

Detecting Web Attacks Using

Multi-Stage Log Analysis
Melody Moh*, Santhosh Pininti, Sindhusha Doddapaneni, and Teng-Sheng Moh

Department of Computer Science
San Jose State University

San Jose, CA, USA
*Corresponding author; Email: melody.moh@sjsu.edu

Abstract— Web-based applications have gained universal

acceptance in every sector of lives, including social, commercial,
government, and academic communities. Even with the recent
emergence of cloud technology, most of cloud applications are
accessed and controlled through web interfaces. Web security
has therefore continued to be fundamentally important and
extremely challenging. One major security issue of web
applications is SQL-injection attacks. Most existing solutions for
detecting these attacks use log analysis, and employ either
pattern matching or machine learning methods. Pattern
matching methods can be effective, dynamic; they however
cannot detect new kinds of attacks. Supervised machine learning
methods can detect new attacks, yet they need to rely on an off-
line training phase. This work proposes a multi-stage log analysis
architecture, which combines both pattern matching and
supervised machine learning methods. It uses logs generated by
the application during attacks to effectively detect attacks and to
help preventing future attacks. The architecture is described in
detail; a proof-of-concept prototype is implemented and hosted
on Amazon AWS, using Kibana for pattern matching and Bayes
Net for machine learning. It is evaluated on 10,000 logs for
detecting SQL injection attacks. Experiment results show that
the two-stage system has combined the advantages of both
systems, and has substantially improved the detection accuracy.
The proposed work is significant in advancing web securities,
while the multi-stage log analysis concept would be highly
applicable to many intrusion detection applications.

Keywords—Log Analysis, Pattern Matching, SQL injection,
Supervised Machine Learning, Text Classification, Web Security.

I. INTRODUCTION
Web-based applications have become prevalent in the

ubiquitously-connected world. The recent increase in demand
for huge data storage and high processing speed has led to the
era of cloud computing, yet, most cloud-based systems and
applications are accessed through the Internet web. Web
security therefore has remained as top priority for Internet- and
Cloud-Services Providers (ISP/CSP).

In order to improve ISP/CSP user confidence and to protect
web-based systems and applications, strong, effective security
mechanisms must be deployed. Many architecture designs have
been proposed and many cryptographic algorithms
implemented; yet intruders continue to gain access to web-
based application, to steal confidential information, and to
make unwanted modifications – including recent intrusions
made to Target, the Home Depot, BlueCross Insurance, and
many hospital and government information systems. SQL

injection is one major attack that has been happening to web-
based applications [3].

Log analysis is one major procedure to detect when an
intruder attacked the system, how it happened, and what steps
were performed during the attack [6]. The traditional approach
of manual log analysis is no longer possible for real-time log
analysis, as the number of logs has rapidly increased. Manual
analysis also involves more cost and much more time.
Technologies such as Hadoop and Hive therefore have been
used.

Two major techniques have been used in log analysis:
pattern matching and machine learning [10] [2]. While the
pattern matching method may work dynamically, only known
patterns can be recognized, yet new types of injections may be
created when only small changes are made to existing patterns.
Machine learning also has its limitation, since classification in
machine learning algorithms works with probabilities, it may
not be able to correctly classify SQL injections that combine
groups of words each was classified with high probability as
non-SQL injection.

Most existing log analysis methods for SQL injection
detection are based on either pattern matching or machine
learning. We propose an effective multi-stage log analysis
architecture that uses both methods. The system therefore
combines both of their advantages and compensates for their
disadvantages.

The major contributions of this paper may be summarized
as follows:

• Proposed a multi-stage architecture for detecting web
attacks, using SQL injection attacks as an example.

• Implemented a prototype based on the proposed
architecture, using Bayes Net and Kibana.

• Careful compared the pros and cons of pattern
matching (Kibana) and machine learning (Bayes Net)
methods.

• Evaluated the 2-stage system through a series of
experiments. Detailed discussion of SQL injections
detected and undetected by each of the four evaluated
methods.

