
RSPP: A Reliable, Searchable and
Privacy-Preserving e-Healthcare System for

Cloud-Assisted Body Area Networks
Lei Yang

Department of Electrical
Engineering and Computer Science

The University of Kansas, KS, 66045

Qingji Zheng
Bosch Research and Technology Center

Robert Bosch LLC
Pittsburgh, PA, 15222

Xinxin Fan
Bosch Research and Technology Center

Robert Bosch LLC
Pittsburgh, PA, 15222

Abstract—The integration of cloud computing and Internet of
Things (IoT) is quickly becoming the key enabler for the digital
transformation of the healthcare industry by offering compre-
hensive improvements in patient engagements, productivity and
risk mitigation. This paradigm shift, while bringing numerous
benefits and new opportunities to healthcare organizations, has
raised a lot of security and privacy concerns. In this paper, we
present a reliable, searchable and privacy-preserving e-healthcare
system, which takes advantage of emerging cloud storage and IoT
infrastructure and enables healthcare service providers (HSPs)
to realize remote patient monitoring in a secure and regulatory
compliant manner. Our system is built upon a novel dynamic
searchable symmetric encryption scheme with forward privacy
and delegated verifiability for periodically generated healthcare
data. While the forward privacy is achieved by maintaining an
increasing counter for each keyword at an IoT gateway, the
data owner delegated verifiability comes from the combination
of the Bloom filter and aggregate message authentication code.
Moreover, our system is able to support multiple HSPs through
either data owner assistance or delegation. The detailed security
analysis as well as the extensive simulations on a large data set
with millions of records demonstrate the practical efficiency of
the proposed system for real world healthcare applications.

I. INTRODUCTION

In recent years, with the fast development of cloud comput-
ing and Internet of Things (IoT), the conventional healthcare
industry is being reshaped to a more flexible and efficient
paradigm of e-healthcare. In a typical e-healthcare setting,
a group of wearable and/or implantable devices (e.g., smart
watches, bracelets, pacemakers, etc.), which forms a wireless
body area network (BAN), gathers key vital signs (e.g., heart
rate, blood pressure, temperature, pulse oxygen, etc.) from
patients at home periodically. Those information is aggregated
into a single file called personal health information (PHI)
at an IoT gateway and then forwarded to a cloud server
for storage. Third-party healthcare service providers (HSPs)
can monitor patients’ PHI and provide timely diagnosis and
reactions by submitting on-demand queries to cloud storage.
Although the increasing adoption of cloud computing and
IoT services in healthcare industry helps reduce IT cost and
improves patient outcomes, security and privacy of PHI are
still major concerns as highlighted by the numerous reported
data breaches due to malicious attacks, software bugs or

accidental errors [1]. In particular, the healthcare regulations
such as the Health Insurance Portability and Accountability
Act (HIPAA) explicitly require that PHI be secured even as it
migrates to the cloud.

While simply encrypting PHI before outsourcing it to the
cloud can ensure the regulatory compliance of a healthcare
system, it makes PHI utilization (e.g., query by third party
HSPs) particularly challenging. Searchable encryption technol-
ogy (see [2]–[4] for pioneering work), which allows encrypted
documents to be searched as is by augmenting them with
an encrypted search index, provides a promising solution to
addressing the aforementioned dilemma. An important line
of research on searchable encryption is searchable symmetric
encryption (SSE), which is considered more practical in terms
of search efficiency for large datasets when compared to
its public key-based counterpart. During the past decade,
many provably secure SSE schemes [3], [5]–[12] have been
proposed, which make trade-offs among security, search per-
formance and storage overhead by exploring static- [3], [5],
[6] and dynamic datasets [7]–[12] as well as various data
structures such as an inverted index [3], [7], a document-term
matrix [13], a dictionary [10], etc.

We note that previous SSE schemes mainly focus on general
search applications on encrypted database. The static SSE
schemes that process static datasets and do not support sub-
sequent updates are clearly not suitable for our e-healthcare
applications. Moreover, most previous dynamic SSE schemes
(except for [11]) work on a setting where a large static
dataset is first processed and outsourced to the cloud storage,
followed by a number of (infrequent) update operations, which
is quite different from the e-healthcare applications where PHI
files are created and uploaded to the cloud periodically at
a fixed frequency (e.g., every 10 minutes). To prevent the
cloud server from inferring sensitive information related to a
patient (e.g., activity pattern, diet habit, etc.) based solely on
observation of the stored encrypted indices, a dynamic SSE
scheme with forward privacy1 is highly desirable. In addition,

1For a dynamic SSE scheme, forward privacy means that when a new
keyword and file identifier pair is added, the cloud server does not know
anything about this pair [12].

ar
X

iv
:1

70
2.

03
46

7v
1

 [
cs

.C
R

]
 1

1
Fe

b
20

17

for remotely monitoring patients’ health status, HSPs should
be able to perform search on PHIs encrypted by patients.
Hence, our system should support a multi-user setting where
the data owner and data user might be different. Last but not
least, the reliability of an e-healthcare system is also critical
and any incorrect or incomplete search results could lead to
significant consequences, thereby highlighting the requirement
for a verification mechanism to be deployed into the system.

Motivated by the above observations, we present a reliable,
searchable and privacy-preserving e-healthcare system for
cloud assisted BAN in this paper. The proposed system is built
upon a novel dynamic SSE scheme with forward privacy and
delegated verifiability, which enables both patients and HSPs
to conduct privacy-preserving search on the encrypted PHIs
stored in the cloud and verify the correctness and completeness
of retrieved search results simultaneously. Our contributions
can be summarized as follows:

1) We proposed a dedicated and efficient dynamic SSE
scheme for e-healthcare applications where PHIs are gen-
erated and stored in the cloud periodically. Our scheme is
able to achieve a sub-linear search efficiency and forward
privacy by maintaining an increasing counter for each
keyword at an IoT gateway.

