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Abstract—Smartphones and tablets are now ubiquitous in
many people’s lives and are used throughout the day in many
public places. They are often connected to a wireless local area
network (IEEE 802.11 WLANs) and rely on encryption protocols
to maintain their security and privacy. In this paper, we show
that even in presence of encryption, an attacker without access
to encryption keys is able to determine the users’ behavior, in
particular, their app usage. We perform this attack using packet-
level traffic analysis in which we use side-channel information
leaks to identify specific patterns in packets regardless of whether
they are encrypted or not. We show that just by collecting and
analyzing small amounts of wireless traffic, one can determine
what apps each individual smartphone user in the vicinity is
using. Furthermore, and more worrying, we show that by using
these apps the privacy of the user is more at risk compared to
using online services through browsers on mobile devices. This
is due to the fact that apps generate more identifiable traffic
patterns. Using random forests to classify the apps we show that
we are able to identify individual apps, even in presence of noise,
with great accuracy. Given that most online services now provide
native apps that may be identified by this method, these attacks
represent a serious threat to users’ privacy.

Keywords—Wireless, side-channel attack, privacy, smartphone
applications, machine learning, random forest.

I. INTRODUCTION

Currently 167.9 million people in the U.S. own smart-
phones (69.6% of mobile subscribers) [3] and 42% own
tablets [17] and the numbers are increasing fast. In US, mobile
devices have overtaken the PCs’ internet usage and now they
make up 55% of the internet usage [3]. Most of this traffic is
generated by apps as they have become more and more popular
on smarthphones: by 2013, more than 60 billion iOS apps have
been downloaded and both Apple app store and Google play
store have over one million apps available [17]. Popular apps
like Facebook are used by a large number of users (74.1%)
[3]. These applications provide native support for a wide range
of services like browsing, chatting, social networks, streaming
audio and video, etc., and offer a faster and simpler interface
than their web-based counterparts.

Given that mobile devices rely on wireless connectivity,
they can be highly susceptible to security and privacy risks as
malicious attacks are more severe in wireless, e.g., wireless
local area networks (WLANs) than wired environments.These
networks typically employ encryption technologies such as
WEP, WPA, and WPA2 to prevent unauthorized access to
the network traffic. However, these techniques cannot protect
the traffic from all types of attacks. In [25], for example, the

authors, through analytical techniques, infer the general type
of online activity performed, such as browsing and social net-
works. Traffic analysis can achieve this by employing packet-
level statistical information (MAC layer) such as average
packet sizes, packet size distributions, and average inter-arrival
times to find identifiable patterns of traffic.

While knowing what kind of activity a user might perform
is already useful for all kinds of malicious behavior, we
argue that knowing the specific apps used is an even more
serious privacy & security concern. For privacy, in its simplest
form, an attacker simply aims to monitor a victim’s activities.
Some apps such as health monitoring apps and dating apps
can be particularly privacy sensitive. Detailed information
about app usage can also be used to design more targeted
attacks. For example, after discovering that a victim uses a
particular job hunting or health app, the attacker may issue
phishing attacks by emailing the victim and mentioning fake
job opportunities or a potential treatment to a certain disease.
For security, although wireless communication reliability can
be effectively improved [18], according to [10], Android Virus
Detectors (AVDs) are nullified by the android system during
engine update, leaving the device exposing to severe threats.
A malicious attacker can take advantages of this vulnerability
more efficiently if this attacher is aware of the types of
AVDs utilized by the user. Moreover, home security systems
controlled by smartphones are in threat of leaking information
about the presence of the owner to attackers, and may even
fail in alarming the owner when attacked by a malwares
[26]. Finally, many companies are already tracking customer’s
movements and behavior based on the MAC address of their
smartphones and their credit card usage. A more severe case
might be an insurance company collecting information about
users using a specific health monitoring app which in turn can
affect the premium they pay.

In this paper, we show that it is possible to determine
the particular apps a victim is using even if encryption is
in place and the attacker has no access to the encryption
keys. We perform this attack using packet-level traffic analysis
in which we use side-channel information leaks to identify
specific patterns in packets regardless of whether encryption
is used or not. We argue that using apps on mobile devices
generates distinct and identifiable traffic patterns resulting in
serious privacy concerns. We also compare app usage with
using the same services through a web browser. While traffic
generated by an individual is quite unique and thus, traffic from
different apps have a good potential to be distinguishable from
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each other, we show that using a service through a browser can
be more blurry and does not generate the same traffic patterns
as the corresponding apps. However, by being smart of how
we train web-browser activity, we are able to also detect the
corresponding services used. Another contributing factor, that
makes detection of user activity on smartphones and tablets
easier, is that unlike desktop computers, most smartphone and
tablet users work with one app at a time and multi-tasking is
fairly limited. Furthermore, to infer usage patterns, we show
that only a short-term analysis of the traffic is sufficient.