The rest of the paper is organized as follows: Sections 2
and 3 review background and related work, respectively.
Section 4 presents the proposed system design and prototype
implementation. Section 5 illustrates experiments and results.
Finally, Section 6 concludes the paper.

2016 6th International Advanced Computing Conference

978-1-4673-8286-1/16 $31.00 © 2016 IEEE

DOI 10.1109/IACC.2016.141

723

2016 6th International Advanced Computing Conference

978-1-4673-8286-1/16 $31.00 © 2016 IEEE

DOI 10.1109/IACC.2016.141

722

2016 IEEE 6th International Conference on Advanced Computing

978-1-4673-8286-1/16 $31.00 © 2016 IEEE

DOI 10.1109/IACC.2016.141

722

2016 IEEE 6th International Conference on Advanced Computing

978-1-4673-8286-1/16 $31.00 © 2016 IEEE

DOI 10.1109/IACC.2016.141

733

2016 IEEE 6th International Conference on Advanced Computing

978-1-4673-8286-1/16 $31.00 © 2016 IEEE

DOI 10.1109/IACC.2016.141

733

II. BACKGROUND AND RELATED STUDIES
In this section, background knowledge in SQL injection, log
analysis, pattern matching and machine learning methods are
briefly described. Due to page limitation, related studies have
been omitted.
A. SQL Injection:

This is one of the major attacks made to web applications.
Attacker inputs an SQL query, which modifies or damages the
database that is connected to the target web application. SQL
injections are broadly classified into three types based on the
methods involved in creating them [14]. They are: (1) Order
Wise, which involves execution of code written by the hacker
so that it provides unlimited and unauthorized access to the
database; 2) Blind, in this case an attacker gets access by
asking a series of questions to the database and obtains a
complete idea of the database structure based on the answers;
3) Against Database, in which an attacker exploits the input
validation vulnerabilities to create an SQL query so as to
discover the desired information.
B. Log Analysis

Log Analysis is a process of understanding logs and
extracting useful information. One of the open-source logging
frameworks is Log4j [6], which is developed in Java by
Apache Software Foundation. It has been used in this work to
log information such as timestamp, log level, error messages,
and user information such as IP address, username, and
requested URL. Once these logs are captured, log analysis is
then performed to do further investigation on website users.
C. Pattern Matching

One of the techniques used in this work to detect SQL
injections is pattern matching. It checks whether a set of words
is present in the given text. One commonly used pattern-
matching methods are described below.

1) ELK (Elasticsearch, Logstash, and Kibana)

This is a complete system that includes collection, search,
analysis and visualization of data. The system essentially
solves some of the main problems encountered when using
traditional databases, including inconsistent data and time
formats, and lack of visualization [24]. Its major components
are described below.

Fig 1: Logstash, Elasticsearch and Kibana [28]

Logstash: It is a data pipelining tool that connects to a

variety of sources with the help of plugins, and streams data to
an analytics system [24]. Logstash receives different types of
logs, namely system logs, web server logs, error logs, and
application logs. These are normally distributed among
different systems using different formats. Logstash helps users
to parse data into one single common format before storing
into the analytics data store. Additionally, Logstash provides a
way to parse custom format logs by providing custom logics.

Elasticsearch: It is an open-source search and data analysis
software which gives users a deep insight on streaming data
[24]. This tool provides a scalability feature by allowing users
to add new nodes. Once a cluster is set up, Elasticsearch
provides search and analysis features by building a distributed

environment on top of Apache Lucene, which is used for full-
text searching.

Apache Lucene: It is an open-source text search engine
library written in Java [30]. It allows users to write their own
queries through its query API, which helps users to search
GeoIP locations, perform multilingual searches, etc. It also
provides different types of searches such as term and phrase
searches, and allows users to group keywords for detailed text
searching.

