
DDoS Attack Detection under SDN Context

Yang Xu and Yong Liu
Department of Electrical and Computer Engineering

New York University

Brooklyn, New York, 11201

Email: yx388@nyu.edu, yongliu@nyu.edu

Abstract—Software Defined Networking (SDN) has recently
emerged as a new network management platform. The centralized
control architecture presents many new opportunities. Among
the network management tasks, measurement is one of the
most important and challenging one. Researchers have proposed
many solutions to better utilize SDN for network measurement.
Among them, how to detect Distributed Denial-of-Services (DDoS)
quickly and precisely is a very challenging problem. In this paper,
we propose methods to detect DDoS attacks leveraging on SDN’s
flow monitoring capability. Our methods utilize measurement
resources available in the whole SDN network to adaptively
balance the coverage and granularity of attack detection. Through
simulations we demonstrate that our methods can quickly locate
potential DDoS victims and attackers by using a constrained
number of flow monitoring rules.

I. INTRODUCTION

Recently, Software Defined Networking (SDN) has
emerged as a new network management platform, which
draws lots of attentions from both academia and industry. The
centralized control platform fundamentally changed the tradi-
tional distributed network management paradigm. SDN offers
plenty of opportunities for new network management methods.
Network measurement is among one of the most important
tasks in network management. Through SDN, network admins
can flexibly install any flow rule in any controlled switch as
long as it has additional Ternary Content-addressable memory
(TCAM) [1]. In the current Openflow specification [2], there
are packet count and byte count fields in each flow rule. If
a flow rule is matched by a packet, the packet count and
byte count fields of that rule will increase accordingly. Using
this feature, we can install some rules specifically for network
measurement in SDN switches.

Distributed denial-of-service (DDoS) attacks [3] make
online services unavailable by overwhelming victims with
traffic from multiple attackers. As more and more businesses
migrate their operations online, DDoS attacks have caused
significant financial losses [4]. There are reports showing
that the frequency of DDoS attacks has become higher and
higher recently [5]. Thus, how to effectively and quickly detect
DDoS attacks is one of the most important problems for
network measurement. Since DDoS attackers are by nature
distributed across the whole network, coordinated network-
wide monitoring is necessary for efficient DDoS detection.
For timely detection and mitigation, DDoS detection should
also react quickly to the onset of traffic anomaly. SDN central
controller can quickly install and adapt measurement rules on
all switches in a coordinated fashion. This makes SDN an ideal
platform for DDoS detection. In addition, after DDoS attackers

are detected, SDN controller can immediately install blocking
rules to drop attack traffic for prompt DDoS attack mitigation.

Current DDoS attacks have various forms, e.g., consump-
tion of computational resources, disruption of configuration
information, etc. For different types of DDoS attacks, there
are different DDoS detection methods [3]. In this study, we
focus on how to detect large volume DDoS attacks, in which
more than thousands of attackers transfer packets to a victim to
overwhelm the victim’s access bandwidth. Thus, large traffic
rate is one important feature for this type of DDoS attacks.
Besides, previous research [6] has showed that traffic rate
deviation/asymmetry is another important feature of DDoS
attacks. In a DDoS attack, usually there will be huge rate
difference between flows coming into a victim server and flows
going out of the victim. If we only consider the traffic rate
without observing the rate asymmetry between two directions,
we may falsely tag legitimate large-rate flows, e.g., data
transfers between data centers, as DDoS attack flows.

SDN switches utilize TCAM as their lookup memory,
because of its fast lookup speed. But since TCAM is very
expensive and very power-consuming, the TCAM size for
each SDN-enabled switch is very limited. Contemporary SDN
switch can only store around 3, 000 rules. It is impossible to
record flow statistics for the whole network at the finest IP
pair granularity. Thus, to utilize SDN to detect DDoS attacks,
we should address the following challenges:

1) How to capture the traffic rate feature as well as
the traffic rate deviation/asymmetry feature to achieve
high detection precision?

2) How to collaboratively utilize limited TCAM avail-
able on all switches to monitor the whole network?

To address the first challenge, for each suspected victim
IP range, we have to install a pair of rules to capture both
the flows going into the range and the flows coming out of the
range. And we have to make sure the range granularities of the
pair of rules are consistent. To address the second challenge,
we coordinate monitor rule placement on all switches to
efficiently utilize all TCAM entries available in the whole
network to maximize the coverage and minimize the granu-
larity of detection. We further propose an adaptive procedure
to dynamically zoom in the potential victim and attacker IP
ranges and zoom out the normal IP ranges. Furthermore, we
develop a Sequential Method as well as a Concurrent Method
to do victim and attacker detection. Finally, we evaluate our
proposed methods through simulations to demonstrate their
advantages as well as the potential weaknesses.

The rest of the paper is organized as follows. Section II

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

covers the related work. Section III gives an overview of our
system. We present our sequential and concurrent detection
methods in Section IV and Section V respectively. We compare
the two methods in Section VI. Section VII introduces the
classification method we used in our detection. Section VIII
presents our experiment results. The paper is concluded in
Section IX.

