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Figure 1: (a) Millimeter-wave device; (b) An example of handheld zigzag motion; (c) RGB image of a toy gun; (d) Its mmWave
image from sparse reconstruction; (e) cGAN system overview; and (f) Three different shape reconstructions.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; •Computingmethodologies→Ma-
chine learning approaches.

KEYWORDS
Millimeter-Wave, See-through Imaging, Generative Adversarial
Networks
ACM Reference Format:
Hem Regmi∗; Moh Sabbir Saadat∗; Sanjib Sur; Srihari Nelakuditi. 2021.
Poster: ZigZagCam: Pushing the Limits of Hand-heldMillimeter-Wave Imag-
ing . In The 22nd International Workshop on Mobile Computing Systems and
Applications (HotMobile ’21), February 24–26, 2021, Virtual, United Kingdom.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3446382.3448730

HAND-HELD MMWAVE IMAGING
The ubiquity of millimeter-wave (mmWave) technology in 5G-and-
beyond devices enable opportunities to bring through-obstruction
imaging in hand-held, ad-hoc settings. This imaging technique
will require manually scanning the scene to emulate a Synthetic
Aperture Radar (SAR) [4] and measure back-scattered signals. Ap-
propriate signal focusing can reveal hidden items and can be used
to detect and classify shapes automatically. Such hidden object de-
tection and classification could enable multiple applications, such
as in-situ security check without pat-down search, baggage dis-
crimination without opening the baggage, packaged inventory item
counting without intrusions, etc.
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Emulating SAR on a hand-held mmWave device, however, is
challenging for three reasons: (1) the hand-held device moves in a
non-linear trajectory; (2) the back-scattered signal shows localized
sparsity due to non-uniform scanning; and (3) the specular reflec-
tivity from some of the objects and its improper orientation w.r.t.
scan plane may only allow for a partial shape reconstruction (see
Fig. 1[d]). In this work, we propose ZigZagCam that aims to solve
the above challenges.

SPARSE RECONSTRUCTION AND MACHINE
LEARNING
To solve the challenges (1) and (2) above, we apply two well-known
techniques. First, to compensate for the non-linearity of the hand-
held trajectory, we add phase correction in the back-scattered sig-
nals to estimate the equivalent samples which would fall on the
closest point in the ideal, linear trajectory [4]. Next, to recover the
samples in sparsely sampled area, we apply a Compressed Sensing
(CS) based recovery framework [2]. Figs. 1(a) & (b) show our 77
GHz platform and an example hand-held zigzag trajectory. Figs.
1(c) & (d) show an example toy gun and its corresponding mmWave
image that we reconstructed at 1 m. stand-off distance.

The reconstructed image not only has a poor resolution but also
is missingmajority of the edges and parts due to specularity and low
reflectivity: Only a rough silhouette is visible (Fig. 1[d]). Clearly, the
resultant image would also lack important features for automatic
detection or classification. To improve the image quality, we are
inspired by the existing work in enhancing low resolution visual
images to high resolution using conditional Generative Adversarial
Networks (cGAN) [1, 3]. We propose to use cGAN to not only
improve the mmWave image resolution but also restore the missing
parts in it.

The high-level idea is intuitive. First, ZigZagCam trains a cGAN
framework by showing several examples of mmWave images from
sparse reconstruction and its corresponding ground-truth RGB
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images. Next, cGAN uses a “Generator” to learn the association
between the mmWave image to the ground-truth shape, and a “Dis-
criminator” that helps to teach better association at each epoch [3].
Finally, during run-time, when cGAN has been trained appropri-
ately, the “Generator” can estimate accurate 2D depthmap outlining
the shape without the ground-truth. In addition to the shape, we
also use a “Quantifier” framework that extracts other features of
the hidden object, like its orientation, depth, types, etc.

ZigZagCam’s cGAN is trained in dual stages: First, we train for
1000 epochs using a synthesized dataset of 8000 mmWave images
of various objects. Next, we fine-tune the model for additional
1000 epochs using 150 real mmWave images. Post training, we test
several real mmWave images without training their ground-truth
shapes. Fig. 1(f) shows three example shapes accurately predicted by
ZigZagCam under testing. Besides, our results indicate that ZigZa-
gCam can estimate objects’ depth and orientation with less than
5% error in more than 90th percentile. In the future, we will train

and evaluate ZigZagCam for shape reconstruction, classification,
features identification for more types of objects across different
environmental and hidden conditions.
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