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Abstract— Web-based applications have gained universal 

acceptance in every sector of lives, including social, commercial, 
government, and academic communities. Even with the recent 
emergence of cloud technology, most of cloud applications are 
accessed and controlled through web interfaces. Web security 
has therefore continued to be fundamentally important and 
extremely challenging. One major security issue of web 
applications is SQL-injection attacks. Most existing solutions for 
detecting these attacks use log analysis, and employ either 
pattern matching or machine learning methods. Pattern 
matching methods can be effective, dynamic; they however 
cannot detect new kinds of attacks. Supervised machine learning 
methods can detect new attacks, yet they need to rely on an off-
line training phase. This work proposes a multi-stage log analysis 
architecture, which combines both pattern matching and 
supervised machine learning methods. It uses logs generated by 
the application during attacks to effectively detect attacks and to 
help preventing future attacks. The architecture is described in 
detail; a proof-of-concept prototype is implemented and hosted 
on Amazon AWS, using Kibana for pattern matching and Bayes 
Net for machine learning. It is evaluated on 10,000 logs for 
detecting SQL injection attacks. Experiment results show that 
the two-stage system has combined the advantages of both 
systems, and has substantially improved the detection accuracy. 
The proposed work is significant in advancing web securities, 
while the multi-stage log analysis concept would be highly 
applicable to many intrusion detection applications. 

Keywords—Log Analysis, Pattern Matching, SQL injection, 
Supervised Machine Learning, Text Classification,  Web Security. 

I.  INTRODUCTION  
Web-based applications have become prevalent in the 

ubiquitously-connected world. The recent increase in demand 
for huge data storage and high processing speed has led to the 
era of cloud computing, yet, most cloud-based systems and 
applications are accessed through the Internet web. Web 
security therefore has remained as top priority for Internet- and 
Cloud-Services Providers (ISP/CSP).  

In order to improve ISP/CSP user confidence and to protect 
web-based systems and applications, strong, effective security 
mechanisms must be deployed. Many architecture designs have 
been proposed and many cryptographic algorithms 
implemented; yet intruders continue to gain access to web-
based application, to steal confidential information, and to 
make unwanted modifications – including recent intrusions 
made to Target, the Home Depot, BlueCross Insurance, and 
many hospital and government information systems. SQL 

injection is one major attack that has been happening to web-
based applications [3].  

Log analysis is one major procedure to detect when an 
intruder attacked the system, how it happened, and what steps 
were performed during the attack [6]. The traditional approach 
of manual log analysis is no longer possible for real-time log 
analysis, as the number of logs has rapidly increased. Manual 
analysis also involves more cost and much more time. 
Technologies such as Hadoop and Hive therefore have been 
used.  

Two major techniques have been used in log analysis: 
pattern matching and machine learning [10] [2]. While the 
pattern matching method may work dynamically, only known 
patterns can be recognized, yet new types of injections may be 
created when only small changes are made to existing patterns. 
Machine learning also has its limitation, since classification in 
machine learning algorithms works with probabilities, it may 
not be able to correctly classify SQL injections that combine 
groups of words each was classified with high probability as 
non-SQL injection.  

Most existing log analysis methods for SQL injection 
detection are based on either pattern matching or machine 
learning. We propose an effective multi-stage log analysis 
architecture that uses both methods. The system therefore 
combines both of their advantages and compensates for their 
disadvantages. 

The major contributions of this paper may be summarized 
as follows: 

• Proposed a multi-stage architecture for detecting web 
attacks, using SQL injection attacks as an example. 

• Implemented a prototype based on the proposed 
architecture, using Bayes Net and Kibana. 

• Careful compared the pros and cons of pattern 
matching (Kibana) and machine learning (Bayes Net) 
methods. 

• Evaluated the 2-stage system through a series of 
experiments.  Detailed discussion of SQL injections 
detected and undetected by each of the four evaluated 
methods. 