Kibana: It is an open-source data visualization interface for
real-time summarizing and charting of stream data [26]. It
helps users understand large volumes of datasets by providing
different visualizations like bar charts, pie charts, line spots,
and maps. It also provides different visualizations that can be
combined into custom dashboards.
D. Machine Learning:

Machine learning is a way of making a computer learn and
take action without explicitly programming it [7]. It has been
used in many areas such as big data search, spam filtering, etc.
It may be broadly classified into supervised learning and
unsupervised learning.
1) Naïve Bayes Classification

It is a simple probabilistic classifier. It builds upon the
Bayes theorem, which gives the probability of an event
occurring based on the given conditions that are related to the
event. One major limitation is its assumption of independence
between the attributes [27]; i.e., the existence of one attribute
does not affect the other.
2) Bayes Net Classification

One problem in using a Naïve Bayes classifier is its
assumption of treating all attributes as strongly independent
(i.e. Probabilistic independence) of each other. This
assumption seems unrealistic as it cannot be applied in
situations where correlation exists between these attributes and
unwarranted data needs to be ignored to improve performance.

Bayesian Networks are directed acyclic graphs (DAG) that
represent the joint probability distribution over a set of random
variables in a problem domain. Each variable lies at every
vertex in the graph and the edges from the correlations between
these random variables [1]. The conditional independence
between these variables is stated in a way that each variable is
independent of its non-descendants, given the state of their
parent variables. Bayesian Networks are often used to tackle
the independent-attributes assumption of Native Bayes
Classification, and is helpful and improves performance. It has
been used, along with other supervised machine learning
methods, on our recent work on sentimental analysis [31].

III. SYSTEM DESIGN AND IMPLEMENTATION
 The proposed system is a two-stage intrusion detection
system. It performs log analysis to protect a web-based
application from SQL-injection attacks. It uses both machine
learning and pattern matching techniques. For the clarity of
description, Bayes Net and Kibana (of ELK) are used to
represent machine learning and pattern matching methods,
respectively. They are also used in the proof-of-concept
prototype implementation.
 The proposed architecture consists of three main parts: (1)
Log Generation: this includes a logging system such as Log4j,
(2) Data Preprocessing: it handles preprocessing needed for
machine learning and pattern matching methods, and (3)
Detection Methods: such as Bayes net for machine learning
and Kibana for pattern matching.

724723723734734

 In the following, for clarity, a simple, single-stage
architecture is first illustrated. It is followed by the proposed
multi-stage architecture and its description.

A. Single-Stage Architecture:
 In this architecture, as shown in Figure 2, the application
logs are generated using a logging library such as Log4j. Then,
either machine learning method (follow the path on the right)
or pattern matching method (the left path) is used for detecting
SQL injection attacks. Preprocessing is needed for the machine
learning method, which uses WEKA and then Bayes Net as an
example. The pattern matching method is shown using the
ELK system. The produced results are then presented to the
analyst for further understanding and interpreting. The details
of each step are described in the next subsection, on the
proposed multi-stage architecture.

Fig 2: Simple architecture (1-stage)

B. Proposed Multi-Stage Architecture
 The proposed architecture combines both machine learning
and pattern matching methods to improve the detection
strength. As shown in Figure 3, the Bayes Net results from
machine-learning method is further fed to the pattern matching
method. Alternatively, the pattern-matching method may be
applied before machine learning. Detailed steps are described
below.

Fig 3. Proposed Architecture (2 stage)

