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Abstract—We propose mmSight, a system that enables Syn-
thetic Aperture Radar (SAR) imaging on handheld millimeter-
wave (mmWave) devices. SAR imaging requires precise device
self-localization or bulky motion controllers to reconstruct an
image, but standard handheld devices suffer from various pose
errors that cannot be addressed with traditional motion com-
pensation methods. mmSight uses the time delay of the reflected
mmWave signals across separated antennas to limit the pose
error and perform improved mobile mmWave imaging. Since
the mmWave signals are fundamentally limited by specularity
and weak reflectivity, even a perfect pose correction may not
yield a perceptible image. To this end, mmSight employs a
generative learning model to learn the relationship between
the imperceptible 3D image and a discernable 2D image and
automatically classifies objects into several categories. We show
that mmSight improves the structural quality of the mmWave
images from 0.01 to 0.92, and it can be leveraged to identify
several common hidden objects.

Index Terms—SAR imaging; Millimeter-wave; Pose Correc-
tion; Generative Adversarial Networks.

I. INTRODUCTION

Millimeter-wave (mmWave) imaging systems, such as those
commonly used for airport security, can image hidden objects
beyond obstructions, like clothing and packaging. Due to the
wavelength and propagation characteristics of the transmitted
signal, mmWave systems can provide information about object
material, orientation, size, and shape [1], without intruding
on privacy like optical cameras. 5G smart devices equipped
with mmWave transceiver arrays [2] could enable efficient
package and inventory accounting, through-wall imaging for
construction site surveying, disaster relief, and security checks.

Traditionally, mmWave imaging systems use the Syn-
thetic Aperture Radar (SAR) technique to produce through-
obstruction images. The SAR technique coherently combines
signals transmitted and received at different spatial locations
to produce a synthetic aperture for image reconstruction [3].
However, mmWave imaging for handheld 5G smart devices
has been difficult for two reasons. First, traditional SAR
imaging methods rely on carefully controlled movements
or prohibitively costly external motion capture systems to
yield a sufficiently focused image. A system with limited
motion tracking precision cannot take advantage of the fine-
grained properties of the mmWave signal, such as an object’s
specific shape, material composition, or orientation [4]. Most
smartphone self-tracking algorithms can only localize at the
centimeter-scale [5], which is below the millimeter-scale accu-
racy required for coherent mmWave imaging. Further, existing

algorithms cannot correct the large inaccuracies generated by
the device. Existing works have only been able to correct
unambiguous pose errors within λ

2 , which would not translate
to real handheld devices with pose errors several times the
system wavelength [6]. Approximating the handheld trajectory
through interpolation [7] also fails due to the characteristic
drift of the poses. Second, mmWave reflections might expe-
rience signal specularity [8] or loss in variable conditions,
which can eliminate high-frequency features, like edges, in the
resultant reconstructed image. So, even if the device-reported
poses were precise, the aperture sampling may not contain
sufficient views to illuminate the target.

This paper proposes mmSight, a system that addresses
image defocusing on handheld devices by leveraging the
mmWave signals and the antenna separation to correct the
pose inaccuracies. First, mmSight extends on previous methods
to use the known antenna spacing found on the mmWave
device and the motion of the scene’s background to deduce
the motion of the device. Since these existing methods alone
are not sufficient for 3D handheld motion, we address the
drift error using a novel method for accurate focusing. Then,
mmSight divides the pose trajectory into overlapping windows
and replaces the original, inaccurate vision-based self-tracking
poses with a new mmWave-based pose estimate. mmSight
corrects the global drift error by comparing mmWave 3D
images generated within the overlap region of two estimated
pose windows. Since the two poses are locally accurate, but
globally separated due to drift error, we apply a transformation
so that each 3D image closely coincides. Finally, mmSight
reconstructs the complete image with the newly corrected
poses and uses a machine learning framework to recover
features that could not be obtained through the pose-corrected
reconstructed images. We design a conditional Generative
Adversarial Network (cGAN) to learn the association between
imperceptible 3D voxels and the ground-truth object shape,
and a Classifier network to classify the object for common
applications automatically. These networks can be trained for
several applications beyond the objects shown in this paper.

We prototype mmSight using Commercial-Off-The-Shelf
(COTS) mmWave devices. Our results show that mmSight
reduces the median drift error from 5 mm to 1 mm, increases
the median Structural Similarity Index Measure, which mea-
sures the similarity of an image with 0 being least similar
and 1 being most similar, from 0.01 to 0.92, and achieves
∼98% object classification accuracy, even under occlusion.