In particular, this paper uses machine learning techniques
based on random forest (RF) to determine app usage of mobile
users. We propose a mechanism to build the forest based on
training data that contains packet-level statistical information
of a predefined set of applications. By using this technique we
are able to classify known apps with considerable accuracy.
We also have high true positives for each individual app. For
the purpose of this paper we use a wide range of applications,
covering various categories including browsing, gaming apps,
social networking, multimedia, dating, financial and medical.

In summary, the contributions of this paper are as follows:
• We show that inferring behavioral patterns on s-

martphones and tablets based on packet-level traffic
analysis of encrypted messages is possible and only
requires logging the traffic for a short period of time.
No vulnerability in the encryption or the OS is needed
to derive the information.

• We infer the exact apps a user is utilizing (vs. simply
determining the general category of use like browsing)
which leads to significant security concerns, as such
detailed information can be used for more severe
attacks.

• Our approach is based on random forest and it is able
to detect a wide range of apps with good accuracy.

The rest of this paper is organized as follows: Section II
covers the related work. In Section III we introduce the traffic
features used for our meachine learning approach as well as
describe the apps we consider. Section IV presents an evalua-
tion of our solution, including an analysis of the accuracy and
true positive rates in our system as well as the various features
of the different apps considered. We also consider the case
of accessing content through browsing and the existence of
noise. We further provide potential countermeasure for attacks
taking advantages of side-channel information leaks, conclude
the paper in Section VI.

II. RELATED WORK

Most of today’s cellular and wireless networks use encryp-
tion to protect users’ privacy, making it substantially more dif-
ficult for attackers to violate users’ privacy via decrypting their
messages. However, by using patterns in the encrypted traffic,
one can infer private user activities such as web browsing
[12, 20], spoken phrases [22], motion and location [11, 14],
identification [19], and behaviors [4, 25]. The features of
encrypted traffic used for privacy attacks are often referred
to as side-channel information leaks [2].

Study of side-channel attacks specific to smartphones and
tablets has been fairly limited in research on side channel
information leakage. Built-in sensors in smartphones have

been utilized to extract usage patterns of applications [7].
Mobile devices have to rely on wireless communications
making them particularly vulnerable to wireless traffic analysis
attacks. 3G side-channel information has been used to reliably
identify smartphone usage [19]. In addition, data caps, speed
limits, and coverage problems often make most mobile users to
prefer WLANs, when they are available. WLANs are similarly
vulnerable to traffic analysis attacks [25].

Inferring behavioral patterns of users in different contexts
depends on a range of techniques to reveal distinctive user
patterns according to the gender, economical, and personal
habits [4, 19, 25]. These techniques generally rely on using
the statistical features contained in the encrypted traffic, to
identify users’ identity or their behaviors. However, there
exist immense diversity in users’ smartphone usage patterns
[9] making the identification complicated. More concretely,
people use smartphones at different times during the day,
with different frequency and duration, and conduct different
interactions with different web services. Therefore, designing
a scheme suitable for analyzing all users’ smartphone usage
behavior will be impractical. However, when viewing from the
app side, the diversity doesn’t hold since for each single action
when using a particular app, the statistical patterns do not show
great diversity. Research on side-channel information analysis
shows promise for handling this case.

[4] utilizes side-channel information leaks to infer users’
actions when using three popular smartphone apps. Since their
work is targeted on encrypted TCP/IP traffic, the authors can
identify the traffics generated for each specific apps based
on the source and destination IP addresses, especially by
reverse resolution to identify the web servers. The analysis
is carried on TCP sessions, as a result, the statistical features
of the transmitted packets can be well discovered given that
there is little noise within each session. However, the authors
only tackle a few different actions corresponding to a limited
number of apps. Considering the countless number of actions
in apps in today’s online stores and their diversity, this work
cannot be easily scaled to a much larger number of app usage
analysis. Research work in [19] uses a similar approach to
generate device fingerprints for smartphone users by collecting
and analyzing the traffics generated by several popular apps.
The authors use a burst of traffic as the fundamental entity,
which can be extracted and divided into samples using a
predefined time length threshold. Although this separation can
handle the diversity in app usage, this approach cannot infer
the correlation of successive packets, given that most users use
smartphone apps continuously. In [25], a wireless MAC-based
approach has been developed for inferring laptop users’ online
activities regardless of the encryption techniques used in the
WiFi network. Machine learning methods are used to classify
eight common online activities.