II. RELATED WORK

Characteristics of DDoS attacks have been widely studied.
Researchers have proposed various methods, e.g., covariance
analysis, cluster analysis, wavelets, to detect attacks [3], [7],
[8], [9], [10]. In network measurement, some papers studied
how to spread the load of measurement across the whole
network [11], [12], [13]. Our DDoS detection work builds
on top of the existing SDN proposals [14], [2], [15], [16].
There are some work on how to do measurement under SDN
environment [13], [17], [18], [6], [19]. Among them, [18]
discusses the tradeoff between detection accuracy and resource
consumption. [17] proposes a measurement framework based
on sketch. [19] studies how to detect heavy hitters on a single
switch. [13] proposes an adaptive flow counting method for
anomaly detection. They install rules across the network and
adaptively change rule granularity to do anomaly detection.
In our method, we also utilize all switches in the whole
network. But our methods capture the asymmetry feature of
DDoS attacks to achieve higher detection accuracy. Industry
has also proposed SDN based DDoS attack detection, e.g., the
Defense4All solution [20] in OpenDayLight [21]. The basic
idea is to collect statistics from some locations in the network
to identify the anomaly traffic. For those suspicious traffic, they
will be diverted to a scrubbing center to do further detection
and flow cleaning. The drawback of this method is that it
introduces additional delay to the traffic, which will degrade
user quality-of-experience (QoE) of delay-sensitive services.
[6] also studies how to utilize SDN to do DDoS detection.
But they assume that the installed rules could always reach
the finest granularity, which cannot hold in reality due to
the limited TCAM sizes. We use Self Organizing Mapping
(SOM) [22] as our DDoS attack detection classifier. Some
work discussing how to utilize SOM to do anomaly or intrusion
detection can be found in [23], [24].

III. SYSTEM OVERVIEW

Generally, DDoS attack defense consists of two procedures:
victim detection and post-detection. We will describe each of
the procedures in details in the following.

The aim of victim detection procedure is to quickly and
correctly detect DDoS attack victims. As stated in the intro-
duction, the key to correctly identify DDoS attack victims
is to jointly consider the flow volume feature and the flow
rate asymmetry feature. To capture these two features, for
any potential victim IP we should have measurement rules to
record the total flow rate coming to this IP as well as the total
flow rate going out of this IP . Since TCAM size is limited, we
cannot install the above measurement rules for all individual
IP addresses in the whole network. Thus, initially we can only
observe flow volume and flow rate asymmetry for large IP
ranges. If our captured features for these large IP ranges show
potential DDoS attacks, we will adaptively zoom in to find

the precise victim IP address. Otherwise, we will adaptively
zoom out to save TCAM size for detecting other potential
victim IP ranges. Due to TCAM size limit, we may never
find the precise IP addresses of victims if TCAM sizes are not
large enough. The victim detection procedure finishes with the
smallest possible IP ranges containing potential victims.

Another procedure is post-detection procedure. There are
two ways to react to the detected DDoS attacks. One way is to
do passive processing, e.g., contacting the user of the victim
IP and asking him to migrate his normal service to a new IP.
But usually the migration process may take some time and it
also wastes resources of the victim server. Another way is to
do active processing, e.g., network admins find the attacker
IP addresses and install rules in Openflow switches to drop
packets from attackers to the victim. Through this way, it saves
network resources and doesn’t affect normal operation of the
victim user. Like the victim detection procedure, detection of
attackers is conducted adaptively. This is the post-detection
procedure we will study in this paper. And we call this
procedure as attacker detection procedure.

The above two procedures could be done either sequentially
or simultaneously, which results in two different detection
methods. We will discuss these two different methods in more
details in the following two sections.

IV. SEQUENTIAL METHOD

The general work flow of the Sequential Method is shown
in Figure 1. We start with the initial rule partition/placement,
followed by the victim detection. After victims are identified,
attacker detection procedure is conducted. We will describe
the components in detail in this section.

Initial Rule
Partition &&
Placement

Victim Detection
Rule Adaptation

Victim Detection

Attacker Detection
Rule Adaptation

Attacker Detection

Fig. 1: Work Flow of Sequential Detection

A. Victim Detection

1) Initial Rule Placement: Initially, if we don’t have any
prior knowledge about whether a DDoS attack has happened
nor what IP ranges contain the victim servers, the DDoS
detection system need to monitor all IPs in the system. To
make detection fast and accurate, we want to make the IP
range granularity for monitoring as small as possible. Given the
limited flow table sizes on all switches, our design objective is
to minimize the maximum granularity among all monitored IP
ranges. In other words, we don’t want to have a large number
of IP addresses monitored by a single rule. Besides, for each
monitored IP range, we need to measure the total rate of traffic
going into all IP addresses in that range, as well as the total
rate of traffic going out from all IP addressed in that range, to
capture the flow rate asymmetry feature.

Following the SDN rule definition, each IP range is
defined using the common prefix of all addresses in that
range. Secondly, given a source IP range Rs and a des-
tination IP range Rt, we want routing paths between all

possible source and destination pairs between the two ranges
{〈s, t〉, ∀s ∈ Rs, ∀t ∈ Rt}, go through the same sequence
of SDN switches in the network. To measure the flow rate
asymmetry, we additionally want routing paths in the reverse
direction {〈t, s〉, ∀t ∈ Rt, ∀s ∈ Rs} also follow the same
sequence of SDN switches. We assume that we are working on
a PoP-level topology, and all traffic between two PoP routers
go through the same sequence of SDN switches. Then we can
initialize the coarse IP ranges using the sets of IP addresses
behind all PoP routers. In case the IP set behind a PoP router
cannot be exactly summarized using any prefix matching rule,
we will further divide the set into subsets until each subset
can be exactly summarized using a prefix matching rule. If
the routing assumption doesn’t hold, we also need to further
divide PoP level IP ranges until hosts in between each pair
of ranges go through the same sequence of SDN switches.
After this operation, we call each pair {Rs, Rt} of source and
destination IP ranges as a flow f .