1) Offline Training for Machine Learning:
 Recall that off-line training is needed for supervised
machine learning. WEKA is used in the proposed system, in
which log files, with an added class attribute and labeled logs,
are loaded. The training data is preprocessed where
unnecessary attributes are removed. Furthermore, the following
steps may be applied to further improve the training process.
Stemmers: A stemmer trims the suffix of the words so that the
given word will be converted to its root word. This reduces the
dictionary size and increases the efficiency of the model.
Stop words: These are words that do not play any role in the
classification. Their removal yields better results. Since some
of the simple words like ‘and’ and ‘or’ do play a major role in
SQL injections, the default stop word list cannot be used.
Instead, a customized stop word list is needed to yield good
results.
Cross validation: It is a technique used while creating the
model to reduce the estimation variance. In K-fold cross
validation, the whole dataset is divided into K parts, where K-1
parts are used for training and the remaining part is used for
testing. This procedure is done repeatedly K times until all the
parts are tested. In this project, 5-fold cross validation is used.
We achieved a detection rate of 78.8% for the BayesNet model
with a standard deviation of 0.9.
2) Log Generation:
 Consider a large number of users distributed around the
world, it would be difficult to manually check the system-
generated logs that consist of many unnecessary logs. What is
needed are application logs. In order to generate application
logs, one may use parsers and filters to filter out the
unnecessary information in the logs, or use logging libraries
(such as Log4j) to create custom logs.
3) Preprocessing:
 There are two different kinds of pre-processing, one for
WEKA and the other for Kibana; described below.
Preprocessing for WEKA: As attributes in the test set should
match those in the training set, a class attribute and the required
header are added, and the test data converted into the ARFF
format before loading into WEKA. All the unnecessary
attributes are also removed to match the model.
Preprocessing for WEKA (for 2-stage architecture): In this
case, logs not detected by Kibana are the input for WEKA. As
the current version of Kibana has not supported exportation of
results from a query directly, it is first necessary to create a
visualization that represents these logs not detected by Kibana.
These results are then downloaded in the CSV format. A Unix
script may then be used to convert the CSV file into an ARFF
file for WEKA input. This is followed by the usual WEKA
preprocessing, as described above.
Preprocessing for Kibana (for 2-stage): For the single-stage
architecture, no pre-processing is needed. For the two-stage
architecture, the output of WEKA is used as the input of
Kibana. Thus, WEKA result needs to be “preprocessed” for
Kibana. A Unix script may be used to make the necessary
changes such as replacing commas with tabs, removing the
header part of the ARFF file, and converting it into a text file.
Then, Logstash will take the data from the text file and load it
in Elasticsearch, after which Kibana will display the results.
4) SQL Injection Detection:

725724724735735

 For the one-stage architecture described above, two
different results are obtained, using Bayes Net and using
Kibana. For the two-stage architecture, results of one method
(Bayes Net model for machine learning) are fed into the other
method (Kibana for pattern matching). Note that the order of
the two methods may be swapped. Using Kibana, a custom
dashboard may be easily created, showing many interesting
characteristics about the detected injections.

IV. EXPERIMENTS AND RESULTS
This section discusses dataset, experiment setup, results

and discussions.
A. Experiment Setup
1) Dataset

The datasets used for these experiments were web
application logs generated using the Log4j framework. The
total number of logs used for the experiment was 12,000, as
summarized in Table 1.

TABLE 1: DATA SET

Data Total Logs SQL
Logs

Regular
Logs

Training Set 2000 547 1453

Testing Set 10000 2812 7188

2) The Web Application
 As a proof-of-concept prototype, a web application used
for a company internal discussions has been developed, using
Java, Bootstrap, HTML, CSS, and JavaScript. MySQL was
used as the database server. This web application is hosted in
the Amazon AWS Linux instance, which offers a flexible,
scalable, experiment environment [22].
3) Kibana and Bayes Net
 As mentioned above, Bayes Net and Kibana (of ELK) are
used to represent machine learning and pattern matching
methods, respectively. These two methods are compared in
Table 2 below, which may serve as a typical comparison
between machine learning and pattern matching methods.

TABLE 2: COMPARISON BETWEEN KIBANA AND BAYES NET
Kibana Bayes Net

Purpose
Used for detecting SQL
injections and visualizing
data.

Used for classification of
logs into SQL-related logs
and other logs.

Mechanism

Use pattern matching
techniques for detection.

Use supervised machine
learning to learn and detect
attacks.

Overhead
No file conversion is
required; it takes data
directly from text files.

Load only ARFF file, so
log files need to convert to
ARFF format.

No preprocessing is
required; can use filters to
extract only the required
data.

Preprocessing is required;
need to preprocess data
manually before giving to
model for classification.