Our main contributions are: (1) We design a millimeter-level
accurate device self-pose estimation method for the handheld
case by exploiting features of the target scene embedded within
mmWave reflected signals; and (2) We design a deep genera-
tive network to learn the missing high-frequency features in the
output mmWave images that are required for shape perception
and object classification. Our results show that mmSight could
also enable precise motion tracking for several applications,
such as VR/AR, device navigation, etc.

II. BACKGROUND AND CHALLENGES

A. Time Domain Back Projection for Image Reconstruction

SAR imaging uses the motion of an RF transceiver that
passes in front of a scene while transmitting and receiving
signals to produce a through-obstruction image. Common SAR
imaging systems transmit Frequency Modulated Continuous
Wave (FMCW) signals, which use a linear frequency sweep
to produce higher range resolutions according to c/2B, where
c is the speed of light and B is the bandwidth of the system
[9]. So, a system with a 77-81 GHz transmitter with a 4 GHz
bandwidth can achieve a range resolution of 3.75 cm. The
Time Domain Back Projection (TDBP) image reconstruction
algorithm is ideal for non-linear imaging geometries, such as
handheld motions, since it applies focusing to each discrete
location in the 3D image scene, known as a voxel, instead
of arbitrary depths [10]. TDBP requires prior knowledge of
the range-compressed mmWave signal and the corresponding
transceiver location. Additionally, each reconstructed voxel’s
location coincides with the coordinate system used for the
transceiver positions, so no transformation between the col-
lected poses and the voxel grid is necessary. TDBP image
reconstruction is defined as [11]:

C(p) =

M∑
m=1

S(m,∆R(m, p)) · exp

(
−j4π∆R(m, p) ·

fc

c

)
; ∀p ∈ P (1)

where M is the total number of transceiver frames, P is the
set of image voxels, S(m,∆R(m, p)) is the complex-valued
interpolated, range-compressed signal at a distance ∆R(m, p)
from frame m to voxel p. TDBP generates a complex-valued
datacube, C, and the absolute value represents the voxel
intensity of the target scene.

B. Challenges

Motion Error: TDBP requires sub-wavelength motion track-
ing precision for object focusing [12]. Without accurate posi-
tion measurements, each signal would destructively add during
the Back Projection sum (Eq. (1)). However, existing low-cost
handheld devices are incapable of generating poses within the
maximum allowable error required for mmWave imaging [13].
These devices are limited by the sensors used for self-tracking
– cameras are sensitive to poor lighting, scene homogeneity,
occlusions, etc. [14]. Figure 1 shows the effects of motion
error by comparing a ground truth optical image of a CD to
the mmWave image produced using the poses from a vision-
based self-tracking device. Clearly, there are no perceptible

Fig. 1: (a) Ground truth optical image; (b) Defocused mmWave image
using inaccurate device poses.

features in the output mmWave image, such as the hole or
overall shape of the CD.

Although autofocus methods for SAR imaging can over-
come phase errors caused by motion error, they are best suited
for far-field cases with known imaging geometry and can only
overcome small residual motion errors [15]. Other systems,
such as [7], have succeeded in using interpolation to eliminate
most motion errors caused by position inaccuracies, but the
significant drift errors cause the errors accumulate and cannot
be filtered out in vision-based systems.

Fig. 2: (a) Ground truth optical image of a scissor with plastic
handles; (b) Reconstructed mmWave image with accurate device
poses still cannot recover many key features of the object.

Signal Specularity and Diverse Imaging Geometries: Even
if the device poses were close to ideal, the reconstructed
mmWave image may lack high-frequency human-perceptible
features. During handheld motion, the hand may be biased to
certain regions within the aperture, causing highly sampled
regions to overpower lightly sampled regions in the recon-
structed image. Signal specularity may occur when objects
are not incident to the aperture plane, preventing the reflected
signal from returning to the receiver, so the target would be
invisible to the SAR system. Additionally, objects with a weak
reflectivity may not appear in the received signal. For example,
Figure 2 shows the reconstructed mmWave image of a scissor,
where the plastic handles are not visible even though the
synthetic aperture was sufficiently sampled.