After the initial rule setup, we determine the victim IP
range granularity for measurement and the monitor rule place-
ment for each flow. Generally, there are two ways to do rule
management. The first way is to dedicate one measurement
rule solely for one potential victim IP range. It means that if
we want to split victim IP range, we only split the victim IP
range and keep the attacker IP range the same as the initial
partitioned ones generated by rule partition and placement
method. For example, assuming that two flows A → B and
B → A exist in the network, we can use rules A → B
and B → A to observe the potential victim IP ranges A
and B. If now we want to zoom in both victim IP range A
and victim IP range B, the rule split method will generate
rules A1 → B, A2 → B, B → A1 and B → A2 solely for
detecting potential victims in IP range A. And rules A → B1,
A → B2, B1 → A and B2 → A will be generated to solely
detect potential victims in IP range B. The second way of rule
organization method is that each rule is used to monitor both
the source victim IP range and the destination victim IP range.
It means that if source IP range and destination IP range are
all suspected as victims, we not only split destination victim
IP range but also split source victim IP range for one rule. For
example, when we decide to split A and B using this method,
we will generate A1 → B1, A2 → B1, A1 → B2, A2 → B2,
B1 → A1, B2 → A1, B1 → A2 and B2 → A2 to monitor IP
ranges A and B. If we want to further split both A and B into
more ranges to do monitoring, the second way will generate
more monitor rules compared to the first way. In general, if we
want to split both A and B into k ranges to do monitoring, the
first approach will generate 2k rules to monitor A and 2k rules
to monitor B, a total of 4k rules; while the second approach
will generate 2k2 rules to simultaneously monitor A and B,
which is much larger than the first approach when k > 2.
In the Sequential Method, we use the first rule organization
method as it would generate fewer rules to detect victim. In
our Concurrent Method, we use the second rule organization
method, which we will discuss in details later.

Employing the first rule organization method, we use
Algorithm 1 to do the initial rule partition and placement. We
first set up one rule for each flow f to be monitored. 1 Let Nf

1Keeping in mind, to detect the rate asymmetry, for each IP range pair
〈A,B〉, we will have two flows to be monitored: A → B and B → A.

be the number of monitor rules associated with flow f . Thus,
initially we have Nf = 1 and place a single monitor rule for f
on some switch on the path from IP range Rs to IP range Rt.
Since we are focusing on the victim detection at this stage,
we only worry about the granularity of the monitored victim
IP range, which we define as its monitor granularity. First, we
set the monitor granularity G to be a large value Gupper. We
then try to reduce G iteratively. In each iteration we find the
maximum granularity Gmax among all the monitor IP range.
Then, for each rule with the maximum monitor granularity
Gmax, we divide its monitor IP ranges into two halves, and
replace it with two new monitor rules, one for each half of the
victim IP range as described in the previous paragraph. As a
result, the maximal granularity is reduced to Gmax/2. After
rule split, it is possible that the monitoring rules for different
monitor IP ranges are the same. To save TCAM space, we
will delete redundant rules. Then, we can update the number
of monitor rules Nf for each flow. We will check whether
the monitor rules can be placed to TCAM of all switches in
the network. If there is a feasible placement, we try to do
another iteration to refine the IP range granularity. Otherwise,
the minimum maximum granularity is Gmax and monitor rule
placement is the one found in the previous iteration.

Algorithm 1 Initial Rule Partition and Placement

1: F : set of flows; R : set of monitor rules; Nf : number of
monitor rules for flow f ;

2: Initialize monitor granularity to be Gupper

3: Initialize monitor rules R for flows in F at granularity
Gupper; Calculate Nf , ∀f ∈ F ;

4: if Placement(N1, · · · , NF) is not Feasible then
5: Raise Error
6: end if
7: while 1 do
8: Gmax = maximum victim range granularity of all rules

in R
9: R̂ = R

10: for all rules r ∈ R̂ with victim range granularity Gmax

do
11: Partition victim IP range into two halves;
12: Replace r with two new rules in R̂;
13: end for
14: Remove redundant rules and Update {Nf , ∀f ∈ F}

based on R̂;
15: if Placement(N1, · · · , NF) is not Feasible then
16: Return Gmax and the previous rule set R and the

associated allocation
17: Break
18: end if
19: R = R̂;
20: end while

2) Rule Placement Feasibility Check: The key question for
Algorithm 1 is that given switch space requirement {Nf , ∀f ∈
F}, how to decide whether the monitor rule placement is
feasible or not. This problem could be transformed to the
classical maximum flow problem and then be solved by the
Ford-Fulkerson algorithm [25]. In Figure 2, we illustrate the
virtual graph for the rule placement check. Basically, the
virtual graph consists of four types of nodes: start node S,
terminate node T , flow nodes {fi, i ∈ F} and switch nodes

f1 f2 fF

s1 s2 sS

S

T

…

…

C1

C2

Cs

N1
N2

Nf

∞ ∞ ∞ ∞ ∞ ∞

Fig. 2: Virtual Graph for Rule Allocation Check

{sj , j ∈ S}. Start node S is connected to all flow nodes fi and
the link capacity between S and fi is the required switch space
Ni. Then, flow node fi is connected to all switch nodes sj that
the flow traverses in the real network. And the capacity for
those links are infinity. At last, a switch node sj is connected
to the terminate node T and the capacity between these two is
the available TCAM rule space capacity Cj on switch sj . Then,
after getting this rule allocation network, the original problem
becomes whether the maximum flow between S to T equals
to

∑
f∈F Nf . This problem could be solved by utilizing the

classic Ford-Fulkerson algorithm. The idea is that as long as
there is a path from the start node to the terminate node, with
available capacity on all edges in the path, we will send flow
along one of these paths. We will try to find another path until
no path is available. Then, after the program is terminated, we
will know whether the placement is feasible or not. And if it
is feasible, we can also check how many rule space each flow
needs on each switch in the network.