The rest of the paper is organized as follows: Sections 2 
and 3 review background and related work, respectively. 
Section 4 presents the proposed system design and prototype 
implementation. Section 5 illustrates experiments and results. 
Finally, Section 6 concludes the paper. 
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II. BACKGROUND AND RELATED STUDIES 
In this section, background knowledge in SQL injection, log 
analysis, pattern matching and machine learning methods are 
briefly described. Due to page limitation, related studies have 
been omitted. 
A. SQL Injection: 

This is one of the major attacks made to web applications. 
Attacker inputs an SQL query, which modifies or damages the 
database that is connected to the target web application. SQL 
injections are broadly classified into three types based on the 
methods involved in creating them [14]. They are: (1) Order 
Wise, which involves execution of code written by the hacker 
so that it provides unlimited and unauthorized access to the 
database; 2) Blind, in this case an attacker gets access by 
asking a series of questions to the database and obtains a 
complete idea of the database structure based on the answers; 
3) Against Database, in which an attacker exploits the input 
validation vulnerabilities to create an SQL query so as to 
discover the desired information. 
B. Log Analysis 

Log Analysis is a process of understanding logs and 
extracting useful information. One of the open-source logging 
frameworks is Log4j [6], which is developed in Java by 
Apache Software Foundation. It has been used in this work to 
log information such as timestamp, log level, error messages, 
and user information such as IP address, username, and 
requested URL. Once these logs are captured, log analysis is 
then performed to do further investigation on website users. 
C. Pattern Matching 

One of the techniques used in this work to detect SQL 
injections is pattern matching. It checks whether a set of words 
is present in the given text. One commonly used pattern-
matching methods are described below. 

 
1) ELK (Elasticsearch, Logstash, and Kibana) 

This is a complete system that includes collection, search, 
analysis and visualization of data. The system essentially 
solves some of the main problems encountered when using 
traditional databases, including inconsistent data and time 
formats, and lack of visualization [24]. Its major components 
are described below. 

 

 
Fig 1: Logstash, Elasticsearch and Kibana [28] 

 
Logstash: It is a data pipelining tool that connects to a 

variety of sources with the help of plugins, and streams data to 
an analytics system [24]. Logstash receives different types of 
logs, namely system logs, web server logs, error logs, and 
application logs. These are normally distributed among 
different systems using different formats. Logstash helps users 
to parse data into one single common format before storing 
into the analytics data store. Additionally, Logstash provides a 
way to parse custom format logs by providing custom logics. 

Elasticsearch: It is an open-source search and data analysis 
software which gives users a deep insight on streaming data 
[24]. This tool provides a scalability feature by allowing users 
to add new nodes. Once a cluster is set up, Elasticsearch 
provides search and analysis features by building a distributed 

environment on top of Apache Lucene, which is used for full-
text searching.  

Apache Lucene: It is an open-source text search engine 
library written in Java [30]. It allows users to write their own 
queries through its query API, which helps users to search 
GeoIP locations, perform multilingual searches, etc. It also 
provides different types of searches such as term and phrase 
searches, and allows users to group keywords for detailed text 
searching.  

Kibana: It is an open-source data visualization interface for 
real-time summarizing and charting of stream data [26]. It 
helps users understand large volumes of datasets by providing 
different visualizations like bar charts, pie charts, line spots, 
and maps. It also provides different visualizations that can be 
combined into custom dashboards. 
D. Machine Learning: 

Machine learning is a way of making a computer learn and 
take action without explicitly programming it [7]. It has been 
used in many areas such as big data search, spam filtering, etc. 
It may be broadly classified into supervised learning and 
unsupervised learning.  
1) Naïve Bayes Classification 

It is a simple probabilistic classifier. It builds upon the 
Bayes theorem, which gives the probability of an event 
occurring based on the given conditions that are related to the 
event.  One major limitation is its assumption of independence 
between the attributes [27]; i.e., the existence of one attribute 
does not affect the other. 
2) Bayes Net Classification 

One problem in using a Naïve Bayes classifier is its 
assumption of treating all attributes as strongly independent 
(i.e. Probabilistic independence) of each other.  This 
assumption seems unrealistic as it cannot be applied in 
situations where correlation exists between these attributes and 
unwarranted data needs to be ignored to improve performance.  

Bayesian Networks are directed acyclic graphs (DAG) that 
represent the joint probability distribution over a set of random 
variables in a problem domain. Each variable lies at every 
vertex in the graph and the edges from the correlations between 
these random variables [1]. The conditional independence 
between these variables is stated in a way that each variable is 
independent of its non-descendants, given the state of their 
parent variables. Bayesian Networks are often used to tackle 
the independent-attributes assumption of Native Bayes 
Classification, and is helpful and improves performance. It has 
been used, along with other supervised machine learning 
methods, on our recent work on sentimental analysis [31]. 
 