III. mmSight SYSTEM DESIGN

Overview: mmSight improves motion tracking and SAR imag-
ing without using external tracking setups or costly motion
controllers. mmSight includes a mmWave transceiver and a
vision-based self-tracking device that move together in front
of a region of interest while collecting pose information and
mmWave frames. We propose a pose estimation method to
limit pose errors introduced by the vision-based self-tracking
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Fig. 3: (a) System overview of mmSight.

system. We use the antenna spacings on the mmWave device
to recover the velocity and position of the device. After the
new poses have been recovered, we apply an overlapping
window-based pose correction method to suppress cumula-
tive drift error. Even if the window-based pose correction
method succeeded to recover the ground-truth mmWave im-
age, the reconstructed image could still be imperceptible due to
weak reflectivity or surface specularity. We customize a deep
learning model, Conditional Generative Adversarial Network
(cGAN), as in [6], to recover a perceptible 2D image and
classify it into a series of objects with a Classifier network. The
cGAN learns the relationship between the imperceptible input
mmWave data and the appropriate ground-truth image. cGAN
discovers portions of the image missing due to specularity or
weak reflectivity after training. Figure 3 shows the overview
of mmSight. We now describe the design components in detail.

A. Velocity Estimation

Since vision-based sensor data from devices such as gyro-
scopes and accelerometers are susceptible to drift and noise,
mmSight uses the antenna spacing of the mmWave device to
produce a robust local motion estimate. We extend the methods
outlined in [16], [17] to produce a velocity estimate using
the time delay between separated antennas as the antennas
pass through each other’s trajectory, and integrate the velocity
to retrieve the position of the device. Different from existing
velocity estimation methods, we identify prominent points in
the reflection data to produce accurate velocity measurements
in the presence of highly reflective targets.

For a mmWave device with multiple antennas, the spacing
between 2 Tx and the 2 Rx antennas along the direction of
motion is H = (xt1 − xt2) + (xr1 − xr2) [16], where xt1 and
xr1 corresponds to the location of the Tx and Rx antennas for
a single channel along the direction of motion and xt2 , xr2
correspond to the Tx and Rx antennas for another channel.
Consider a device moving in the cross range (X) direction
with a single Tx located at xt1 and two Rx antennas located
at xr1 and xr2 . For two Rx antennas sharing a single Tx,
H = (xr1 − xr2). The two Rx antennas will experience the

most signal similarity once the device has moved a distance
of H/2 along the direction of the antenna spacing [16]. To
recover the velocity using the antenna spacing and reflected
signals, each received frame i from xr1 is cross-correlated with
M previous and M following (∀j ∈ [i −M, i + M ]) frames
received from xr2 .

The speed and direction at the ith frame can be determined
by identifying the jth frame which produced the maximum
value from correlation sequence. Then, the delay at the ith
frame is delay(i) = j − i. The velocity V (i) corresponds to
the speed of the mmWave device at the ith frame [16]:

V (i) =
H · fps

2 · delay(i) (2)

where fps is the frames per second at which the mmWave
device captures mmWave frames.

This method can estimate velocity along any direction with
an antenna separation. A faster framerate and a larger antenna
spacing will produce a more reliable estimate [17], so we
average the velocity estimates produced by the other available
antenna spacings on the device along a direction of motion to
produce a more robust velocity estimate.

Velocity Measurements of Similar Reflectors: Since the
velocity estimation relies on the cross-correlation of successive
signal measurements, it will not produce correct velocity
estimates in the presence of highly similar signals. In cases
where the signals are closely similar to each other, the delay
sequence may incorrectly fluctuate between extreme values,
or report the incorrect velocity altogether. For example, in
Figure 4, the mmWave device passes in front of a flat metal
surface. The velocity estimation method fails since the flat
surface contributes most to the cross-correlation, and each
signal is closely similar regardless of the tranceiver position.
Previous works such as [16] have used an optimization scheme
to recover correct poses based on surrounding samples, but this
does not work in the small-scale handheld scenario since the
device may pass by a bright object continuously and never
experience a change in channel response that can be used to
assume the velocity.
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Fig. 4: (a) Correlation delay plots showing multiple frames for a
device moving at a constant velocity; (b) Correlation delay plots with
bright reflectors removed.

Although the reflectors most prominent in the SAR data
contribute the most to the correlation, the surrounding envi-
ronment is still complex enough to carry information about



the change in signal reflection. We ignore higher intensity
contributions in the SAR data for velocity extraction. Fig
4 shows the new correlation plots after removing reflectors.
Removing the bright reflectors reveals a clear peak at the
correct delay value that can be used for robust velocity
estimation.