Defending against these attacks can be hard and expensive.
For example, in order to thwart these attacks [24] proposes em-
ploying virtualized MAC addresses to confuse the adversary’s
analysis. However, the solution is more suitable for using a
WiFi connection on a PC (further discussed in Section V).

It is a common practice to pre-process the collected traffic
from smartphone apps. The pre-processing procedures such
as dynamic time wrapping (DTW) method [4, 14], sliding
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window [25] measure the similarity, mutual information, or
correlations between traffic samples in order to extract more
hidden features or eliminate irrelevant features. When it comes
to selecting classification methods, classical machine learning
methods are more commonly employed (e.g., neural networks,
support vector machines, Bayesian techniques, and Hidden
Markov Models [5, 15, 25]). Since traffics collected are
encrypted, they cannot be easily separated according to their
sources or destinations IP address. As a result, more noise can
be expected to be mixed in the collected traffics, in term of
traffic belonging to concurrent and irrelevant apps (e.g. apps
running at the background that generate syncing message or
continuously stream data). Hence, the classification methods
selected should also be capable of handling rather noisy traffic
logs. Random forest (RF) [4, 21] has been recently utilized for
this purpose and similar to [4, 21], in our work, we also employ
random forest for classification. Additionally, we exploit RF
for further evaluating the importance of extracted features,
which can shed a light on potential countermeasures for traffic
analysis attacks based on side-channel information leaks.

III. DESIGN OF ARCHITECTURE

A. Adversary Model
We consider a common scenario where a malicious attacker

aims to infer personal online activities of users. The attacker
sniffs the encrypted traffic on the same WLAN channel as the
access point (AP) to collect the traffic necessary to perform
further pattern recognition analysis (Fig. 1). This type of attack
can be applied to most encrypted wireless environments, e.g.,
a neighbor’s WLAN, coffee-shops’ networks, etc. In order
to perform the attack against a known user, we assume that
we should have the user device’s MAC address. However,
if not, the MAC addresses from collected traffic may be
looked up in organizationally unique identifier (OUI) lists,
which would help identify the user’s device and the user
himself. Furthermore, wireless localization techniques can also
determine location of the user and identify him [16].

Access Point

Smartphone

Smartphone

PC

PC

MAC 
address 
filtering

OUI lists

Look up MAC 
address

Adversary

Fig. 1. Common Adversary Model of Side-channel Information Leaks.
Assume that the adversary locate within the same area as the target does,
where is covered by the same WLAN network. Hence, the adversary can
utilize the OUI list to match the collected MAC address and the target’s
device, then filter out irrelevant MAC addresses.

B. Wireless Traffic Collection
An attacker can gain substantial information if he has ac-

cess to the same WLAN network as the target does, therefore,
we assume that attacks based on side-channel information
leaks are only used when the adversary does not have access to
the encrypted WLAN. In this paper, we collect data from dif-
ferent WPA2-encrypted environments like at home or campus.
WPA and WEP offer weaker forms of encryptions and would
be similarly susceptible to these attacks. While here we focus
on WLANs, we believe similar attacks should be possible in
cellular networks with relative ease [19] as well. The wireless
card is put in monitor mode to collect all the wireless traffic
between hosts and the access point and a popular sniffing tool
like Wireshark or aircrack-ng is used to collect the traffic and
perform network protocol analysis. In order to perform the
classification analysis the attacker filters the traffic collected
according to the target’s MAC address.

1) App Selection: We consider apps from iOS (with pre-
liminary results from Android). Since both ecosystems heavily
rely on apps to provide many of the main functionalities of
the smartphone. In an attempt to ensure that we cover a wide
range of application types, we decides to select some of the
most popular apps covering a wide range of different app
categories including browsing, games, multimedia, online chat,
and social networks (see Table I). Thus, we show that our
attack can effectively detect a large part of current application
activity. However, we believe that the approach can be used
with any set of particular apps that would be of interest. In fact,
we believe that an attacker is most likely interested in a few
privacy sensitive apps and does not require a comprehensive
tool to analyze all the apps that exist in app stores. We further
discuss the impact of noise of apps unknown to the attacker
in Section IV-D.

Note that in this paper we focus on detecting individual app
use and not whether the user uses any kind of app within a
certain category. We believe that while determining a category
might be beneficial by itself, determining individual apps
provides more power to the attacker. Furthermore, it might
actually not be that easy to just determine the category. Dif-
ferent apps in the same category can have very different traffic
patterns. For example, Twitter and Facebook both belong to the
social network category, however, given the different content
they receive from web servers, one being mostly small text
messages and the other containing many pictures, the resulting
traffic pattern is very different. Therefore, an analysis on an
apps-basis is more appropriate. Detecting new apps from the
same category as a known app is not necessarily possible and
each app has to be individually analyzed. For any other apps
out of the scope of our consideration, the system should ideally
indicate that it is an unknown app.