2) We presented an efficient mechanism that provides
patient-controlled search capability for HSPs, thereby
extending our system to a multi-user setting. This desired
property is realized through a novel application of Bloom
filter [14] on the data owner (i.e., a patient) side.

3) We designed a lightweight delegated verification scheme
based on a combination of Bloom filter, Message Authen-
tication Codes (MACs) and aggregate MACs [15], which
enables patients to delegate the capability of verifying the
search results to HSPs.

The rest of this paper is organized as follows. We state
system model, and design goals in Section II and introduce
the notations and preliminaries in Section III. To make the
exposition clear, we present the basic construction of our novel
dynamic SSE with forward privacy in Section IV, and extend
it to the full construction supporting the multi-user setting
and verifiability in Section V. We show security analysis and
performance evaluation in Section VI and Section VII, respec-
tively. Finally, we discuss the related work in Section VIII and
conclude this work in Section IX.

II. PROBLEM FORMULATION

A. System Model

The system model of our proposed reliable, searchable and
privacy-preserving e-healthcare system involves four entities
as shown in Fig. 1: a patient, an IoT gateway, a cloud server
and several HSPs. The patient is the data owner whose health
status is monitored by a group of wearable devices forming a
BAN. The IoT gateway is the data aggregator which aggregates
the periodically collected data into a single PHI file, extracts
keywords, builds an encrypted index, and encrypts the PHI
files. The encrypted index and PHI files are then sent to the

Share secret key through a secure channel

Authorized users: Third-party
healthcare service providers

Cloud server

Encrypted index & PHI

Data owner: patient

IoT gateway

BAN

Issue query with search
token for keyword 𝑤

Return results
and proof

Fig. 1: The system model of a reliable, searchable and privacy-
preserving e-healthcare system.

cloud server for storage. Multiple HSPs act as the data users
that provide healthcare services for the patient by querying
and retrieving his/her encrypted PHIs from the cloud. We note
that the e-healthcare system described above has the following
unique properties with respect to data processing:
• The PHI files are created by the IoT gateway and stored

in the cloud periodically (e.g., every 10 minutes).
• The PHI files are always added into the cloud storage

and file deletion or modification is not needed.
• The total number of unique keywords extracted from all

the PHI files is not very large, due to the limited range
of values for vital signs.

B. Threat Model

As assumed in most previous work on SSE [2], [3], [7],
[11], [12], the cloud server is generally “honest-but-curious”,
thereby faithfully performing the protocol but making infer-
ences about the stored encrypted documents and data owner’s
private information. More specifically, in our e-healthcare
system, the cloud server might try to infer whether a newly
uploaded PHI file contains certain keyword or two PHI files
contain the same keyword. Furthermore, the cloud server
may also observe the queries submitted by HSPs (so-called
search pattern) or the search results (so-called access pattern)
to determine whether the same keyword is being searched.
Additionally, considering the possibility of accidental system
errors on the cloud server as well as the potential attacks from
external adversaries, the cloud server might return incorrect or
incomplete search results to data user. Finally, we assume that
there is no collusion between data users and cloud server, or
between users.

C. Design Goals

In this work, we aim to design a reliable, searchable and
privacy-preserving e-healthcare system which enables third-
party HSPs to provide healthcare services for patients by
searching on their encrypted PHIs incrementally stored on
the cloud in a privacy-preserving and verifiable manner. The
design goals of our system are as follows:

1) Search efficiency. The search complexity on the cloud
should be optimally sub-linear O(k), where k is the
number of PHIs containing the queried keyword.

2) Forward privacy. The cloud should not learn whether
the newly stored PHIs contain some specific keywords.

3) Multi-user support. HSPs should be able to perform
patient-controlled search on behalf of a patient.

4) Verifiability. HSPs should be able to verify the correct-
ness and completeness of the search results.

Note that hiding search and access patterns in a general
SSE setting can be achieved using the oblivious RAM
(ORAM) [16]. However, ORAM-based schemes, while pro-
viding strong protection for privacy, incur significant compu-
tational and communication overhead for search. To ensure the
practicality of our system, we did not consider employing the
ORAM based approach to protect those patterns in this work.

III. NOTATIONS, PRELIMINARIES AND DEFINITION

A. Notations and Preliminaries

Let e ← S denote selecting an element e from a set S
uniformly at random, {0,1}n be the set of binary strings of
length n, {0,1}∗ be the set of all finite length binary strings,
and || denote the concatenation of two strings. The data file f
is uniquely identified by the identity ID(f) and contains a set
of distinct keywords W (f) = {w1,...,wl}. Let TBL be a hash
table storing key-value pairs (key,val) such that TBL[key] =
val, TBL[key] := val denote assigning val to key, and key ∈
TBL denote that key is an element of the key set in TBL.

Let F1 : {0,1}λ × {0,1}∗ → {0,1}λ, F2 : {0,1}λ ×{0,1}∗
→ {0,1}2λ, F3 : {0,1}λ × {0,1}∗ → {0,1}3λ be three secure
pseudorandom functions and H : {0,1}∗ → {0,1}λ be a
secure hash function. Let SE = (SE.GenKey,SE.Enc,SE.Dec)
be a semantic secure symmetric encryption where SE.GenKey
is the key generation algorithm, SE.Enc is the encryption
algorithm and SE.Dec is the decryption algorithm. Let Mac =
(Mac.GenKey,Mac.GenMac) be a secure message authentica-
tion code scheme, where Mac.GenKey is the key generation
algorithm, and Mac.GenMac is the message authentication
code generation algorithm.

