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Fig. 1: mmBox predicts the bounding boxes from car and pedestrians from millimeter-wave reflected signals.

Abstract—Millimeter-wave technology’s unique advantages, in-
cluding low-light functionality, cost-effectiveness, and penetration
of small objects, make it perfect for outdoor object detection.
But traditional methods like likelihood clustering have faced
challenges in determining target objects’ extent and distance.
This work presents mmBox, a two-stage system tailored for
precise bounding boxes of vehicles and pedestrians outdoors. We
assess mmBox’s effectiveness through extensive testing in outdoor
street scenes using multiple metrics.

Index Terms—Millimeter-Wave; Object Detection.

I. INTRODUCTION

In recent years, the use of drones and autonomous driving
has expanded across various sectors [1], [2]. As the demand for
efficient navigation of drones and vehicles continues to rise,
researchers have directed their attention toward the generation
of bounding boxes for object detection. These boxes are
essential for tasks like object tracking, instance segmentation,
etc. [3]. [1] uses drones to detect cars from aerial images, while
another introduces the MV3D deep learning model for 3D
object detection in driving [2]. These accurate bounding boxes
can help in data collection, traffic monitoring, and accident
prevention. Although past studies have used cameras and
LiDAR for this purpose [1], they falter in low-light conditions.
LiDAR, being expensive and affected by outdoor interferences
like fog, is not always the optimal choice.

Fortunately, millimeter-wave (mmWave) signals in 5G-and-
beyond devices can penetrate minor obstacles, making them
effective in challenging outdoor environments and diverse
lighting conditions. Their high frequency and wide bandwidth
allow for compact, high-resolution devices. The prevalence
of mmWave in 5G-and-beyond devices also makes it a cost-
effective solution. While some studies like [4] utilize Point
Cloud Data (PCD) from high-resolution radar for 2D bounding
box estimation, their scope is limited, testing only on one
car. Both RODNet [5] and Radatron [6] employ deep learning
models using mmWave signal heatmaps for outdoor detection.
However, RODNet only predicts a likelihood cluster on the

heatmap, and Radatron lacks distance and height details of
objects.

We introduce mmBox, a two-tiered system that creates a
Range-Azimuth Heatmap (RAMap) using reflected mmWave
signals and subsequently predicts 2D bounding boxes for
pedestrians and vehicles, with depth details (see Figure 1).
Initially, the Static and Dynamic RAMap Generator captures
both stationary and moving objects. The subsequent fusion
model, the Multi-Scale Bounding Box Generator, extracts
features from both RAMaps to predict bounding boxes and
depths for various entities. By categorizing objects into dy-
namic and static RAMaps, mmBox assists the deep learning
model in distinguishing overlapping entities, especially with
increasing target objects. Additionally, mmBox offers three-
tiered predictions using unique anchors at each tier to align
with actual bounding boxes, effectively discerning features
based on object scale and device depth. For validation, we
utilized a standard mmWave device in outdoor settings like
traffic intersections. Our preliminary results demonstrate the
efficacy of mmBox in generating accurate bounding boxes with
mmWave signals.

II. SYSTEM DESIGN

A. Static and Dynamic RAMap Generator

mmBox introduces a module to produce static and dy-
namic heatmaps from raw mmWave signals, effectively dis-
tinguishing stationary and moving objects. These heatmaps
offer improved features compared to the sparse PCD method
[4], presenting more cohesive clusters. Processing the raw
reflections in mmBox involves 3 steps. First, Range FFT
is applied to convert time domain signals to the frequency
domain, capturing distance details. Second, Doppler FFT is
applied on varying chirps in a frame to differentiate between
stationary and moving entities. Finally, Angle FFT is applied
on signals from non-overlapping virtual antennas to derive
the azimuth angle from Range-Doppler data. From this, the
static RAMap arises from stationary object reflections, and
the dynamic RAMap from moving ones.979-8-3503-0322-3/23/$31.00 ©2023 IEEE
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B. Multi-Scale Bounding Box Generator

Feature Extractor: mmBox predicts bounding boxes by
fusing features from both static and dynamic RAMaps across
multiple scales. Initial heatmaps are sliced into four lower-
resolution images, maintaining and fusing distinctive features
from both inputs. Features from both RAMaps are fused,
passed through a Multi Layer Perception (MLP) to generate
multi-level feature maps, and further refined using Dark Block
and Spatial Pyramid Pooling (SPP) [7] to capture both global
and local object details.