 

III. SYSTEM DESIGN AND IMPLEMENTATION 
 The proposed system is a two-stage intrusion detection 
system. It performs log analysis to protect a web-based 
application from SQL-injection attacks. It uses both machine 
learning and pattern matching techniques. For the clarity of 
description, Bayes Net and Kibana (of ELK) are used to 
represent machine learning and pattern matching methods, 
respectively. They are also used in the proof-of-concept 
prototype implementation. 
 The proposed architecture consists of three main parts: (1) 
Log Generation: this includes a logging system such as Log4j, 
(2) Data Preprocessing: it handles preprocessing needed for 
machine learning and pattern matching methods, and (3) 
Detection Methods: such as Bayes net for machine learning 
and Kibana for pattern matching. 
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 In the following, for clarity, a simple, single-stage 
architecture is first illustrated. It is followed by the proposed 
multi-stage architecture and its description. 
 
A. Single-Stage Architecture: 
 In this architecture, as shown in Figure 2, the application 
logs are generated using a logging library such as Log4j. Then, 
either machine learning method (follow the path on the right) 
or pattern matching method (the left path) is used for detecting 
SQL injection attacks. Preprocessing is needed for the machine 
learning method, which uses WEKA and then Bayes Net as an 
example. The pattern matching method is shown using the 
ELK system. The produced results are then presented to the 
analyst for further understanding and interpreting. The details 
of each step are described in the next subsection, on the 
proposed multi-stage architecture. 
 

 
Fig 2: Simple architecture (1-stage) 

 

B. Proposed Multi-Stage Architecture 
 The proposed architecture combines both machine learning 
and pattern matching methods to improve the detection 
strength. As shown in Figure 3, the Bayes Net results from 
machine-learning method is further fed to the pattern matching 
method. Alternatively, the pattern-matching method may be 
applied before machine learning. Detailed steps are described 
below.  

 

Fig 3. Proposed Architecture (2 stage) 
 
1) Offline Training for Machine Learning: 
 Recall that off-line training is needed for supervised 
machine learning. WEKA is used in the proposed system, in 
which log files, with an added class attribute and labeled logs, 
are loaded. The training data is preprocessed where 
unnecessary attributes are removed. Furthermore, the following 
steps may be applied to further improve the training process. 
Stemmers: A stemmer trims the suffix of the words so that the 
given word will be converted to its root word. This reduces the 
dictionary size and increases the efficiency of the model. 
Stop words: These are words that do not play any role in the 
classification. Their removal yields better results. Since some 
of the simple words like ‘and’ and ‘or’ do play a major role in 
SQL injections, the default stop word list cannot be used. 
Instead, a customized stop word list is needed to yield good 
results. 
Cross validation: It is a technique used while creating the 
model to reduce the estimation variance. In K-fold cross 
validation, the whole dataset is divided into K parts, where K-1 
parts are used for training and the remaining part is used for 
testing. This procedure is done repeatedly K times until all the 
parts are tested. In this project, 5-fold cross validation is used. 
We achieved a detection rate of 78.8% for the BayesNet model 
with a standard deviation of 0.9. 
2) Log Generation:  
 Consider a large number of users distributed around the 
world, it would be difficult to manually check the system-
generated logs that consist of many unnecessary logs. What is 
needed are application logs. In order to generate application 
logs, one may use parsers and filters to filter out the 
unnecessary information in the logs, or use logging libraries 
(such as Log4j) to create custom logs.  
3) Preprocessing: 
 There are two different kinds of pre-processing, one for 
WEKA and the other for Kibana; described below. 
Preprocessing for WEKA: As attributes in the test set should 
match those in the training set, a class attribute and the required 
header are added, and the test data converted into the ARFF 
format before loading into WEKA. All the unnecessary 
attributes are also removed to match the model.  
Preprocessing for WEKA (for 2-stage architecture): In this 
case, logs not detected by Kibana are the input for WEKA. As 
the current version of Kibana has not supported exportation of 
results from a query directly, it is first necessary to create a 
visualization that represents these logs not detected by Kibana. 
These results are then downloaded in the CSV format. A Unix 
script may then be used to convert the CSV file into an ARFF 
file for WEKA input. This is followed by the usual WEKA 
preprocessing, as described above. 
Preprocessing for Kibana (for 2-stage): For the single-stage 
architecture, no pre-processing is needed. For the two-stage 
architecture, the output of WEKA is used as the input of 
Kibana. Thus, WEKA result needs to be “preprocessed” for 
Kibana. A Unix script may be used to make the necessary 
changes such as replacing commas with tabs, removing the 
header part of the ARFF file, and converting it into a text file. 
Then, Logstash will take the data from the text file and load it 
in Elasticsearch, after which Kibana will display the results. 
4) SQL Injection Detection: 
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 For the one-stage architecture described above, two 
different results are obtained, using Bayes Net and using 
Kibana. For the two-stage architecture, results of one method 
(Bayes Net model for machine learning) are fed into the other 
method (Kibana for pattern matching). Note that the order of 
the two methods may be swapped. Using Kibana, a custom 
dashboard may be easily created, showing many interesting 
characteristics about the detected injections.  
 