Bloom filter is a space efficient data structure to represent a
set S and allow efficient membership query. A Bloom filter BF
is an array of m-bit, which are set to 0 initially, and associated
with k independent universal hash functions H1, . . . ,Hk, such
that Hi : {0, 1}∗ → {0, . . . ,m−1}. Given e ∈ S, the bits with
respect to Hi(e), 1 ≤ i ≤ k, are set to 1. To query whether e
is an element of S or not, one can check whether all bits with
respect to Hi(e), 1 ≤ i ≤ k, are equal to 1. If not, e /∈ S for
sure. Otherwise, e ∈ S in a high probability due to the false
positive rate. Suppose the outputs of all hash functions are in
uniform random distribution and n elements are hashed into
the BF, the false positive rate is (1−e−kn/m)k. A BF usually
associates with two algorithms:

• BF← BFAdd(BF, e) : This algorithm hashes an element
e into the Bloom filter BF.

• {0, 1} ← BFVerify(BF, e): This algorithm outputs 1 if e
is an element of S where all elements were hashed into
BF (with certain false positive rate); and 0 otherwise.

B. Definition for Dynamic Symmetric Searchable Encryption

Similar to the notation [12], let ((cout), (sout)) ←
protocol((cin), (sin)) denote the protocol running between the
data owner and the server, where the data owner takes as input
cin and outputs cout, and the server takes as input sin and
outputs sout.

Definition 1: The verifiable DSSE scheme that supports
streaming data consists of the following algorithms/protocols:
• K← GenKey(1λ): Given a security parameter λ, the data

owner runs the algorithm to generate the secret key K.
• ((state′c),(state

′
s,C)) ← AddFile((K,statec,f), (states)):

The data owner takes as inputs the secret key K, current
state information statec and the file f containing a set of
keywords W (f), and the server takes as input its current
state information states. The data owner runs this protocol
to outsource C (the encryption form of the file f) to the
server and updates its own state to state′c. The server also
updates its own state to state′s. Initially, both statec and
states are empty.

• token ← GenToken(K,statec,w) : The data owner runs
this algorithm to generate search token token, by taking as
input K, statec and w.

• (rst,prof)← Search(states,token): Given the search token
token, the server runs this algorithm to output the search
result rst consisting of a set of file identifiers. Moreover,
the server generates the proof prof showing the correctness
of the search result.

• {0,1} ← SSEVerify(K,statec,w,rst,prof): The data owner
(or authorized user) runs this algorithm to verify the
correctness of the search result rst, given K, statec, w,
and prof.

Basically, the verifiable DSSE scheme supporting streaming
data aims to achieve the following security goals: forward
privacy, verifiability and confidentiality of outsourced data and
queried keyword.

IV. DYNAMIC SSE ACHIEVING FORWARD PRIVACY

For the sake of simplicity, we first present the DSSE
construction achieving forward privacy, and leave the full-
fledged DSSE design to the next section.

A. Design Rational

Informally, forward privacy in DSSE demands that when
adding a new file, the server should not learn whether the
newly added file contains certain keyword that has been
queried before or not, unless the keyword is queried again.
Therefore, it is sufficient to achieve forward privacy if any
keyword in the newly added file will not be linked to any
encrypted keywords stored in the server.

Instead of using computationally heavy cryptographic prim-
itives (e.g., ORAM), in this paper we exploit the combination
of locally stored state information and chaining technique in a
subtle way, and utilize the lightweight cryptographic primitives
to achieve forward privacy, which is explained as follows.

The data owner associates to each keyword a counter,
indicating the number of outsourced encrypted files having

• K← GenKey(1λ): Let F1 : {0, 1}λ × {0, 1}∗ → {0, 1}λ,F2 : {0, 1}λ × {0, 1}∗ → {0, 1}2λ be two pseudorandom
functions, H : {0, 1}∗ → {0, 1}λ be a secure hash function and SE be a secure symmetric key encryption. Given
the security parameter λ, the data owner selects K ← {0, 1}λ, runs SE.GenKey to get KSE, and sets K = (KSE,K).

• ((state′c), (state
′
s, C))← AddFile((K, statec, f), (states)): Suppose that the identifier of file f is ID(f) and the set of

keywords extracted from f is W (f) = {w1, . . . , wl}. Note that when the system was initialized, statec = TBLc = ∅
and states = TBLs = ∅ where TBLc and TBLc are hash tables. The protocol proceeds as follows:
The data owner:

Let Ind be an empty set, and run C ← SE.Enc(KSE, f) for file f
for each keyword w ∈W (f) do

Let Kprev = 0λ, cnt = 1 and cntprev = 0
if w ∈ TBLc then

Retrieve cnt from TBLc with respect to w
Let Kprev = F1(K,H(w||cnt)), cntprev = cnt and cnt = cnt+ 1

end
Compute Kcnt ← F1(K,H(w||cnt))
Compute τcnt = F1(K, w||cnt) and µcnt = 〈F1(K, w||cntprev)||Kprev〉

⊕
F2(Kcnt, τcnt)

Let TBLc[w] := cnt and Ind = Ind
⋃
{(τcnt, µcnt)}

end
Send (C, ID(f), Ind) to the server and let state′c = TBLc

The server:
Upon receiving (C, ID(f), Ind) from the data owner, the server proceeds as follows:

for each (τ, µ) ∈ Ind do
Let TBLs[τ] := µ||ID(f)

end
Store C locally and set state′s = TBLs

• token← GenToken(K, statec, w): Given the keyword w to be queried, the data owner generates the search token
as follows: (i) Retrieve cnt from statec with respect to w, (ii) Compute Kcnt = F1(K,H(w||cnt)) and (iii) Let
token = (F1(K, w||cnt),Kcnt), which will be sent to the server.