3) Detection Rule Adaptation: After the initial rule place-
ment, we will run DDoS attack detection algorithms to esti-
mate the victim likelihood of each IP range in rule set. For
the IP ranges having no sign of being attacked, we could use
courser-grained rules to replace the finer-grained rules. For the
IP ranges with high likelihood of under DDoS attack, we can
utilize the available and/or newly released rule space to install
finer-grained rules to monitor them. This adaptation is called
spatial adaptation in [13]. Besides spatial adaptation, we could
also change the rule fetching period and do temporal adaptation
as stated in [13]. In this article, we mainly focus on spatial
adaptation.

In Algorithm 2, we illustrate our adaptation algorithm
to iteratively locate the potential victim IP ranges. For each
destination IP range d in the current monitor rule set, we
collect its traffic statistics and use DDoS attack victim classifier
Cv (see details in Section VII) to calculate one value Cv(d).
If Cv(d) = False, d is not identified as a potential victim.
If its sibling Sib(d) is also not a victim2, we can increase
the observation IP range by replacing monitoring rules for d

2A sibling range of a /x range d is the other /x range sharing the same
/(x− 1) prefix with d.

Algorithm 2 Victim Detection Rule Adaptation (D)

1: D : set of victim ranges monitored by rules in R;
2: while 1 do
3: for ∀d ∈ D do
4: collect packet statistics F(d)
5: use victim classifier Cv to calculate Cv(d) to decide

whether d is under attack or not;
6: end for
7: for d in D do
8: if Cv(d) = False and Cv(Sib(d)) = False then
9: Contraction: add monitor rule for victim range

Parent(d), remove monitor rules for victim ranges
d and Sib(d);

10: end if
11: if Cv(d) = True and G(d) �= 32 then
12: Refinement: add monitor rules for the victim ranges

Child(d), remove monitor rule for victim range d;
13: end if
14: end for
15: if Refined Rule Set Infeasible? then
16: return list of victim ranges with Cv(d) = True
17: end if
18: end while

and Sib(d) with monitoring rules for their common parent
Parent(d). If C(d) = True, d is a probable DDoS attack
victim. We will try to refine the observation granularity for
d by replacing monitoring rules for d with monitoring rules
for its two children3. And if the granularity level is already
the finest, we will do attacker detection. Each time we refine
observation granularity, we need to utilize Algorithm 1 to
decide whether the adaptation is feasible or not. In the current
adaptation process, for each refinement or contraction process,
we only increase or decrease the granularity by one prefix bit.
We could also try larger adaptation steps. But if the adaptation
step is too large, we may waste many TCAM sizes for false
positive alarms.

B. Attacker Detection Procedure

After locating the potential victim IP ranges, we will
start the attacker detection procedure. The attacker detection
procedure also works in an adaptive fashion. Details of the
algorithm are listed in Algorithm 3. For each range s, we will
use attacker classifier Cs(s) (see details in Section VII) to
identify whether the attacker is within this ranges s. If yes,
we will zoom in range s to explore the IP further. If the range
is already at the finest level or the switches do not have enough
TCAM space for the refined rule set , we will return the source
IP or the source IP ranges directly.

V. CONCURRENT METHOD

In the previous sequential method, only after detecting the
exact victim IP ranges, we will start the attacker detection.
Another way of DDoS attack detection method is to do victim
detection and attacker detection concurrently. The work flow of
the Concurrent Method is shown in Figure 3. The basic idea

3The two children of a /x range d is the two IP ranges sharing the same
/x prefix with d and the (x+ 1)-th bit is 0 and 1 respectively.

Algorithm 3 Attacker Detection Rule Adaptation (S)

1: S : set of IP ranges sending traffic to victim IP ranges;
2: while 1 do
3: for ∀s ∈ S do
4: collect packet statistics features F(s)
5: use attacker classifier Cs to calculate Cs(s) to decide

whether s is an attacker or not;
6: end for
7: for s in S do
8: if Cs(s) = True then
9: if G(s) = 32 then

10: Return s
11: else
12: Refinement: add monitor rules for the attacker

ranges Child(s), remove monitor rule for at-
tacker range s;

13: end if
14: end if
15: end for
16: if Refined Rule Set Infeasible? then
17: return list of attacker ranges with Cs(s) = True
18: end if
19: end while

is that if a victim IP range is being suspected under DDoS
attack, not only we should refine the measurement granularity
for the victim range, but also we should simultaneously refine
the measurement granularity for all IP ranges that are classified
as attackers of the victim, so that we can identify the potential
attackers in the mean time. The simultaneous attacker and
victim range refinement procedures are conducted in both the
initial rule placement and the subsequent rule adaptation. Sim-

Initial Rule
Partition && Placement

Victim && Attacker
Detection Rule Adaptation

Victim && Attacker Detection

Fig. 3: Work Flow of Concurrent Detection

ilar to the Sequential Method, the first step of the Concurrent
Method is to do initial IP range separation to form flow f . Then
we will do the initial rule partition and placement. Different
from the Sequential Method, rules are not solely organized
based on the victim IP ranges, and we use the second rule
organization method as described in Section IV-A1. Our initial
rule partition and placement are the same as in Algorithm 1.
We also try to minimize the maximum monitoring granularity.
But the rule refinement is different from the sequential method.
Due to the simultaneously splitting of source and destination
IP ranges, we will generate more monitoring rules. Therefore,
it is expected that the final victim IP ranges obtained in the
Concurrent Method will have coarser granularities than those
obtained in the Sequential Method.