Three-level Bounding Box Predictor: Since the bounding
box size of objects can be significantly varied with categories
and distance, the small objects in feature map might be ignored
with reducing size while large objects pretend to be easier
for extracting global characteristics by convolution filter in
reduced feature map. Therefore, we design this module to
predict different scale objects. The predictor takes use of 3
feature maps from Feature Extractor and finally outputs 3
scale predictions. The small size predictions mainly focus on
the large bounding box, while large-scale predictions con-
sider large bounding boxes more. In particular, this module
first upsamples small features, which include global object
features and concatenates with large features, which capture
more detailed local information. Then, it downsamples the
combination of all features and concatenates with every level
feature. Finally, MLP is applied to refine the features and
accurately predict bounding box with depth.

Predefined Anchors: Since the variety of bounding boxes
for different objects, directly predicting exact shape of vehicle
and pedestrian will cost a long time to converge. mmBox
proposes a predefined anchor-based prediction to speed up the
training process. K-means is applied to find 3x3 predefined
anchors from the height and width of ground truth. These
3x3 anchors are matched with 3-level prediction in 3 different
sizes. Therefore, the width and height of generated bounding
box can be calculated from the predicted offsets based on the
predefined anchors.

Loss Function: Directly comparing the predictor’s three-
scale outputs with ground truth isn’t effective due to distinct
error impacts at different levels. mmBox’s approach maps
ground truth boxes to three levels like predictions. This multi-
level mapping aids in evaluating the loss at each level using
several components: bounding box, confidence, classification,
and depth loss. The EIOU metric [8], which considers the
Intersection over Union (IOU), center points distance, and
difference of height and width, is applied to measure the loss of
bounding box. Classification, confidence, and depth loss use
Binary Cross-entropy (BCE) to quantify the difference with
the following loss function.

LEIOU = 1−IOU+
ρ2(b, bgt)

(wc)2 + (hc)2
+
ρ2(w,wgt)

(wc)2
+
ρ2(h, hgt)

(hc)2
(1)

where b and bgt denote the center point of predicted and
ground truth boxes, wc and hc represent the width and height
of the smallest enclosing box covering the two boxes, and w,

h, wgt, and hgt are the width and height of predicted and
ground truth boxes.

III. PRELIMINARY RESULTS

We employed a mmWave cascade device combined with
a ZED stereo camera to capture reflections, gray-scale im-
ages, and depth images in outdoor street scenes. Our dataset
comprises 10,440 training and 2,280 testing samples. An
example of our predicted bounding boxes on a gray-scale
image is depicted in Figure 1, where objects are accurately
encapsulated in green boxes with depth values indicated. To
evaluate mmBox’s performance, we computed various metrics,
as shown in Table I. Standard metrics in object detection like
Average Precision (AP) and Classification Accuracy (CA) are
utilized. To test the accuracy of the bounding boxes, we intro-
duce Average Center Distance (ACD), Average Height/Width
Ratio (AWR/AHR), and Average Depth Difference (ADD) for
assessing center alignment, size ratio, and depth prediction,
respectively. Notably, mmBox showcases remarkable precision
in object shape, position prediction, and depth estimation,
underscoring its practical application potential.

TABLE I: Performance analysis of mmBox.

CA AP50 ACD AHR AWR ADD (m)
Vehicle 100% 42% 20 pix. 0.998 1.009 0.80

Pedestrian 100% 24% 11 pix. 0.995 1.007 0.51

IV. CONCLUSION AND FUTURE WORKS

This work introduces mmBox, a system that processes
mmWave reflections to produce dynamic and static RAMaps.
These maps are then utilized by a deep learning model to
precisely delineate bounding boxes for vehicles and pedes-
trians. While our present version predicts bounding boxes
from a camera view, the generated heatmaps are from a top
view. Future enhancements will focus on creating camera-view
heatmaps and expanding mmBox to accommodate multiple
inputs for improved accuracy.
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