No training is required;
queries are written for
detection.

Training is required, which
involves manual
classification that is time-
consuming.

Pros and Cons
A real-time system where
new queries may be issued,

Not a real-time system as it
involves an offline training

Kibana Bayes Net
and changes may be seen
visually as soon as a logs
are generated.

phase.

Can detect only specified
patterns, so cannot detect
new types of SQL
injections.

Can detect new patterns
since it considers other
attributes like IP address
while classifying.

Results are in visualized
form; easier to analyze.

Results in text format;
more difficult to analyze.

B. Single-Stage Results:
The results obtained by the one-stage simple architecture are
presented below.

1) Pattern Matching:

Using Kibana, the pattern matching method results in
85.3% accuracy in detecting the SQL injections. Some
visualizations are shown below.

Fig 4: Top requested URLs, top user IPs

Note that the accuracy result depends on the queries. The

following is a simple example that illustrates the challenge of
writing a good query: In order to find SQL injections with
SELECT statements, one can write a Kibana query to find the
logs that have both "select" and "from". Yet, in general, there
are many cases where a log consists of both words but it is not
an SQL injection.
2) Machine Learning:
 First, the Naïve Bayes method was used, from which 61.7%
accuracy was obtained. This was clearly due to the fact that the
attributes of these logs are not independent.
 When Bayes Net method was used, the following confusion
matrix, shown in Table 3, was generated by WEKA for the
given test set. Note that, since only SQL injection detections
are needed, we consider only positives for calculating
accuracy. Thus, the accuracy result equals to 80.04% or
2251/(2251+561).

TABLE 3: CONFUSION MATRIX
True

Positive
False

Positive
True

Negative
False

Negative

2251 561 7132 56

 There are a few obvious reasons that machine learning
method such as Bayes Net does not obtain high accuracy. One
obvious case is similar to the one stated above; i.e., words
which that are in regular logs might also exist in SQL injection
logs and vice versa. The example of "Select" and "From"
serves this purpose. They are two regular words, but in
combination might also create an SQL injection. In Bayes Net
classification, one cannot specify the exact format so the results
might be wrong. Also, since Bayes Net uses all the attributes,
some of the new SQL injections might not be detected; take,
for example, a new type of SQL injection from a previously
normal user.

726725725736736

C. Two-Stages Results:
In this, we discuss the results obtained by combining

pattern matching and machine learning methods.

1) Pattern Matching followed by Machine Learning

In this case, Kibana first catches SQL injections by pattern
matching, then Bayes Net model catches SQL injections that
were not detected by Kibana. This combination has achieved
94.7 % accuracy.
 SQL injections that were not detected by Kibana but
subsequently detected by Bayes Net may include the
following: (1) Some user names may contain SQL injection
patterns such as SQL keywords, special characters, and
wildcard characters. In Kibana, Lucene queries are used for
pattern recognition, but Lucene cannot identify special
characters such as #, <, <=, >, < in the username field. Since
Bayes Net also uses other attributes for classification, it can
successfully detect these injection logs. (2) Since the grouping
concept was used in queries to retrieve meaningful information
from the logs, some SQL injection patterns that contain only
individual keywords rather than combinations might not be
detected by Kibana but were detected by Bayes Net. Consider
the following example:

Select * from table (detected in Kibana and Bayes Net)
Select table (detected in Bayes Net but not in Kibana)

2) Machine Learning followed by Pattern Matching:
In this case, the Bayes Net model first classifies logs, and

then Kibana detects more SQL injections based on queries and
classification (done by Bayes Net model). The result is a high
accuracy of 95.4%. The Kibana visualizations in Figures 5, 6,
and 7 show some details related to detected SQL injections,
including a global map showing all the detected attacks, a
zoomed-in view of the map, and the IP addresses, the most
used URL and the log level of these detected attacks.

Fig 5: Map showing SQL injections

Fig 6: Zoomed view of Map showing SQL injections

Fig 7: IP addresses with SQL injections and their most used URL, Log levels

of SQL injections.