• rst← Search(states, token): Given token = (F1(K, w||cnt),Kcnt), the server conducts the search by letting rst be
an empty set, τ ′ = F1(K, w||cnt), K′ = Kcnt, and running the following algorithm:

while K′ 6= 0λ do
Retrieve µ||ID(f) from TBLs with respect to τ ′ and let rst = rst

⋃
{ID(f)}

Let τ ′||K′ = µ
⊕
F2(K′, τ ′) (which results in F1(K, w||(i− 1))||Ki−1 if the current counter is i)

end
Return rst as the search result

Fig. 2: The DSSE construction achieving forward privacy. Note that downloaded encrypted files can be decrypted with KSE.

the keyword so far. That is, the data owner locally maintains
the state information (i.e., pairs of keyword and counter).
Suppose the counter associated to keyword w is cnt, the
index with respect to w, stored in the server, is a col-
lection of tuples {(τ1, ID(f1)), . . . , (τcnt, ID(fcnt))} where
τi = F1(K, w||i), 1 ≤ i ≤ cnt,F1 is a secure pseudorandom
function, K is a private key and f1, . . . , fcnt are files having
keyword w. When adding a new file f containing the keyword
w, the data owner sends to the server the following tuple

(τcnt+1, ID(f))

where τcnt+1 = F1(K, w||cnt + 1). Thanks to F1, without
knowing K the server cannot know whether τcnt+1 is generated
from the same keyword as that of τi, 1 ≤ i ≤ cnt. Note that
the data owner does not need to maintain all previous states for
each keyword because file deletion is not needed in healthcare.

While binding counter to a keyword can break the corre-

lation of two identical keywords, it raises another challenge:
given one search token generated from the keyword and the
counter, the server can only retrieve one single file identifier.
That is, to retrieve all file identifiers having the specific key-
word, the data owner has to enumerate all previous counters
and generate search tokens, which is rather costly in term of
bandwidth for search.

To mitigate this disadvantage, we use the following chaining
technique, which implicitly links the tuples corresponding to
the same keyword together (let τi = F1(K,w||i),0 ≤ i ≤ cnt):

τ1, 〈τ0||0λ〉
⊕
F2(K1, τ1), ID(f1)

τ2, 〈τ1||K1〉
⊕
F2(K2, τ2), ID(f2)

. . .

τcnt, 〈τcnt−1||Kcnt−1〉
⊕
F2(Kcnt, τcnt), ID(fcnt)

where F2 is another secure pseudorandom function and

Ki, 1 ≤ i ≤ cnt, is a random key derived from the counter
i. Obviously, without knowing Ki, i ≥ cnt, the server cannot
correlate τcnt with τj , j < cnt, even though they might be
generated from the same keyword (but different counter). On
the other hand, given τcnt and Kcnt, the server is able to obtain
ID(fcnt) and recover τcnt−1 and Kcnt−1 by computing

〈τcnt−1||Kcnt−1〉
⊕
F2(Kcnt, τcnt)

⊕
F2(Kcnt, τcnt).

The server then obtains all file identifiers by iterating such
process until that the key is λ-bit of zero.

B. Construction

We show the construction in Fig. 2. Here the random key
Kcnt for keyword w is generated by applying the pseudoran-
dom function such that Kcnt = F1(K,H(w||cnt)). In addition,
the data owner stores the state information (i.e., pairs of
(w, cnt)) in the hash table TBLc, which maps keyword w
to the counter cnt. On the other hand, the server also stores
the state information (i.e., the encrypted index) in the hash
table TBLs. We can see that given the keyword w, the search
complexity is linear to the number of files containing w, which
is sublinear to the number of outsourced encrypted files.
Optimization I: Speed up search operation. Note that the
server might be able to speed up the search further: given
token = (τcnt,Kcnt) where τcnt = F1(K, w||cnt), the server
can update its state information by setting TBLs[τcnt] =⊥ ‖rst,
where ⊥ is a stop sign and rst is the search result with
respect to token. By doing this, the server not only accelerates
the search without repeating the iterations, but also saves the
storage by storing file identifiers only.

V. FULL-FLEDGED DSSE CONSTRUCTION

In this section, we present the full-fledged DSSE. In contrast
to the DSSE presented above, the full-fledged DSSE not only
achieves forward privacy, but also supports search capability
enforcement and delegated verifiability, where the former
allows the data owner (i.e., patients) to enforce controlled
search capability, and the latter enables authorized data users
(i.e., HSPs) to verify the correctness of the search result.

A. High Level Idea

Search Capability Enforcement. In order to enforce search
capability, we need to resolve two questions: (i) how to grant
authorized data users with search capability; (ii) how to revoke
authorized data user’s privilege if necessary. Furthermore, we
require that the approach should be efficient without extensive
interaction between the data owner and authorized data users.

Granting search capability requires the data owner to dis-
tribute the secret key (i.e., KSE and K) and state information
(i.e., the counter for each keyword) to authorized data users
efficiently and securely. While secret key distribution can
be done efficiently through a one-time off-line setup, state
information distribution might be costly because authentication
(between the data owner and the authorized user) is needed
when authorized data users fetch the fresh state information,
which is frequently updated. Note that making the data owner’s

state information public (even if encrypted) will harm the
forward privacy because the server can infer which keyword
(or encrypted keyword) was contained in the newly added file.

To address the above issue, we adopt the “document-and-
guess” approach: The server maintains a Bloom filter BFs,
and puts each received encrypted keyword F1(K, w||cnt) into
the Bloom filter BFs, and the authorized user, having the
secret key already and fetching BFs from the server, can guess
the latest counter value by enumerating (1, . . . , cnt, cnt + 1)
such that F1(K, w||cnt) is an element hashed to BFs but
F1(K, w||cnt+ 1) not (suppose the false positive rate of BFs
is extremely low, e.g., 2−30 in our experiments).

On the other hand, in order to allow the data owner to
revoke authorized users’ search capability, we use the group
key idea: The data owner generates a symmetric key r, which
is securely shared with the server and all authorized users,
such that the search token of keyword w generated by autho-
rized users should be SE.Enc(r,F1(K, w||cnt)||Kcnt) and the
server can recover (F1(K, w||cnt),Kcnt) with the stored r via
SE.Dec, where SE is a secure symmetric encryption. When an
authorized data user was revoked, the data owner only needs
to update the group key r to r′ and the revoked user cannot
generate valid search token without knowing r′.