IV. EXPERIMENTS AND RESULTS 
This section discusses dataset, experiment setup, results 

and discussions. 
A. Experiment Setup 
1) Dataset 

The datasets used for these experiments were web 
application logs generated using the Log4j framework. The 
total number of logs used for the experiment was 12,000, as 
summarized in Table 1. 

TABLE 1: DATA SET 

Data Total Logs SQL 
Logs 

Regular 
Logs 

Training Set 2000 547 1453 

Testing Set 10000 2812 7188 

2) The Web Application 
      As a proof-of-concept prototype, a web application used 
for a company internal discussions has been developed,  using 
Java, Bootstrap, HTML, CSS, and JavaScript. MySQL was 
used as the database server. This web application is hosted in 
the Amazon AWS Linux instance, which offers a flexible, 
scalable, experiment environment [22].  
3) Kibana and Bayes Net 
      As mentioned above, Bayes Net and Kibana (of ELK) are 
used to represent machine learning and pattern matching 
methods, respectively. These two methods are compared in 
Table 2 below, which may serve as a typical comparison 
between machine learning and pattern matching methods. 

TABLE 2: COMPARISON BETWEEN KIBANA AND BAYES NET 
Kibana Bayes Net 

Purpose 
Used for detecting SQL 
injections and visualizing 
data. 

Used for classification of 
logs into SQL-related logs 
and other logs. 

Mechanism 

Use pattern matching 
techniques for detection. 

Use supervised machine 
learning to learn and detect 
attacks. 

Overhead 
No file conversion is 
required; it takes data 
directly from text files. 

Load only ARFF file, so 
log files need to convert to 
ARFF format. 

No preprocessing is 
required; can use filters to 
extract only the required 
data. 

Preprocessing is required; 
need to preprocess data 
manually before giving to 
model for classification. 

No training is required; 
queries are written for 
detection. 

Training is required, which 
involves manual 
classification that is time-
consuming. 

Pros and Cons 
A real-time system where 
new queries may be issued, 

Not a real-time system as it 
involves an offline training 

Kibana Bayes Net 
and changes may be seen 
visually as soon as a logs 
are generated. 

phase. 

Can detect only specified 
patterns, so cannot detect 
new types of SQL 
injections. 

Can detect new patterns 
since it considers other 
attributes like IP address 
while classifying. 

Results are in visualized 
form; easier to analyze. 

Results in text format; 
more difficult to analyze. 

 
B. Single-Stage Results: 
The results obtained by the one-stage simple architecture are 
presented below. 

 
1) Pattern Matching: 

Using Kibana, the pattern matching method results in 
85.3% accuracy in detecting the SQL injections. Some 
visualizations are shown below. 

 
Fig 4: Top requested URLs, top user IPs 

 
Note that the accuracy result depends on the queries. The 

following is a simple example that illustrates the challenge of 
writing a good query: In order to find SQL injections with 
SELECT statements, one can write a Kibana query to find the 
logs that have both "select" and "from". Yet, in general, there 
are many cases where a log consists of both words but it is not 
an SQL injection. 
2) Machine Learning: 
 First, the Naïve Bayes method was used, from which 61.7% 
accuracy was obtained. This was clearly due to the fact that the 
attributes of these logs are not independent.  
      When Bayes Net method was used, the following confusion 
matrix, shown in Table 3, was generated by WEKA for the 
given test set. Note that, since only SQL injection detections 
are needed, we consider only positives for calculating 
accuracy. Thus, the accuracy result equals to 80.04% or 
2251/(2251+561). 

TABLE 3: CONFUSION MATRIX 
True 

Positive 
False 

Positive 
True 

Negative 
False 

Negative 

2251 561 7132 56 

 
      There are a few obvious reasons that machine learning 
method such as Bayes Net does not obtain high accuracy. One 
obvious case is similar to the one stated above; i.e., words 
which that are in regular logs might also exist in SQL injection 
logs and vice versa. The example of "Select" and "From" 
serves this purpose. They are two regular words, but in 
combination might also create an SQL injection. In Bayes Net 
classification, one cannot specify the exact format so the results 
might be wrong. Also, since Bayes Net uses all the attributes, 
some of the new SQL injections might not be detected; take, 
for example, a new type of SQL injection from a previously 
normal user. 
 