After the initial rule partition and placement, we will go
to the concurrent rule adaptation process, as described in
Algorithm 4. In the adaptation process, for any modification
done for monitoring rule of A → B, we will also do
the corresponding modification to the monitoring rule of the

TABLE I: Rule Split for rule A → B

Condition Rule Split
Neither A or B is victim No Split

A, B are both victim Split both A and B
B is victim, A is not attacker for B Split B
B is victim, A is attacker for B Split both A and B

TABLE II: Rule Merge for rule A → B

Condition Rule Merge
A or B is victim No merge for A, B

A, B and their siblings are not victim Source and destination sibling merge

A and its sibling are not victim Source sibling merge

B and its sibling are not victim Destination sibling merge

reverse flow B → A to make sure that the new formed flows
are still organized in pair. For rule A → B, if at least one of A
and B is identified as potential victim, we will do rule split, as
depicted in Table I. If neither A nor B is a potential victim, we
will try to do rule merge. For one rule t, source sibling merge
means that we merge source range of t with its sibling range
and destination sibling merge means that we merge destination
range of t with its sibling range. Under these definitions, we
could do rule merge as Table II states. The details of rule
adaptation is listed in Algorithm 4. We will use classifier Cv

to identify the potential victims, and for each victim d, we use
classifier Csd to identify the suspicious attackers of victim d.
After the concurrent adaptation ends, we will find the potential
victims as well as suspicious attackers attacking those victims.

Algorithm 4 Concurrent Rule Adaptation R

1: R : set of current monitor rules;
2: D : set of victim ranges monitored by rules in R;
3: Sd : set of attacker ranges monitored for victim ranges d

by rules in R;
4: while 1 do
5: for ∀d ∈ D do
6: collect packet statistics F(d)
7: use victim classifier Cv to calculate Cv(d) to decide

whether d is under attack or not;
8: end for
9: for ∀sd ∈ Sd where Cv(d) = True do

10: collect packet statistics features F(sd)
11: use source classifier Csd to calculate Csd(sd) to

decide whether s is an attacker for victim d or not;
12: end for
13: for r ∈ R do
14: sd=SourceRange(r); dd=DestinationRange(r);
15: if Cv(sd) = True or Cv(dd) = True then
16: Do rule split according to Table I;
17: else
18: Do rule merge according to Table II;
19: end if
20: end for
21: if Splited Rule Set Infeasible? then
22: return list of potential victim ranges with correspond-

ing suspicious attacker ranges
23: end if
24: end while

VI. COMPARISON OF TWO METHODS

In this section, we discuss the pros and cons of the above
two proposed methods. Both methods can identify DDoS
attack victims as well as attackers precisely given large enough
TCAMs on all switches. If TCAM sizes on switches are
constrained, both methods can only detect the victims and
attackers at coarse IP range granularities.

At the initialization stage, both methods will try to make
the IP observation ranges as small as possible. The Sequential
Method can reach finer victim observation IP ranges, since the
Concurrent Method use more TCAM space to monitor possible
attacker IP ranges. Thus, if the objective is to quickly identify
the victims, the Sequential Method is more preferable, as it
can find the finest victim IP ranges under the TCAM size
constraints. If the objective is to quickly find the victims as
well as the attackers, the choice between the two depends on
the TCAM capacities. If the TCAM capacities are pretty large,
Concurrent Method is more preferable, as it can quickly find
the victims along with the attackers. On the other hand, if
the TCAM capacities are very constrained, it is likely that
the Concurrent Method will exit at a very coarse observation
granularity, while at least the Sequential Method can pinpoint
the victims precisely. Thus, the preferred method under various
conditions can be summarized as in Table III.

TABLE III: Method Selection under Various Conditions

TCAM Size Limit Victim Detection Attacker and Victim Detection
Small Size Sequential Sequential

Medium size Sequential Sequential or Concurrent

Large size Sequential or Concurrent Concurrent

VII. CLASSIFICATION METHOD

In the above two DDoS detection methods, we will use
classifiers to detect victims as well as attackers. In this section,
we will introduce how we do classification in more details.

A. Feature Selection

To do accurate classification, we first need to select proper
features. For victim identification and attacker identification,
we will use different feature representations. But as previously
stated, we will capture both the flow volume feature as well
as the asymmetry feature for both cases.

1) Victim Identification Features: We will select victim
identification features based on the destination range. Assum-
ing that we have traffic flow fji from range j to range i, and
the number of IP addresses in range i is Gra(i), then the
victim feature for range i can be expressed as the followings:

1) Packet Count per Destination (P): describe the aver-
age number of packets to each destination IP in that
range:
Pi =

∑
j Pktji/Gra(i)

2) Byte Count per Destination (B): describe the average
number of bytes to each destination IP in that range:
Bi =

∑
j Byteji/Gra(i)

3) Packet Count Asymmetry per Destination (PA): de-
scribe the average packet count asymmetry for each

destination IP in that range:
PAi = (

∑
j Pktji −

∑
j Pktij)/Gra(i)

4) Byte Count Asymmetry per Destination (BA): de-
scribe the average byte count asymmetry for each
destination IP in that range:
BAi = (

∑
j Byteji −

∑
j Byteij)/Gra(i)

Among the above four features, feature P and B only
consider the volume flowing to a potential victim. When DDoS
attack happens, values of these two features become very large.
Feature PA and feature BA quantify the traffic asymmetry of
DDoS attack. When DDoS attack happens, compared to the
incoming flows, flows going out of a victim would be much
smaller. Thus, we can also observe a large value for these two
asymmetry features.