Delegated Verifiability. The purpose of delegated verifiability
is to allow authorized users (including the data owner) to verify
that (i) correctness and completeness of search result, meaning
the search result correctly consists of all file identifiers; and
(ii) the integrity of the retrieved data files.

First, authorized users can leverage the counter value (if
existing) to check whether the server returned the correct
number of file identifiers because the counter value indicates
the number of files having the specific keyword. Hence, in
order to assure that authorized users get correct counter value
(which is guessed from BFs), we need to enable the data user
to verify that the cloud faithfully inserts the keywords into
Bloom filer. To do so, the data owner also maintains a Bloom
filter BFc, which is built from F1(K, w||cnt), and generates
a MAC on BFc (together with a time stamp). If the server
operates correctly, BFc = BFs holds. Thus, only the MAC
is uploaded to the server, which is then used by authorized
users to check the integrity of the received BFs to assure the
correctness of the guessing counter value.

However, only assuring correct number of file identifiers is
not enough, authorized users need to verify the correctness of
the retrieved files with respect to the keyword w. To achieve
this, each keyword is associated to an aggregate MAC, which
is the result of aggregating MACs of all outsourced encrypted
files containing w.

B. Main Construction
Based on the above ideas, we present the full-fledged DSSE

construction as shown in Fig. 3, which highlights the differ-
ence from the basic construction in red color. The data owner
maintains the state information (i.e., tuples of (w, cnt, γcnt))
with a hash table TBLc mapping w to cnt, γcnt, where γcnt is
the aggregation of the MAC for the concatenation of the file

• K← GenKey(1λ): Let F1 : {0, 1}λ × {0, 1}∗ → {0, 1}λ,F3 : {0, 1}λ × {0, 1}∗ → {0, 1}3λ be two pseudorandom
functions, H : {0, 1}∗ → {0, 1}2λ be a secure hash function, SE be a secure symmetric key encryption, Mac be
a secure message authentication code. Given the security parameter λ, the data owner selects K ← {0, 1}λ, runs
SE.GenKey to get KSE, runs Mac.GenKey to get KMac, and sets K = (K,KSE,KMac).

• ((state′c), (state
′
s, C))← AddFile((K, statec, f), (states)) : Suppose that the identifier of file f is ID(f) and the

set of keywords extracted from f is W (f) = {w1, . . . , wl}. Note that when the system was initialized, statec =
(TBLc = ∅,BFc = ∅) and states = (TBLs = ∅,BFs = ∅) where TBLc and TBLs are two hash tables, and BFc
and BFs are two Bloom filters. The protocol proceeds as follows:
The data owner:

Let Ind be an empty set, and run C ← SE.Enc(KSE, f) for file f
for each keyword w ∈W (f) do

Let Kprev = 0λ, cntprev = 0, cnt = 1, γprev = 0λ (γprev is an aggregate MAC)
if w ∈ TBLc then

Retrieve (cnt, γcnt) from TBLc with respect to w
Let Kprev = F1(K,H(w||cnt)), cntprev = cnt, γprev = γcnt, and cnt = cnt+ 1

end
Compute Kcnt ← F1(K,H(w||cnt)), γcnt = γprev

⊕
Mac.GenMac(KMac, C||w) (The output of Mac.GenMac is

λ-bit length)
Compute τcnt = F1(K, w||cnt), µcnt = 〈F1(K, w||cntprev)||Kprev||γcnt〉

⊕
F3(Kcnt, τcnt)

Compute BFc ← BFAdd(BFc, τcnt)
Let TBLc[w] := (cnt, γcnt), Ind = Ind

⋃
{(τcnt, µcnt)}

end
Generate the MAC σ ← Mac.GenMac(KMac,BFc||T) where T is the current time stamp
Send (C, ID(f), Ind, σ, T) to the server and let state′c = (TBLc,BFc)

The server:
Upon receiving (C, ID(f), Ind, σ, T) from the data owner, the server proceeds as follows:

for each (τ, µ) ∈ Ind do
Let TBLs[τ] := µ||ID(f) and BFs ← BFAdd(BFs, τ)

end
Store C locally and set state′s = (TBLs,BFs, σ, T)

Suppose the data owner generated r ← SE.GenKey and securely shared r with authorized users and the server.
• token← GenToken(K,BFc, r, w): The data owner generates the search token as follows: (i) Retrieve
(cnt, γcnt) from TBLc with respect to w; (ii) Compute Kcnt = F1(K,H(w||cnt)); and (iii) Let token =
SE.Enc(r,F1(K, w||cnt)||Kcnt), which will be sent to the server.

• (rst, prof)← Search(states, r, token): The server runs SE.Dec(r, token) to get (F1(K, w||cnt)||Kcnt, and conducts
the search by retrieving µcnt||ID(f) from TBLs with respect to τ ′ = F1(K, w||cnt), computing µcnt

⊕
F3(Kcnt, τ

′)
to get γcnt, letting K′ = Kcnt, prof = (σ, T,BFs, γcnt), rst = ∅, and

while K′ 6= 0λ do
Retrieve µ||ID(f) from TBLs with respect to τ ′, and let rst = rst

⋃
{ID(f)}

Let τ ′||K′||γ′ = µ
⊕
F3(K′, τ ′) (which results in F1(K, w||(i− 1))||Ki−1||γi−1 if the current counter is i)

end
Return rst as the search result and prof as the proof

• SSEVerify(K,w, cnt, rst, prof): Given prof = (σ, T,BFs, γcnt), the data owner check whether the size of rst is equal
to the counter cnt or not. If not, then return 0 and abort. Otherwise, the verification proceeds as follows:
– Given ID(fi) ∈ rst, 1 ≤ i ≤ cnt, fetch encrypted data files C1, . . . , Ccnt from the server.
– If both equations hold, then output 1; otherwise output 0 (The data owner might not check Eq.(2) because of

knowing correct cnt):
cnt⊕
i=1

Mac.GenMac(KMac, Ci||w)
?
= γcnt (1) Mac.GenMac(KMac,BFs||T)