2) Data Set and Feature Extraction: We run each app of
interest for sufficient monitoring time (300 seconds, in Section
IV-B) and collect the traffic information that is then fed into
our machine learning approach. This analysis learns each app’s
traffic pattern, signature, in order to maximize the accuracy of
the detection.

When using an app, each action, e.g. publishing a post
on Facebook, loading a video on Youtube, or messaging via
Facebook Messager will initiate a sequence of traffic flows
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TABLE I. ACTIVITY CATEGORIES, CORRESPONDING APPS AND
ACTIONS

Categories Applications Actions

Browsing Chrome(CH) Loading text, pictures
and streaming

Gaming Boom Beach(BB) Gaming action

Multimedia YouTube (UTB),
Songza(SON) Streaming

Online
Chatting

Facebook Messenger (FBM),

Tecent QQ (QQ), Snapchat (SN)

Sending and receiving
text, pictures

Social
Network

Facebook (FB),
Twitter (TW)

Posting, messaging,
adding contact,

loading text, pictures
Dating Tinder (TD) Loading pictures

Financial Mint (MT) Configuring account,
loading text, pictures

Medical CDC News (CDC),
Medscape (MED) Loading text, pictures

between the source (e.g. a smartphone) and destination devices
(e.g. a switch). This sequence of traffic flows can be repre-
sented by a burst, which consists of many frames aggregated
densely within a certain observation period, as shown and
discussed in Fig. 2. These bursts are often generated by the app
that is currently being used rather than background processes.
Therefore, in our approach, we only use messages during
bursts when we prepare our initial training set. Similarly, when
we run the analysis on the test datasets, we first clean that
dataset to only contain messages within bursts. We believe
that with this we can effectively reduce the noise generated
by apps that run in the background.

Each burst collected is comprised of WPA2-encrypted
frames. In order to extract more samples for future analysis,
as well as better exploration of the statistical features hidden
within the frames, we employ a sliding window scheme that
narrows down the observation period to a much smaller scale.
Assume that a burst contains N frames, and we set the window
size to be W . Then we can extract N − W + 1 samples:
{1, . . . ,W}, {2, . . . ,W + 1}, . . . {N − W + 1, . . . , N}. The
traffic frames contained in each window are referred to as
‘samples’, to differentiate them from the original burst.

Using this larger number of extracted traffic samples, we
further pre-process the samples to obtain additional statistical
features hidden in the original logs: frame arrival time, frame
size, and direction (receiving or transmitting). We calculate
different distributions of frame sizes from both sending and
receiving transmissions. For each distribution of frame sizes,
we further obtain the average frame sizes, and the overall
deviation of frame sizes of this sample. We also calculate the
inter-arrival time between sequential frames for both sending
and receiving traffic. Similar to frame sizes, we compute
the average inter-arrival time for different distributions, and

TABLE II. EXTRACTED FEATURES FROM COLLECTED FRAMES

Number(Tx) Features (Tx) Number(Rx) Features (Rx)
1© Ave size 11© Ave size
2© Ave size (low 20%) 12© Ave size (low 20%)
3© Ave size (mid 60%) 13© Ave size (mid 60%)
4© Ave size (high 20%) 14© Ave size (high 20%)
5© STD size 15© STD size
6© Ave time 16© Ave time
7© Ave time (low 20%) 17© Ave time (low 20%)
8© Ave time (mid 60%) 18© Ave time (mid 60%)
9© Ave time (high 20%) 19© Ave time (high 20%)
10© STD time 20© STD time

TABLE III. EXTRACTED FEATURES FROM COLLECTED FRAMES

MAC address Company OS
24:E3:14 Apple iOS
24:F5:AA Samsung Android
00:1A:11 Google Nexus Android
00:09:2D HTC Android

the average and deviation of overall inter-arrival time of this
sample. Hence, in total, we have twenty features, ten of
which are for transmitting(Tx) traffic and the other ten are for
receiving(Rx) traffic. Table II lists all the extracted features.

C. Classification
An adversary needs information about the operating system

the victim is using before conducting effective traffic analysis.
As the adversary can identify the target via MAC address
filtering, he can further use the OUI list to guess the type of
device and operating system prior to using the classifier. Then
the attacker can train different classifiers for different operating
systems and use them according to the victims’ OS. Examples
of MAC address prefixes for several popular devices, and their
OSes are shown in Table III.