2) Attacker Identification Features: Using the previous
notations, for a potential victim IP range j, the attacker iden-
tification features to identify whether IP range i has attackers
for range j could be expressed as follows:

1) Packet Count per Source (P): describe the average
number of packets from a host in IP range i to a host
in victim IP range j:
Pa
ij = Pktij/(Gra(i) ∗Gra(j))

2) Byte Count per Source (B): describe the average
number of bytes from a host in IP range i to a host
in victim IP range j:
Ba
ij = Byteij/(Gra(i) ∗Gra(j))

3) Packet Count Asymmetry from Source (PA): describe
the average packet numbers asymmetry to victim IP
range:
PAa

ij = (Pktij − Pktji)/(Gra(i) ∗Gra(j))
4) Byte Count Asymmetry from Source (BA): describe

the average bytes numbers asymmetry to victim IP
range:
BAa

ij = (Byteij −Byteji)/(Gra(i) ∗Gra(j))

Similar to the features used in victim identification, features
Pa and Ba characterize the large volume feature while features
PAa and BAa characterize the asymmetry feature of volume-
based DDoS attacks.

B. Classifiers

After forming the above features, we will use Self Organiz-
ing Mapping (SOM) [22] as our classifier to do classification.
SOM is an unsupervised artificial neural network that describes
a mapping from a n-dimensional data space to a lower-
dimensional map space. The result of the transformation is
that data with similar statistical features would be gathered
close to each other in the map space. Generally, the algorithm
runs as follows:

1) Randomize node’s weights in the map space.
2) Choose one input vector I from the data space.
3) Calculate Euclidean distance between input vector

and all map’s nodes’ weight vector. Find node with
smallest distance, label this node as winner node.

4) Update the nodes in the neighborhood of winner
node so that the Euclidean distance between their
individual weight vector and the input vector becomes
smaller.

5) repeat procedure 2 - 4 until weight vector has no
significant change.

Due to the space limit, we refer interested readers to [22]
for implementation details of the SOM transformation process.
Since SOM’s training utilizes competitive learning, it is robust
even when the training data are noisy. After the training, it
could find the hidden relations between input data. Thus, we
utilize this technique as our classifier. In our implementation,
we will form different SOMs for victim detection and attacker
detection.

VIII. EXPERIMENTS

Due to the lack of access to complete traces of real DDoS
attacks, we build a simulator to evaluate our methodology.
Internet2’s network topology [26] is employed as our simulated
network. We select 19 different class C IP addresses as the
existing IP addresses in the network. We assign each class C
IP address to a PoP as their ingress and egress points. Flow
routing among different PoPs follows the shortest path policy.
In this section, we will present our simulation results.

A. Importance of Asymmetry Feature

Firstly, we want to study how the asymmetry feature affects
the detection accuracy. In our experiments, we generate the
following four different classes of transmissions:

1) Attack Transmission (A): flows from 10, 000 ran-
domly picked source IPs to the victim IP, with sending
rate from each source IP randomly distributed within
(30kbps, 70kbps) and receiving rate of each source
IP randomly distributed within (1kbps, 4kbps);

2) Normal Large Volume Transmission (N1): From one
source IP to another destination IP, with sending
rate within (300mbps, 700mbps) and receiving rate
randomly within (300mbps, 700mbps);

3) Normal Small Asymmetry Transmission (N2): From
one source IP to another destination IP, with
sending rate randomly distributed within (30kbps,
70kbps) and receiving rate randomly distributed
within (1kbps, 4kbps), the number of sources sending
traffic to the same destination is no more than 100;

4) Normal Small Symmetry Transmission (N3): From
one source IP to another destination IP, with
sending rate randomly distributed within (30kbps,
70kbps) and receiving rate randomly distributed
within (30kbps, 70kbps), number of sources sending
traffic to the same destination is no more than 100.

Then, we use the previously described classification meth-
ods to identify victims. For normal condition, we randomly
mix N1, N2, N3 to form normal transmission. For attack
condition, we choose one IP as the victim and generate A for
that IP. Besides A, we also generate N1 for other IP pairs as
normal background traffic. For each transmission, packet size
is randomly selected in the range of (500bytes, 1500bytes). In
our experiments, we totally generate 5, 000 normal conditions
and 5, 000 attack conditions. We use the features stated in
Section VII-A1. We try two different feature combinations:
two-feature combination {P ,B} and four-feature combination
{P , B, PA, BA}. The first feature combination doesn’t con-
sider the traffic asymmetry of DDoS attacks while the second

combination does. For the victim IP selected, we calculate
features at different prefix lengths. For example, given victim
IP is IP and prefix length is a, the features at prefix a would
be the features for IP range IP/a. After getting features at
different prefix lengths, we will generate different SOMs at
different prefix lengths. We choose 80% of the features from
normal conditions and attack conditions as the training set and
use the residual 20% features as the test set. Table IV shows
the parameters of our SOM.