 Reasons that SQL injections not detected by Bayes Net are
detected by Kibana may include the following: (1) Log level,
username and other attributes might be contained in regular
logs in the training set. Since Bayes Net classifier considers
also relations apart from individual attributes, it might not
have detected SQL injection in some cases. (2) Since Bayes
Net classifies logs based on probabilities of all the words
present in a given log, it may not detect logs that contain a
large number of words belonging to a regular log category. (3)
It cannot detect new types of SQL injections that have words
not contained in the training set. If the other attributes in the
given log belong to the regular log category, Bayes Net may
wrongly classify this type of logs as a regular log.

D. Overall Result Comparison

Table 4 shows the accuracies obtained by all the above
experiments. It is clear that the proposed two-stage architecture
is able to obtain results that are far more accurate than those
from one-stage architecture. Note that the current best accuracy
of 95.4% may further be improved by increasing the training
set size and by using more sophisticated queries.

TABLE 4. RESULTS

Method Accuracy for SQL
Detection (%)

Machine Learning: Naïve
Bayes 61.7

Machine Learning: Bayes
Net 80.0

Patten Matching: Kibana 85.3
Kibana followed by

Bayes Net 94.7

Bayes Net followed by
Kibana 95.4

V. CONCLUSION
With numerous data flowing through the web every day, it

remains important to detect SQL injection attacks that cause
severe security problems on any web-based application hosted
on the Internet or on the cloud. A multi-stage log analysis
architecture has been proposed, which uses both machine
learning and pattern matching methods. Experiment results
have shown that the two-stage system is able to detect
significantly more SQL injections that a single-stage system.
When Bayes Net model (a supervised machine learning
method) precedes Kibana (a pattern matching system), the
combined system has achieved the best result. Since Kibana
provides the final output with visualization, it is easy for
analysts to further understand, interpret, and take further
actions. Future work may include further improvement on
Kibana queries, using other machine learning methods to
reduce manual log classification efforts, and using

727726726737737

unsupervised learning methods which may lead to a real-time
multi-stage log analysis system.

REFERENCES
[1] R.R Bouckaert, “Bayesian network classifiers in weka,”
Department of Computer Science, University of Waikato, 2004.

[2] G. Buja, K. Bin Abd Jalil, F. Bt Hj Mohd Ali, & T.F.A. Rahman,
"Detection model for SQL injection attack: An approach for
preventing a web application from the SQL injection attack," In
Computer Applications and Industrial Electronics (ISCAIE), 2014
IEEE Symposium on (pp. 60-64), April 2014.

[3] G.T. Buehrer, B.W. Weide, & P.A.G. Sivilotti, “Using parse tree
validation to prevent SQL injection attacks,” In Proceedings of the
5th international workshop on Software engineering and middleware
(pp. 106-113), September 2005.

[4] E. Dogbe, R. Millham, & P. Singh, “A combined approach to
prevent SQL Injection Attacks,” In Science and Information
Conference (SAI), 2013 (pp. 406-410), October 2013.

[5] K. Garcia, R. Monroy, L. Trejo, C. Mex-Perera, & E. Aguirre,
“Analyzing Log Files for Postmortem Intrusion Detection,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 1690-1704, 2012.

[6] C. Gülcü, & S. Stark, “The complete log4j manual,” 2003.

[7] A. Joshi, & V. Geetha, “SQL Injection detection using machine
learning,” 2014 International Conference on Control,
Instrumentation, Communication and Computational Technologies
(ICCICCT), 2014.

[8] T. Kalamatianos, K. Kontogiannis, P. Matthews, “Domain
Independent Event Analysis for Log Data Reduction,” Computer
Software and Applications Conference (COMPSAC), 2012.

[9] M. Kumar, M.Hanumanthappa, “Scalable Intrusion Detection
Systems Log Analysis using Cloud Computing Infrastructure,”
Computational Intelligence and Computing Research (ICCIC), IEEE
International Conference, 2013.