?
= σ (2)

Fig. 3: The full-fledged DSSE construction achieving forward privacy, search capability enforcement and delegated verifiability.
Note that the downloaded encrypted files can be decrypted with KSE.

and w so far. The reason of concatenating the file and w as
input, rather using the file itself, is to prevent the replacement
attack: given keyword w1, the server might intentionally return
the search result for another keyword w2, an aggregate MAC
and the set of file identifiers, which has the same number of
file identifiers as that for keyword w1.

Also, the data owner uses the timestamp T (together with
the Bloom filter BFc) to generate the MAC for preventing
the replaying attack that the server might possibly return
stale search result. We implicitly leverage the fact that the
new file is periodically uploaded (e.g., every 10 minutes), so
that authorized users can use the timestamp T to assure the
aggregate MAC is newly generated by the data owner.

Due to the lack of knowledge about cnt, authorized users
(other than the data owner) generate the search token as shown
in Fig. 4, where the WHILE loop is to guess the counter
value. Note that with the guessing counter value and the shared
key from the data owner, authorized users are able to run
SSEVerify to verify the correctness of the research result.

token← GenToken(K,BFs, r, w): After fetching the
Bloom filter BFs from the server, the authorized data
user generates the search token as follows:

Let cnt = 1;
while TRUE do
τcnt = F1(K, w||cnt)

if BFVerify(BFs, τcnt) outputs 1 then
cnt = cnt+ 1

else
cnt = cnt− 1
break;

end
end
Compute Kcnt = F1(K,H(w||cnt));

Let token = SE.Enc(r,F1(K, w||cnt)||Kcnt),
which will be sent to the server.

Fig. 4: The algorithm for the authorized user generating
search token. The data owner has already distributed K =
(K,KSE,KMac) and r to the authorized user.

Optimization II: Speed up guessing the latest counter with
binary search. Instead of guessing the counter value linearly,
authorized users can use the binary search to accelerate the
guessing: The authorized user sets a large enough upper bound
Max, and conducts the binary search for the latest counter cnt
within [1,Max] such that F1(K, w||cnt) is an element hashed
to BFs while F1(K, w||cnt+ 1) not.
Optimization III: Reduce the number of elements hashed
to BFs. Note that the number of elements hashed into BFs
might become huge due to the increasing counter value cnt
when generating F1(K, w||cnt) for keyword w. This results
into a drawback: In order to keep low false positive rate, the
size of BFs becomes very large, which incurs costly bandwidth
when authorized users retrieve it from the server. To get rid
of it, the “regular update” strategy can be used:

• Given the state information TBLc, the data owner regu-
larly (e.g., annually) generates a new Bloom filter BFc,
which implicitly stores the current counter cntL for each
keyword w, generates the MAC and sends BFc and the
MAC to the server.

• The server lets BFs = BFc and proceeds as in Fig. 3.
• After receiving BFs, the authorized user extracts the

counter cntL first, and then guesses the latest counter
starting from cntL.

By doing this, BFs only contains elements with counters
beginning with cntL (rather than from 1) for keyword w,
and therefore its size can be reduced when keeping the
same false positive rate. In addition, implicitly storing cntL
for keyword w in BFc can be done as follows: Given
cntL, the data owner hashes F1(K, w||pos||digitpos) to BFc
where digitpos is the least significant digit of cntL when
pos = 1, and the authorized user can guess cntL by enu-
merating the combination of pos = 1, . . . and digitpos =
0, . . . , 9. For example, given cntL = 456 for keyword
w, F1(K, w||1||6),F1(K, w||2||5) and F1(K, w||3||4) were
hashed to BFc. Authorized users can guess cntL by enumer-
ating pos and digitpos and checking BFs (since BFs = BFc)
to determine whether F1(K, w||pos||digitpos) has been hashed
into BFs or not, until that there exists some pos such that
none of elements F1(K, w||pos||digitpos), digitpos = 0, . . . , 9,
was hashed into BFs.

VI. SECURITY ANALYSIS

We evaluate the security of our full-fledged construction
to show that it achieves the security goals described in
Section II-C. We skip the formal proof here (which occurs
in the full version of this work) due to the space limit.
Data confidentiality. The outsourced files are encrypted with
the secure symmetric encryption together with secret key KSE.
Without leaking KSE to the server, data confidentiality is
naturally assured by the secure symmetric encryption.
Index confidentiality. Since each keyword in the index (i.e.,
states) is encrypted by the secure pseudorandom function F1,
without knowing the secret key, the server cannot learn the
keyword from the index.
Forward privacy. As discussed in the Section V, our con-
struction encrypts the combination of the increasing counter
and the keyword together, which makes the server unable
to link the keyword in the newly added file to any stored
encrypted keyword, without knowing the secret key K. In
addition, a secure pseudorandom function is used to mask the
connection of tuples generated from the same keyword but
with consecutive counter values, without knowing the corre-
sponding secret key, the server cannot correlate these tuples
together. That is, the server cannot know whether the newly
added file contains any stored encrypted keyword, without
knowing the secret keys for the pseudorandom functions.
Search token privacy. The keyword associated with the
search token is protected with a secure pseudorandom func-
tion. Without knowing the key K, the server cannot learn the
keyword.

