Cambridge,

MA, 1992.

[TOML93] Tomlinson, C., P. Attie, P. Cannata, A. Sheth, M. Singh, and D. Woelk,

"Work
ow Support in Carnot", Data Engineering Bulletin, Vol. 16, No. 2,

June, 1993, pp. 33{36.

[UNGA87] Ungar, D. and R. B. Smith. "Self: The Power of Simplicity." in ACM

OOPSLA Proceedings, 1987.

[WOEL92] Woelk, D., W. Shen, M. Huhns, and P. Cannata, "Model Driven Enter-

prise Information Management in Carnot", in Charles J. Petrie Jr., ed.,.

Enterprise Integration Modeling: Proceedings of the First International

Conference, MIT Press, Cambridge, MA, 1992.

[WOEL93a] Woelk, D., P. Cannata, M. Huhns, W. Shen, and C. Tomlinson. "Using

Carnot for Enterprise Information Integration". Second International Con-

ference on Parallel and Distributed Information Systems. January 1993. pp.

133{136.

[WOEL93b] Woelk, D., P. Attie, P. Cannata, G. Meredith, A. Sheth, M. Singh and

C. Tomlinson. "Task Scheduling Using Intertask Dependencies in Carnot",

ACM SIGMOD Proceedings, 1993, pp. 491{498.