TABLE IV: SOM Parameters

Parameter Value
Neutron Dimension 20*20

Initial Learning Rate 0.05

Initial Neighbor Radius 20

Iteration Limit 1000

The victim detection performance of SOM classifier using
different feature combinations under different IP prefix lengths
is shown in Figure 4(a). In that figure, the first observation is
that the four-feature combination performs much better than
the two-feature combination, which means that the asymmetry
feature is very important to achieve high detection accuracy.
Another observation is that as the prefix length increases,
SOM’s detection accuracy also increases. This can be ex-
plained as that attack transmission A is hard to be differenti-
ated from transmission N2 if multiple flows are monitored by a
single rule. This confirms with our monitoring rule placement
guideline: finer granularity leads to higher accuracy. The third
observation is that SOM is very accurate at victim detection.
When using the four-feature combination, even when the
prefix length is 16, the detection accuracy is larger than 85%.
The only error is false positive, which means that we won’t
miss any potential victim. We also test the attacker detection
performance using SOM classifier as illustrated in Figure 4(b).
It also shows the similar trend as in victim detection.

Summary: Simulation results demonstrate that capturing
asymmetry feature is important to achieve high detection
accuracy. Using suitable features, SOM classifier can achieve
very accurate detection performance. The features obtained
from finer granularity will make the detection more accurate.

B. Performance of Two Detection Methods

Then, we compare the performance of the previous two
proposed detection methods. In our simulator, we set one
IP as the DDoS attack victim and we randomly select N
(N > 500) IPs as attackers for the victim. We implemented
two proposed detection methods in the simulator. In our
simulations, we assume that classifier can correctly identify
victims or attackers in any IP range in any step. In the previous
subsection, we did observe high classification accuracy when
using suitable classifier and features. The only error that our
classifier produces is few false positives. Given those false
alarms, our detection methods will waste some extra switch
TCAM to monitor the non-existing victims/attackers at some
iteration. And our detection might completes with a coarser
detection granularity due to the wasted switch TCAM. For the
clarity of presentation, we don’t introduce those errors in our
simulations. In each adaptation round, we either expand an IP
range to its direct parent range or split it into its direct children

16 18 20 22 24 26 28 30 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prefix Length

Pr
ob

ab
ilit

y Correct Prob for 2 Features
False Positive Prob for 2 Features
False Negative Prob for 2 Features
Correct Prob for 4 Features
False Positive Prob for 4 Features
False Negative Prob for 4 Features

(a) Victim Detection

16 18 20 22 24 26 28 30 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prefix Length

Pr
ob

ab
ilit

y Correct Prob for 2 Features
False Positive Prob for 2 Features
False Negative Prob for 2 Features
Correct Prob for 4 Features
False Positive Prob for 4 Features
False Negative Prob for 4 Features

(b) Attacker Detection

Fig. 4: SOM Classifier Performance at Different Prefix Lengths.

0 500 1000 1500 2000 2500
15

16

17

18

19

20

21

22

23

24

25

TCAM Limit

Pr
ef

ix
 L

en
gt

h

Sequential Method
Concurrent Method

Fig. 5: Prefix Length for Observation after the Initial Rule
Placement.

ranges. Then, we will vary switch TCAM sizes and attacker
number to study the performance of the two methods.

Each method starts with initial rule placement. In this step,
the aim is just to minimize the maximum observation IP range.
In Figure 5, we show the prefix length of the observed IP range
using the two methods under different TCAM sizes. As TCAM
size increases, the prefix length of the monitored IP ranges
becomes larger, i.e., the granularity of IP range observation
becomes finer. Among the two methods, Concurrent Method
has the coarser observation granularity, since it has to utilize
some TCAM to simultaneously observe potential attackers.

After the initial rule placement, each method will adap-
tively change its rule ranges to detect victims as well as
attackers. In Figure 6(a) and Figure 6(b), we list the maximum
victim IP prefix length that the detection algorithms can reach
and the number of iterations to get that IP prefix length.
Using Sequential Method, we will always find the precise
victim IP. As TCAM sizes become larger, Sequential Method
can detect victim with fewer iterations. This is because that
the initial rule placement already gives us a fine observation
IP range to start with. In contrast, since Concurrent Method
will install lots of rules to detect attackers simultaneously,
the victim detection performance depends on the number of
attackers. When the number of attackers is very large(>500
attackers), victim detection only stops at a coarser IP range
granularity. Under such condition, as TCAM sizes become
larger, victim detection IP prefix length increases and the
number of iterations to get this finer victim IP range also
increases. Only under the condition with a small number of
attackers (= 500 attackers) and large TCAM sizes (>1000),
we can find the precise victim IP. The number of iterations

to find this precise victim IP would decrease as TCAM sizes
become larger, due to the same reason for Sequential Method.

In Figure 7(a) and Figure 7(b), we plot the results of
attacker detection. For the reachable prefix length, the lines
of the two methods are almost coincided with each other.
Performance of the two methods are almost identical. Only
with a small number of attackers (= 500 attackers) and large
TCAM sizes (>1,000), both methods could find the precise
attacker IPs. Otherwise, both methods only find coarse attacker
IP ranges. In Figure 7(b), the relation between the number of
iterations and TCAM sizes is similar to the case of victim
detection by using Concurrent Method. Besides, we show
that Concurrent Method detects attackers much quicker than
Sequential Method, as the later one has to use lots of iterations
to detect victim first.

Summary: Experiment results show that if the priority
of DDoS detection is to find victims, Sequential Method is
preferable, as it can detect finer potential victim IP ranges
given limited TCAM sizes. If the objective of DDoS detection
is to find victims as well as attackers, Concurrent Method is
preferable if TCAM sizes are abundant, as it finds victims and
attackers more quickly.

IX. CONCLUSION

In this paper, we studied how to utilize SDN to detect
DDoS attacks. Our methods capture the flow volume feature
as well as the flow rate asymmetry feature. We propose
Sequential Method as well as Concurrent Method to adaptively
change the flow monitoring granularities on all switches to
quickly locate the potential victims and suspicious attackers.
Through simulations, we demonstrated that our methods have
high detection accuracy by capturing the flow asymmetry
feature. In addition, we further compared the performance
and applicability of our two proposed methods under different
TCAM size limits. For future work, we plan to refine our
detection methods, and evaluate our methods with packet traces
collected from real DDoS attacks. And we will implement our
proposed methods in the Openflow platform.