Search capability enforcement. Our construction implicitly
shares the state information using the Bloom filter, and uses
the group key to assure that only authorized users can generate
valid search tokens. Therefore, the data owner can enforce the
search capability securely (note that the cloud and users are
not allowed to collude in our assumption).
Verifiability. Our construction uses the timestamp and the
MAC to assure the freshness and correctness of Bloom filter
BFs, which further assures the correctness of the counter value
for any keyword, forcing the server honestly returning correct
number of the encrypted files. Moreover, the construction uses
the aggregate MAC to assure the integrity of the returned
files with respect to the keyword. Therefore, given the secure
message authentication scheme, our construction assures that
the authorized users and data owner can correctly verify the
returned search result with an overwhelming probability.

VII. PERFORMANCE EVALUATION

In this section, we present the empirical performance result
by simulating the e-healthcare system with the full-fledged
DSSE implementation.
Implementation: We implemented the full-fledged DSSE
in JAVA, and instantiated F1,Mac with HMAC-SHA-1, F3

with HMAC-SHA-512, SE with AES and H with SHA-1.
In addition, we implemented all optimizations as mentioned
above. We simulated the e-healthcare system by developing
three separate processes for the data owner, the server and the
authorized user respectively. The three processes communicate
with each other via RESTful API, and were running in a laptop
with 2.5GHz Intel i5 CPU, 8GB RAM and MAC OS.
Dataset: In the experiment each PHI file consists of 15 pairs
of attribute2 in the format of attribute:value, which is treated
as one single keyword (e.g., w = heartbeat : 75). To simulate
the scenario that the IoT gateway assembles and uploads a new
PHI file in every 10 minutes and lasts for 20-year, 1,051,200
synthesized PHI files were uploaded.
Performance on the Data Owner. The average time for the
data owner running AddFile is 190 milliseconds, and the size
of hash table (i.e, TBLc) is around 1.3MB after uploading one
million PHI files. The data owner also maintains a Bloom filter
(i.e., BFc) of around 5MB by setting the false positive rate as
2−30, and updates it every year (i.e., after adding 144×365 =
52, 560 new files as in Optimization III). We note that if the
Bloom filter can be updated more frequently (e.g., less than
every year), the size of the Bloom filter can be further reduced.
Performance on the Server. We note that given a search token
for keyword w at time Ti+1, the complexity of running Search
is linear to the number of encrypted files that contain w and
were uploaded within the interval of Ti and Ti+1 (sublinear to
the number of encrypted files), where Ti is the last time when
w was searched for (The time of initializing the system can
be regarded as T0, at which the search result for any keyword
is null). The reason is that, with Optimization I, the server

2The attributes include heartbeat, blood sugar, blood pressure,
temperature and so on as in http://www.clouddx.com/downloads/
Heart-Friendly-Report-2015-12-24-092313.pdf

S
e
a
rc

h
 t

im
e
 (

s)

Number of file identifiers within the search result

100 200 300 400 500 600 700 800 900 1000
0.025

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25
Getting visited file identifiers in recurring keyword search

Getting unvisited file identifiers in recurring keyword search

New keyword search

Fig. 5: Performance for search operation running by the server
storing one million files and the corresponding index (i.e.,
states). Note that for recurring keyword search, half the
number of file identifiers in the search result were newly added
since the last time of the same keyword query (called unvisited
identifiers), and the other half has been added to the server
before the last time of the same keyword query (called visited
identifiers).

stores in a consecutive manner all identifiers of encrypted
files having w at Ti, and can access them in a constant time
thereafter. Therefore, we evaluated the search performance in
the two scenarios: (i) new keyword search, which simulates
that keyword w has never been queried before, and (ii)
recurring keyword search, which simulates that keyword w
has been queried before. Fig. 5 shows the performance. We
can see that the search performance is closely related to the
number of newly added files within the interval between two
consecutive queries for the same keyword. In addition, we
can see that the search performance is quite practical since
returning 100 files identifiers for new keyword search (resp.
recurring keyword search) only costs around 2 seconds (resp.
1 second) (note that one million files and the corresponding
index were stored in the server).
Performance on the Authorized User. The time for the
authorized user generating search token can be neglected
(approximately 10 ms) due to the binary search (Optimization
II). Therefore, we concentrated on the execution time for the
authorized user verifying the correctness of the search result.
The performance result is shown in Fig. 6, where we divided
the verification time into two parts: one is for verifying the
correctness of the Bloom filter (i.e., BFs retrieved from the
server) and the other one is for verifying the aggregate MAC
over all returned files. We can see that the time for verifying
the correctness of the Bloom filter is quite similar (e.g., around
55 ms in our experiments) no matter how many files are within
the search result, and the time of verifying the aggregate MAC
over all returned files is linear to the number of files. We can
see that verification is practical because, even when dealing
with the search result having 1,000 files, the verification time
is only around 135 ms.

VIII. RELATED WORK

Cloud-assisted IoT system has become a popular design
paradigm in many applications [17]–[20], since the powerful

http://www.clouddx.com/downloads/Heart-Friendly-Report-2015-12-24-092313.pdf
http://www.clouddx.com/downloads/Heart-Friendly-Report-2015-12-24-092313.pdf

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900 1000

Number of file identifiers within the search result

Verification on aggregate MAC over all returned encrypted files

Verification on Bloom filter

V
er

if
ic

at
io

n
 t

im
e

(m
s)

Fig. 6: Performance for the authorized user verifying the
correctness of the search result, i.e., verifying the correctness
of the Bloom filter and aggregate MAC over all returned files.