We employ random forests (RF) as the classification
method [1] using the open-source library scikit-learn. The
idea is to build a forest of uncorrelated decision trees for
classification (each class being an app). Given as the traffic of
an application to classify, the forest outputs the class that is the
mode of the individual trees, that is, the class that is returned
the most often over all decision trees in the forest. The set of
decision trees are built by selecting, at each candidate split,
a random subset of the features. It also considers different
sub-samples of the training data when generating the trees.
RF have a set of properties that make them particularly useful
for our classification task: (1) RF is an ensemble learning
method which can handle situations where substantial noise
exists in the dataset [6]. (2) Both variance and bias are
somewhat mitigated by using RF, given that RF averages the
results of all aggregated decision trees, which is known to
have a low bias. (3) RF is capable of providing evaluation
of feature importance, therefore, it not only eliminates the
necessity of feature selection, but also helps better understand
the significance of various statistical features. (4) RF provides
an internal unbiased out-of-bag (OOB) estimate [8] of the
classification performance on the fly. Thus the dataset can be
better utilized as a whole without splitting it as commonly
required by cross validation. (5) RF is faster than both bagging
and boosting, especially when using parallelization. In our
experiments, generating a forest with 30 trees took less than
a second.

IV. EXPERIMENTS

A. Experiment Setup
In this section, we present an extensive performance eval-

uation, looking at many aspects of classification performance.
First, we analyze the influence of the many parameters in our
configuration. We look how feature selection and importance
as well as the number of estimators (i.e., decision trees) can
influence performance. We also look at the impact of data
set pre-processing parameters such as the monitoring time T
and the window size W . Next, we discuss how services can be
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Fig. 2. Burst examples from using Chrome, Youtube and Boom Beach. The burst density for using Chrome is medium, which is closely related to the frequency
of conducting an action that will trigger a sequence of traffic flows. While burst density for using Youtube is considerably high, this can be attributed to its
streaming features when the loading of an online video is initiated. The burst density for Boom Beach can be regarded as sparse. This gaming app appears
to initiate traffic exchange rather infrequently. Note that the largest frame sizes are at 1500 Byte. In Chrome and Boom Beach, various frame sizes are used,
while in Youtube, a large percentage of messages has identical frame size. Therefore, an analysis that takes advantage of statistical features including frame
size, frequency of burst generation as well as the duration of intense and sparse bursts can be beneficial for effective traffic inference.

correctly determined whether they are accessed through an app
or through a web-browser. Finally we analyze the influence of
noise, that is what happens when multiple apps are running
simultaneously or there exist unknown apps.

The network environment in which we conducted the
experiments: (1) supports 802.11a/b/g modes, (2) is encrypted
by WPA2, and (3) maintains a stable rate varying from 48Mbps
to 54Mbps. In this section we focus on our results with iOS,
motivated by that fact that according to [13], iOS users perform
considerably more often online activities. In this section, we
describe the experiment results obtained on iOS systems to
show the effectiveness of our approach to infer app usage.

As classification performance metrics, we use the true
positive percentage of each class investigated, the overall
accuracy and the OOB estimate accuracy. True positive is
the percentage of traffic samples of a given class X that is
correctly classified to class X . The overall accuracy is the
percentage of correctly classified samples among all samples
tested. The OOB estimate accuracy is the unbiased estimate
of the classification performance obtained via bagging, which
is utilized by the RF method.

To collect the dataset, we randomly perform various actions
for all 13 apps presented in Table I. This reduces the chances of
relying on one user’s particular behavior pattern. The data set is
then split into a training set and a testing set with a ratio of 6/4.
As RF has a fair amount of randomness in selecting features,
the classification results might vary from time to time. Thus,
our figures show the average results of 1000 experiments.

B. Classification Performance
We analyze the classification performance under different

parameter configurations. The initial setup is as follows. The
monitoring time, that is the time we run each application and
collect the traffic, is 300 seconds. Window size is W = 10.
There are 20 features as shown in Table II, and the number of
estimators (decision trees) is set to Ne = 30. The classification
performance of this initial setting is shown in the black
histograms in Fig. 3. The following subsections then all look
at the performance when one of these parameters is changed.

In Fig. 3 (black columns), the first column shows the
OOB estimate accuracy, the second shows the overall accuracy
denoted as OA. The remaining columns show the true positives
for each class, denoted by the abbreviations used in Table I.
The OOB estimate accuracy and the overall accuracy are
92.37% and 93.96%, respectively. This result demonstrates the
effectiveness of using RF to classify the traffic generated by
smartphone apps. The worst true positive percentage obtained
is 87.23% for classifying samples generated by Boom Beach.
We assume that because Boom Beach generates traffic frames
with relatively low frequency and limited size, it is more
difficult to remove noise from the training and testing samples.
But overall, the results are very promising.