REFERENCES

[1] “Tcam wiki,” http://en.wikipedia.org/wiki/TCAM.

[2] “Openflow specification,” https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.4.0.pdf.

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

TCAM Limit

P
re

fi
x
 L

e
n
g
th

Sequential Method
Concurrent Method (500 Attackers)
Concurrent Method (3000 Attackers)
Concurrent Method (10000 Attackers)

(a) Achieved Prefix Length

0 500 1000 1500 2000 25002

4

6

8

10

12

14

TCAM Limit

Ite
ra

tio
n

Sequential Method
Concurrent Method (500 Attackers)
Concurrent Method (3000 Attackers)
Concurrent Method (10000 Attackers)

(b) Number of Iterations

Fig. 6: Victim Detection Performance Comparison between Sequential Method and Concurrent Method.

0 500 1000 1500 2000 25000

5

10

15

20

25

30

35

TCAM Limit

Pr
ef

ix
 L

en
gt

h

Sequential Method (500 Attackers)
Sequential Method (3000 Attackers)
Sequential Method (10000 Attackers)
Concurrent Method (500 Attackers)
Concurrent Method (3000 Attackers)
Concurrent Method (10000 Attackers)

(a) Achieved Prefix Length

0 500 1000 1500 2000 25000

10

20

30

40

TCAM Limit

Ite
ra

tio
n

Sequential Method (500 Attackers)
Sequential Method (3000 Attackers)
Sequential Method (10000 Attackers)
Concurrent Method (500 Attackers)
Concurrent Method (3000 Attackers)
Concurrent Method (10000 Attackers)

(b) Number of Iterations

Fig. 7: Attacker Detection Performance Comparison between Sequential Method and Concurrent Method.

[3] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense
mechanisms,” ACM SIGCOMM Computer Communication Review,
vol. 34, no. 2, pp. 39–53, 2004.

[4] “Ddos attack loss,” http://blog.radware.com/security/2013/05/
how-much-can-a-ddos-attack-cost-your-business/.

[5] “Neustar annual ddos attacks and impact report,” https:
//www.neustar.biz/resources/whitepapers/ddos-protection/
2014-annual-ddos-attacks-and-impact-report.pdf.

[6] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in Local Computer Networks (LCN),
2010 IEEE 35th Conference on. IEEE, 2010, pp. 408–415.

[7] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred, “Statis-
tical approaches to ddos attack detection and response,” in DARPA In-
formation Survivability Conference and Exposition, 2003. Proceedings,
vol. 1. IEEE, 2003, pp. 303–314.

[8] S. Jin and D. S. Yeung, “A covariance analysis model for ddos attack
detection,” in Communications, 2004 IEEE International Conference
on, vol. 4. IEEE, 2004, pp. 1882–1886.

[9] K. Lee, J. Kim, K. H. Kwon, Y. Han, and S. Kim, “Ddos attack detection
method using cluster analysis,” Expert Systems with Applications,
vol. 34, no. 3, pp. 1659–1665, 2008.

[10] L. Li and G. Lee, “Ddos attack detection and wavelets,” Telecommuni-
cation Systems, vol. 28, no. 3-4, pp. 435–451, 2005.

[11] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and
D. G. Andersen, “csamp: A system for network-wide flow monitoring.”
in NSDI, vol. 8, 2008, pp. 233–246.

[12] C.-W. Chang, G. Huang, B. Lin, and C.-N. Chuah, “Leisure: A
framework for load-balanced network-wide traffic measurement,” in
Architectures for Networking and Communications Systems (ANCS),
2011 Seventh ACM/IEEE Symposium on. IEEE, 2011, pp. 250–260.

[13] Y. Zhang, “An adaptive flow counting method for anomaly detection
in sdn,” in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies. ACM, 2013, pp. 25–30.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in

campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[15] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4d approach
to network control and management,” ACM SIGCOMM Computer
Communication Review, vol. 35, no. 5, pp. 41–54, 2005.

[16] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. M. Parulkar, “Can the production network be the testbed?”
in OSDI, vol. 10, 2010, pp. 1–6.

[17] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proceedings 10th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI, vol. 13, 2013.

[18] M. Moshref, M. Yu, and R. Govindan, “Resource/accuracy tradeoffs
in software-defined measurement,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking.
ACM, 2013, pp. 73–78.

[19] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic
aggregates on commodity switches,” in Proc. of the USENIX HotICE
workshop, 2011.

[20] Defense4All, “Homepage,” https://wiki.opendaylight.org/view/
Defense4All:Tutorial.

[21] OpenDaylight, “Homepage,” https://www.opendaylight.org/.

[22] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[23] M. Ramadas, S. Ostermann, and B. Tjaden, “Detecting anomalous
network traffic with self-organizing maps,” in Recent Advances in
Intrusion Detection. Springer, 2003, pp. 36–54.

[24] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “A hierar-
chical som-based intrusion detection system,” Engineering Applications
of Artificial Intelligence, vol. 20, no. 4, pp. 439–451, 2007.

[25] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian Journal of Mathematics, vol. 8, no. 3, pp. 399–404, 1956.

[26] “Internet2’s network topology,” https://www.internet2.edu/media/
medialibrary/2013/07/31/Internet2-Network-Infrastructure-Topology.
pdf.