computation and storage capabilities of cloud can overcome
the constrains of IoT devices. This paper particularly relates
to searchable encryption in e-healthcare:
Searchable Encryption. Song et al. [2] first explored the
problem of searchable symmetric encryption and presented
a scheme with linear search time. Curtmola et al. [3] gave
the first inverted index based scheme to achieve sub-linear
search time. Although this scheme greatly boosts search
efficiency, it does not support dynamic dataset. Since then,
several schemes [7]–[12] about dynamic SSE have been pro-
posed, among which [7]–[10] fail to provide forward privacy.
Moreover, the previous work in [12] offers forward privacy
using a complicated hierarchical data structure, whereas the
contribution in [11] only achieves limited forward privacy (i.e.,
leaks the keywords contained in a new file if they have been
searched for in the past). Besides dynamic SSE, verifiable
SSE have been studied by [13], [21]–[23], which enables
users to verify search results by using some verifiable structure
such as the Merkle tree or an accumulator. However, previous
work did not pay special attention to dataset with sequentially
added files, which might leak additional information during
the process of updating verifiable structure.
Secure data storage for e-healthcare. Several searchable
encryption schemes [17]–[19] have been proposed for e-
healthcare applications. Tan et al. [17] proposed a lightweight
IBE scheme to encrypt the sensing data and store it on a cloud.
However, their public-key based scheme makes search over
encrypted data very inefficient. Li et al. [18] presented an
authorized search scheme over encrypted health data, which
aims to realize search in a multi-user setting by enforcing fine-
grained authorization before performing search operations.
However, their search scheme is based on the predicate encryp-
tion, which is less efficient than SSE. Tong et al. [19] proposed
a SSE-based healthcare system, which achieves high search
efficiency and partially hides the search and access patterns
by using the redundancy. However, their scheme depends on a
trusted private cloud and is not able to support dynamic data.

IX. CONCLUSION

In this paper, we proposed a reliable, searchable and
privacy-preserving e-healthcare system. The core of our sys-

tem is a novel and full-fledged dynamic SSE scheme with for-
ward privacy and delegated verifiability, which is dedicatedly
designed to protect sensitive PHI files on cloud storage and
enable HSPs to search on the encrypted PHI under the control
of patients. The salient features such as forward privacy and
delegated verifiability are achieved by a unique combination
of the increasing counter, Bloom filter and aggregate MAC.
Our experimental results and security analysis demonstrate
that the proposed system provides a promising solution for
meeting the stringent security and performance requirements
of the healthcare industry in practice.

REFERENCES

[1] S. Kuranda, “The 10 biggest data breaches of 2015 (so far),”
2015. [Online]. Available: http://www.crn.com/slide-shows/security/
300077563/the-10-biggest-data-breaches-of-2015-so-far.htm

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical technizheng ues for
searches on encrypted data,” in Proceedings of S&P’00. IEEE, 2000.

[3] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in Proceedings of CCS’06. ACM, 2006, pp. 79–88.

[4] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in Proc. of EUROCRYPT’04, 2004.

[5] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in Proceedings of ICDCS’10, 2010.

[6] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in Proceedings of CRYPTO’13. Springer, 2013.

[7] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of CCS’12. ACM, 2012.

[8] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in Proceedings of FC’13. Springer, 2013.

[9] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable
encryption via blind storage,” in Proceedings of S&P’14. IEEE, 2014.

[10] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in Proceedings of NDSS’14, 2014.

[11] F. Hahn and F. Kerschbaum, “Searchable encryption with secure and
efficient updates,” in Proceedings of CCS’14. ACM, 2014.

[12] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage.” in Proceedings of NDSS’14, 2014.

[13] K. Kurosawa and Y. Ohtaki, “How to update documents verifiably
in searchable symmetric encryption,” in Proceedings of CANS’13.
Springer, 2013, pp. 309–328.

[14] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[15] J. Katz and A. Y. Lindell, “Aggregate message authentication codes,” in
Proceedings of CT-RSA’08. Springer, 2008, pp. 155–169.

[16] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[17] C. C. Tan, H. Wang, S. Zhong, and Q. Li, “Ibe-lite: a lightweight
identity-based cryptography for body sensor networks,” IEEE Trans. Inf
Technol Biomed, vol. 13, no. 6, pp. 926–932, 2009.

[18] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private keyword
search over encrypted personal health records in cloud computing,” in
Proceedings of ICDCS’11. IEEE, 2011, pp. 383–392.

[19] Y. Tong, J. Sun, S. S. Chow, and P. Li, “Cloud-assisted mobile-access
of health data with privacy and auditability,” IEEE J. Biomed Health
Inform, vol. 18, no. 2, pp. 419–429, 2014.

[20] L. Yang, A. Humayed, and F. Li, “A multi-cloud based privacy-
preserving data publishing scheme for the internet of things,” in Pro-
ceedings of ACSAC’ 2016. ACM, 2016.

[21] Q. Zheng, S. Xu, and G. Ateniese, “Vabks: verifiable attribute-based
keyword search over outsourced encrypted data,” in INFOCOM’14.

[22] R. Cheng, J. Yan, C. Guan, F. Zhang, and K. Ren, “Verifiable searchable
symmetric encryption from indistinguishability obfuscation,” in Pro-
ceedings of CCS’15. ACM, 2015, pp. 621–626.

[23] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, “Catch you if you lie to
me: Efficient verifiable conjunctive keyword search over large dynamic
encrypted cloud data,” in Proceedings of INFOCOM’15. IEEE, 2015.

http://www.crn.com/slide-shows/security/300077563/the-10-biggest-data-breaches-of-2015-so-far.htm
http://www.crn.com/slide-shows/security/300077563/the-10-biggest-data-breaches-of-2015-so-far.htm

	I Introduction
	II Problem Formulation
	II-A System Model
	II-B Threat Model
	II-C Design Goals

	III Notations, Preliminaries and Definition
	III-A Notations and Preliminaries
	III-B Definition for Dynamic Symmetric Searchable Encryption

	IV Dynamic SSE Achieving Forward Privacy
	IV-A Design Rational
	IV-B Construction

	V Full-fledged DSSE Construction
	V-A High Level Idea
	V-B Main Construction

	VI Security Analysis
	VII Performance Evaluation
	VIII Related Work
	IX Conclusion
	References