1) Feature Importance: The 20 features we extract reflect
different aspects of the traffic samples (e.g. feature 1© - 5©
and 11© - 15© are for frame sizing and the rest are for inter-
arrival time). Not all these features are equally important
regarding their influence on the classification performance. In
fact, having too many features might lead to overfitting in the
worst case. In this section, we analyze how RF cope with our
features.

Fig. 4 shows the feature importance values for the fea-

Fig. 3. Classification performance in terms of OOB estimate accuracy,
overall accuracy, and true positive for each class, for datasets with complete
features (black columns) and selected features (white columns). The lowest
true positive values (87.23% with complete features, 68.59% with selected
features) are for classifying traffic generated by Boom Beach.
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tures we extracted. We demonstrate the averaged (overall)
importance value over the data sets of all our apps, as well
as three example apps including Boom Beach, Facebook and
Youtube. We can see that the different settings differ in their
most important features. For example looking at the overall
feature importance values, the six most important features
are the average size of all frames (feature 1©), average size
of smallest 20% frames (feature 2©), middle 60% frames
(feature 3©) and largest 20% frames (feature 4©) of transmitted
data, and the average inter-arrival time of the frames with
the lowest 20% intervals in both directions of transmitting
(feature 7©) and receiving (feature 17©). That is, transmitted
frame sizes are more indicative than received frame sizes but
for inter-arrival features both directions play a role, but only for
the fastest response times. The deviation between significant
and insignificant features are relatively large. For insignificant
features, 13 (out of 14) features have importance values lower
than 0.05. This might lead to the conclusion that eliminating
them might not lead to significant performance loss.

To analyze the importance of feature selection, we rerun the
classification experiments by only using the overall six most
important features. The classification performance is shown
in the white histograms in Fig. 3. In fact, for some apps,
the performance is nearly the same as when considering the
full feature set (e.g, 1.73% difference for Youtube). However,
for others, there is a considerable performance loss (up to
21.38% for Boom Beach). The reason is that the average
feature importance does not reflect perfectly the importance of
certain features for a particular application. In particular, Fig.
4 also shows that that Boom Beach’s most important features
differ from the average. For instance, overall and for Youtube,
frame size is not an important feature of received traffic while
it has more importance for Boom Beach.

As a conclusion, we can see that removing features with
overall little importance can lead to considerable performance
loss. Thus, it is important to keep all features. By using RF and
generating many decision trees, we can exploit all the features
when needed, and at the same time avoid overfitting for those
applications where the features are not relevant.

2) Influence of the Number of Estimators: The number
of estimators Ne used when building the RF can influence

Fig. 4. Feature importance of the overall result, apps including Boom Beach,
Facebook and Youtube.

Fig. 5. Influence of number of estimators on overall accuracy. The overall
accuracy converges to around 94% when the number of estimators exceeds
20. As a single estimator already provides an accuracy of 80% we can see
that decision trees are a good approach for traffic analysis of mobile apps.

the classification performance, in that both the strength of
each independent estimator and the correlation between any
two estimators are closely related to Ne. The strength and
correlation together influence the generalization error, which
has been proved to converge to a limit as Ne increase [1].

In this experiment, we vary Ne from 1 to 100, while
keeping all other parameters to the base value (20 features,
W = 10, T = 300s). The result is shown in Fig. 5. We can see
that the overall accuracy improves rapidly when Ne increases
from 1 to 10. When Ne exceeds 20, the overall accuracy starts
to approach a stable limit around 94%. This result indicates
that a proper selection of Ne can achieve a sufficiently high
accuracy, while saving much computational efforts.

3) Influence of Monitoring Time: In this experiment, we
explore the influence of monitoring time on the classification
performance. We aim at investigating how long we have to
observe the app use before we can achieve a high classification
accuracy. We set T = 50s, 100s, 200s, 300s, and show the
results in Fig. 6. Interestingly, while for some apps (e.g.
Chrome, Youtube, Facebook), the overall accuracy slightly
improves or remains unchanged with increasing T , longer
monitoring times have actually a negative impact on other apps
(e.g. Mint, Tinder, CDC News). We can explain this by the
additional noise introduced by longer monitoring times. This
noise appears to be more detrimental for apps that have limited
traffic such as Boom Beach, Mint, CDC News, etc.

