Medium-Scale Integrated Circuits
Using a 74LS151 (8-to-1 multiplexer) to Implement
a Function of Four Variables
Row |
W |
X |
Y |
Z |
F(W,X,Y,Z) |
Input |
0 |
0 |
0 |
0 |
0 |
0 |
|
1 |
0 |
0 |
0 |
1 |
0 |
D0 = 0 |
2 |
0 |
0 |
1 |
0 |
0 |
|
3 |
0 |
0 |
1 |
1 |
1 |
D1 = Z |
4 |
0 |
1 |
0 |
0 |
1 |
|
5 |
0 |
1 |
0 |
1 |
0 |
D2 = Z’ |
6 |
0 |
1 |
1 |
0 |
1 |
|
7 |
0 |
1 |
1 |
1 |
1 |
D3 = 1 |
8 |
1 |
0 |
0 |
0 |
1 |
|
9 |
1 |
0 |
0 |
1 |
1 |
D4 = 1 |
10 |
1 |
0 |
1 |
0 |
1 |
|
11 |
1 |
0 |
1 |
1 |
0 |
D5 = Z’ |
12 |
1 |
1 |
0 |
0 |
0 |
|
13 |
1 |
1 |
0 |
1 |
1 |
D6 = Z |
14 |
1 |
1 |
1 |
0 |
0 |
|
15 |
1 |
1 |
1 |
1 |
0 |
D7 = 0 |
Using a
Decoder to Implement a Function
Decoder Example
1:
F(X, Y, Z) = PM(0, 2, 3, 5, 7) = Sm(1, 4, 6)
Enable the decoder.
Connect input variables X (MS), Y, and Z to address lines A2, A1, and
A0. NAND
decoder outputs 1, 4, 6 (this effectively OR’s the min terms of the same number
using DeMorgan’s Theorems.)
Decoder Example 2:
G(X, Y, Z) = PM(0, 3,
4)
Enable the decoder.
Connect input variables X (MS), Y, and Z to address lines A2 (MS), A1,
and A0. Use an AND
gate to combine decoder outputs 0, 3, 4 (the max terms).