726725725736736



 
 

C. Two-Stages Results: 
In this, we discuss the results obtained by combining 

pattern matching and machine learning methods. 
 
1) Pattern Matching followed by Machine Learning 

In this case, Kibana first catches SQL injections by pattern 
matching, then Bayes Net model catches SQL injections that 
were not detected by Kibana. This combination has achieved 
94.7 % accuracy.  
     SQL injections that were not detected by Kibana but 
subsequently detected by Bayes Net may include the 
following: (1) Some user names may contain SQL injection 
patterns such as SQL keywords, special characters, and 
wildcard characters. In Kibana, Lucene queries are used for 
pattern recognition, but Lucene cannot identify special 
characters such as #, <, <=, >, < in the username field. Since 
Bayes Net also uses other attributes for classification, it can 
successfully detect these injection logs. (2) Since the grouping 
concept was used in queries to retrieve meaningful information 
from the logs, some SQL injection patterns that contain only 
individual keywords rather than combinations might not be 
detected by Kibana but were detected by Bayes Net. Consider 
the following example: 

Select * from table (detected in Kibana and Bayes Net) 
Select table (detected in Bayes Net but not in Kibana) 
 

2) Machine Learning followed by Pattern Matching: 
In this case, the Bayes Net model first classifies logs, and 

then Kibana detects more SQL injections based on queries and 
classification (done by Bayes Net model). The result is a high 
accuracy of 95.4%. The Kibana visualizations in Figures 5, 6, 
and 7 show some details related to detected SQL injections, 
including a global map showing all the detected attacks, a 
zoomed-in view of the map, and the IP addresses, the most 
used URL and the log level of these detected attacks. 
 

 
Fig 5: Map showing SQL injections 

 
 

 
 

Fig 6: Zoomed view of Map showing SQL injections 
 
 

 

 
Fig 7: IP addresses with SQL injections and their most used URL, Log levels 

of SQL injections. 
 

      Reasons that SQL injections not detected by Bayes Net are 
detected by Kibana may include the following: (1) Log level, 
username and other attributes might be contained in regular 
logs in the training set. Since Bayes Net classifier considers 
also relations apart from individual attributes, it might not 
have detected SQL injection in some cases. (2) Since Bayes 
Net classifies logs based on probabilities of all the words 
present in a given log, it may not detect logs that contain a 
large number of words belonging to a regular log category. (3) 
It cannot detect new types of SQL injections that have words 
not contained in the training set. If the other attributes in the 
given log belong to the regular log category, Bayes Net may 
wrongly classify this type of logs as a regular log. 

 
D. Overall Result Comparison  

Table 4 shows the accuracies obtained by all the above 
experiments. It is clear that the proposed two-stage architecture 
is able to obtain results that are far more accurate than those 
from one-stage architecture. Note that the current best accuracy 
of 95.4% may further be improved by increasing the training 
set size and by using more sophisticated queries.  

TABLE 4. RESULTS 

Method Accuracy for SQL 
Detection (%) 

Machine Learning: Naïve 
Bayes 61.7 

Machine Learning: Bayes 
Net 80.0 

Patten Matching: Kibana 85.3 
Kibana followed by 

Bayes Net 94.7 

Bayes Net followed by 
Kibana 95.4 

 
 

V. CONCLUSION  
With numerous data flowing through the web every day, it 

remains important to detect SQL injection attacks that cause 
severe security problems on any web-based application hosted 
on the Internet or on the cloud. A multi-stage log analysis 
architecture has been proposed, which uses both machine 
learning and pattern matching methods. Experiment results 
have shown that the two-stage system is able to detect 
significantly more SQL injections that a single-stage system. 
When Bayes Net model (a supervised machine learning 
method) precedes Kibana (a pattern matching system), the 
combined system has achieved the best result. Since Kibana 
provides the final output with visualization, it is easy for 
analysts to further understand, interpret, and take further 
actions. Future work may include further improvement on 
Kibana queries, using other machine learning methods to 
reduce manual log classification efforts, and using 
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unsupervised learning methods which may lead to a real-time 
multi-stage log analysis system. 
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