Thus, we derive from Fig. 6, that T = 100 is likely the
best monitoring time. Clearly, this is a sensitive parameter and
there is no obvious best solution. An attacker might have to
adjust the monitoring time depending on the applications he
wants to detect. But what becomes clear is that only very little
observation time is needed before an adversary is capable of
predicting the app traffic with high accuracy. It shows that RF
allows for an effective online app usage attack.

4) Influence of Window Size: In the pre-processing step of
our approach, we divide the original traffic into more samples
using a sliding window of size W . A larger window size
means each sample will contain more frames within itself, and
therefore has a higher chance of covering frames with various
sizes. This might lead to some (burst) features to be less
distinctive (e.g. neutralize the sparse bursts of Boom Beach as
shown in Fig. 2). Meanwhile, a smaller window narrows the
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observation to a few frames, possibly leaving the classification
more vulnerable to noise.

Thus, in this experiment we vary the window sizes between
W = 5, 10, 20, 30 to demonstrate its influence on the true
positive values of each class. The same W values are used
in both training and testing procedures, as W determines the
number of frames contained in an aggregated sample. We show
the true positive for each class in Fig. 7. We can observe that
the true positive values for all classes improve gradually as
W increases. At W = 30, all apps can be correctly identified
with accuracy values of more than 85%.

Therefore, this result implies that when the traffic is
aggregated to larger samples, the averaged statistical features
are less affected, and as a result the statistical distribution
of frames is closer to the real average values. This can be
further explained by considering the traffic as time series data.
Commonly, a smartphone user operates an app for much more
than the window size. Therefore, a larger window size not only
covers the statistical features of the current sample, but also
captures the correlation between successive samples, therefore
the actions related to a single user operation can be more
coherently contained in the samples. However, this does not
mean that the W can be arbitrarily large. There is negative
linear correlation between the number of samples and window
size. A larger window size leads to less training samples.

Again, among all thirteen apps, Boom Beach has the lowest
true positive percentages. To better interpret the results for
Boom Beach, Fig. 8. shows the classification probability distri-
bution for Boom Beach (it shows for each app, the probability
that a Boom Beach test data set is classified to be one of these
apps). Although a data set is correctly classified as being Boom
Beach less than 50% of the time when W = 5, the probability
for recognizing the traffic as originated from Boom Beach still
dominates the distribution. Again, the background noise might
overshadow the actual Boom Beach traffic patterns. When W
increases from 5 to 30, the true positive percentages reaches
86.98%.

C. Browser vs App
Compared to laptop or desktop users, smartphone users

tend to use apps instead of accessing the corresponding web-
sites with their browsers. This holds true in particular for social
apps such as Twitter and Facebook. In this section, we want

Fig. 6. Influence of monitoring time on true positive values. There is no
clear patterns. Accuracy might slightly increase, remain the same or degrade
with longer monitoring times.

to analyze whether the network traffic generated by a service
used through a browser is similar to the one generated by using
the corresponding app. If yes, our classifier only needs to be
trained on the app, and would still correctly classify traffic
generated when using the same service through a browser. To
do so, we use test traffic generated by accessing Facebook
and Twitter through Chrome to test the classifier. The result in
term of classification probability distribution for both services
is shown in Fig. 9. We can observe that our classifier is able to
correctly determine the service to some degree. For Facebook,
our classifier correctly assigns the traffic to belong to Facebook
with a probability of 30%, and wrongly decides on Songza
and Twitter around for 17% of the samples, and less on the
other apps. For Twitter the classification is correct up to 40%
with the second highest, wrong, classification (YouTube) being
around 13%.

We conclude from here, that the traffic, at least for these
two services, looks to some degree different depending on
whether it is generated by an app or through a web-browser
interface. Thus, further measures have to be taken to detect
different services used within a web-browser. One option is to
handle “using Facebook via the browser” and “using Twitter
via a browser” as simply yet further apps whose traffic patterns
will be learned via a learning data set and the classes integrated
into our RF. Indeed, this approach leads to very good results as
shown in Fig. 9. Our test data set on Facebook via the browser
is correctly classified with a probably higher than 70%, and
and is classified with a probability of more than 10% to be
generated by the Facebook app. For Twitter the results are
even better.

D. Influence of Noise
App traffic can be contaminated by different types of noise.

First, a user can use several apps at the same time. For
example, a smartphone user can listen to music while using
Facebook. Hence, the testing samples will contain messages
from different apps, and thus, as a whole, do not follow the
traffic pattern of any one of training data sets. Similarly, the
traffic might contain flows generated by apps that are not
included in the training set when building the classifier.