[10] P. Kumar, & R.K. Pateriya, “A Survey on SQL injection attacks,
detection and prevention techniques,” In Computing Communication
& Networking Technologies (ICCCNT), 2012 Third International
Conference on (pp. 1-5), July 2012.

[11] A. Makanju, A. Zincir-Heywood, & E. Milios, “A Lightweight
Algorithm for Message Type Extraction in System Application
Logs,” IEEE Transactions on Knowledge and Data Engineering,
2012.

[12] D. Marinescu, “Cloud computing theory and practice,” Boston:
Morgan Kaufmann, 2013.

[13] A. Sadeghian, M. Zamani, & A. Manaf, “A Taxonomy of SQL
Injection Detection and Prevention Techniques,” 2013 International
Conference on Informatics and Creative Multimedia, 2013.

[14] C. Sharma, & S. Jain, “Analysis and classification of SQL
injection vulnerabilities and attacks on web applications,” 2014
International Conference on Advances in Engineering & Technology
Research, (ICAETR - 2014).

[15] X. Shu, J. Smiy, D. Yao, & H. Lin, "Massive distributed and
parallel log analysis for organizational security," In Globecom
Workshops (GC Wkshps), 2013 IEEE (pp. 194-199), December
2013.

[16] K.W. Ullah, A.S. Ahmed, J. Ylitalo, “Towards Building an
Automated Security Compliance Tool for the Cloud,” Trust, Security
and Privacy in Computing and Communications (TrustCom), 12th
IEEE International Conference, 2013.

[17] X. Wang, Z. Zhang, M. Wang, L. Zu, Z. Lu, & J. Wu, “CDCAS:
A Novel Cloud Data Center Security Auditing System,” Services
Computing (SCC), IEEE International Conference, 2014.

[18] J.J. Wiley, F.P. Coyle, “Semantic Hedgehog for Log Analysis,”
Internet Technology and Secured Transactions, International
Conference IEEE, 2012.

[19] T. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A.
Juels, & E. Kirda, (2013) “Beehive: Large scale log analysis for
Detecting suspicious activity in enterprise networks,” ACSAC, 2013.

[20] E. Yoon, & A. Squicciarini, "Toward detecting compromised
mapreduce workers through log analysis," In Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on (pp. 41-50), 2014.

[21] M. Zolotukhin, T. Hamalainen, T. Kokkonen, & J. Siltanen,
“Analysis of HTTP Requests for Anomaly Detection of Web
Attacks,” 2014 IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing, 2014.

[22] AWS “Amazon Elastic Compute Cloud (EC2) -Scalable Cloud
Hosting,” Available: http://aws.amazon.com/ec2/

[23] “CloudComputingSecurity,”
Available: https://en.wikipedia.org/wiki/Cloud_computing_security

[24] "Elasticsearch: RESTful, Distributed Search & Analytics |
Elastic," Available: https://www.elastic.co/products/elasticsearch

[25] “How to Set up the ELK Stack- Elasticsearch, Logstash and
Kibana,” Available:http://knowm.org/how-to-set-up-the-elk-stack-
elasticsearch-logstash-and-kibana/

[26] "Kibana: Explore, Visualize, Discover Data | Elastic," Available:
https://www.elastic.co/products/kibana

[27] “Naïve Bayes”
Available: http://scikit-learn.org/stable/modules/naive_bayes.html

[28] “NetEye: Integration Logstash/Elasticsearch/Kibana,”
Available: http://www.neteye-blog.com/2014/10/neteye-integration-
logstashelasticsearchkibana/

[29] “Weka 3: Data Mining Software in Java,”
Available: https://www.cs.waikato.ac.nz/ml/weka

[30] "Welcome to Apache Lucene,"
Available: https://lucene.apache.org/

[31] M. Moh, A. Gajjala, S. Gangireddy, and T.-S. Moh, “On Multi-
Tier Sentiment Analysis using Supervised Machine Learning,” Proc.
IEEE/WIC/ACM Web Intelligence Conference,” Singapore, Dec.
2015

728727727738738