We don’t think it is possible or desirable to build a classifier
that effectively classify all these cases. First of all, there

Fig. 7. Influence of window size on true positive values. While accuracy
varies considerably among apps at small W = 5, at W = 30, true positive
values for all classes are more than 85%. This implies that taking W = 30
can be considered as sufficient to achieve high classification accuracy.
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Fig. 8. Classification probability distributions for Boom Beach with varying
window sizes. At low window sizes, Boom Beach is relatively often misclas-
sified as CDC, Tinder, or Songza and only correctly classified less than 50%
of the times.

Fig. 9. Classifying using social networks on browsers vs. apps. Our classifier
trained on app traffic (top figure) is able to detect Facebook activity through
the browser with a success rate of close of 30%. For Twitter the positive
value percentage is over 40%. This shows that the traffic generated through
a service app is considerable but not completely different to the traffic of this
service through the web-browser. Considering browser activity as independent
apps (bottom figure) provides much better accuracy.

may be too many combinations of concurrent apps when
the number of known apps are large. Secondly, new apps
are appearing continuously, and older apps are becoming
unpopular rendering them unimportant. Thirdly, any given
attacker is likely only interested in a small subset of apps. As
a result, the attacker would not be interested in maintaining
and updating a very large database of apps, keeping up with
traffic pattern changes and the resulting necessary updates to
the classifier. Therefore, an effective and efficient inference
method should be capable of identifying that a given traffic
pattern does not belong to any of the apps under consideration.

Ideally, the testing data is not clearly classified to any
particular application considered in the RF because this would
lead to a false positive. Instead, different samples should be
categorized by the classifier to belong to a number of different
known apps. By having the tested data assigned to a wide range
of apps, the attacker can derive that there are unknown apps
or noise caused by concurrent apps.

We tested our classifier by running the following tests. For
the detection of concurrent apps, we chose three combinations
of apps, (1) music streaming app Songza and social app
Facebook, (2) online chatting app Facebook Messenger and
social app Snapchat, (3) unknown app Rdio and financial app
Mint. These combinations include apps with large frame size,
i.e. Songza and with medium frame size, i.e. Facebook, apps
where both have small frame size, i.e. Snapchat and Facebook
Messenger, and a combination of known app Mint and un-

Fig. 10. Detection of Unknown and Concurrent Apps.

known app Rdio. For detecting unknown apps, we collected
traffic from Rdio, Yelp, and LinkedIn, which were not included
in our training samples. The probability distributions of all
noisy cases are shown in Fig. 10.

As we expected and hoped, the probability distribution of
unknown apps are spread across many of the known apps.
An exception is Rdio which is mostly identified as YouTube.
This may be due to the fact that both Rdio and YouTube are
streaming apps. However, in the cases of LinkedIn and Yelp,
the highest probability for being classified as one of the known
apps is less than 20%. A similar pattern can be observed in
the case of concurrent apps.

V. DEFENSE MECHANISMS

The research on defense mechanisms against side-channel
traffic analysis techniques is limited. While methods such as
traffic padding and traffic morphing [23, 24] can battle these
attacks they typically have high overhead problems even for
computers and are not particularly suitable for less powerful
mobile devices. Therefore, specific solutions are needed to
effectively prevent traffic analysis attacks in mobile devices.
One possible solution is to develop more intelligent scheduling
algorithms for message transmission. This could be realized
by delaying the transmission of packets from time-insensitive
apps. Since the inferring of users’ activity is dependent on
analyzing the statistical features of the generated traffic, in-
telligent scheduling can break easily identifiable patterns of
traffic. In addition, as shown in the experiments, the detection
of several concurrent apps is not as effective. Thus, by running
multiple apps simultaneously, or combining their traffic with
other apps more noise can be added to traffic.

VI. CONCLUSION

In this paper, we focus on the problem of side-channel
information leaks in mobile systems. Here we show that these
attacks, relying only on wireless traffic analysis, against mobile
users are possible and we develop machine learning algorithms
to verify the possibility of inferring users’ online activities
by analyzing packet-level traffic, even when the traffic is
encrypted. These attacks are hard to defend against since
they are not the result of security vulnerabilities in the OS
or apps and the defense mechanisms are fairly limited and
generally have a high cost. Furthermore, several aspects of
mobile devices, like their reliance on native apps and limited
multitasking, make it easier to perform traffic analysis attacks
as they result in more identifiable traffic patterns. These attacks
have a high accuracy and can be used in monitoring of a
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victim’s behavior or to perform more targeted attacks based
on their specific usage (such as detection of spoken words
if a VoIP app is detected). A wide range of experiments are
done to verify the feasibility and accuracy of these attacks and
we believe that these attacks can be further used in different
wireless networks including cellular networks and detection of
new apps can be fairly easily added to the system.
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