B. Window-Based Pose Correction

The poses collected from the vision-based self-tracking
device are insufficient for SAR focusing since they contain
significant local noise and global drift error. mmSight corrects
the poses to enable SAR focusing using the poses from the
vision-based self-tracking device as an initial estimate. We
apply an overlapping window-based pose correction method
to improve the poses and facilitate improved imaging in
two main steps: (1) mmSight addresses the local pose error
caused by rapidly fluctuating noise that causes the received
signals to combine during image reconstruction destructively.
(2) mmSight addresses cumulative drift errors that cannot be
solved by simply approximating the received pose trajectory.

Local Pose Correction: First, we produce velocity esti-
mates using the mmWave-based velocity estimation method
described in Section III-A so that each mmWave frame and
pose has an associated X and Y velocity, named V x and
V y , respectively. We additionally filter the poses so that each
sample is spaced by at least λ

4 , which is enough to the
satisfy spatial sampling criterion for image reconstruction [18].
This step improves the scene sampling for the final image
reconstruction so that regions with higher spatial sampling bias
(i.e., the hand tended to scan the same region several times)
do not overpower regions with fewer samples.

Next, we divide the collected data series of poses and
mmWave frames into overlapping windows with length D and
overlap size Q. For a given window, we use the vision-systems
pose X1 and Y1 at the start of the window as a reference. Then,
we directly integrate the velocity to get the position Xi+1 and
Yi+1 of the device from the correlation based method as:

Xi+1 = Xi +
V x
i

fps
; Yi+1 = Yi +

V y
i

fps
(3)

Since there is no range-axis antenna spacing to measure
motion along the Z dimension, we assume that the Z-axis
can be approximated by a constant line for a sufficiently
small window size. The proposed method works since the
user moves the device in a relatively straight line for a small
window interval, and the filtering approximations suppress the
immediately destructive noises.

Fig. 5: (a) Ground truth optical image. (b) Reconstructed mmWave
image before pose correction; (c) After pose correction.

Global Pose Error: Now, the poses are locally correct, i.e.,
successive mmWave reflections would not immediately add
destructively and could be used to generate locally coherent
sub-images. However, the approximated poses still accumulate
drift error that would cause the complete image to appear
defocused.

We reconstruct voxels using the new overlapping poses and
the TDBP Algorithm in chunks defined by the window size D,
producing two coherent 3D voxels. The first voxel is produced
using poses from Wn within the overlapping region Q, and
the second voxel is produced using poses from Wn+1 in the
same region Q. They are both produced using the same range-
compressed SAR data and should produce the same voxel if
the poses were correct. However, due to the cumulative drift
error, the voxels may be shifted from one another. While the
sub-images generated from each window are locally coherent,
they would still destructively sum during image reconstruction
due to this offset.

To correct the shifted windows, we register the generated
3D voxels within Wn and Wn+1, with Wn+1 as the moving
window to recover the transformation between the two image
voxels to limit the drift error across windows. We use the
Normal Distribution Transform (NDT) [19] to align each win-
dow with good results. Different from Iterative Closest Point
(ICP), NDT can be performed much quicker and considers the
global shape. This method is inspired by laser scan matching
[20], which finds the pose from two images by finding the
transformation between two separate images. However, for
our implementation, we are projecting the same mmWave
data with poses that vary slightly due to drift errors, so the
voxels should match. If the transformation to register Wn+1,
is the rotation R and translation T , then the new poses can
be written as [21]: (x∗, y∗, z∗) = (xin, y

i
n, z

i
n) ·R+ T , where

R is the rotation and T is the translation associated with the
transformation from Wn+1 to Wn for all i poses within the
window n.

We directly modify the poses for each window based on the
linear transformation needed to register the two images. The
windows are processed sequentially so that Wn+1 becomes
the fixed window for the moving window Wn+2 and so on.
Finally, we reconstruct the entire mmWave image using the
TDBP algorithm with the adjusted poses. Figure 5 shows ex-
ample mmWave images before and after recovery. The method
can reveal the object’s coarser features, such as boundaries and
shape.

C. Deep Learning-Based Image Quality Improvement

Even with perfectly accurate motion data, the mmWave
image reconstruction will still need to recover finer details lost
due to specular reflection or weak reflectivity. Additionally,
the registration-based pose correction method cannot recover
perfectly accurate poses since each window is approximated
and smoothed.

We train a conditional Generative Adversarial Network
(cGAN) [22] with thousands of examples of pose-corrected
mmWave voxels to reconstruct human-perceptible 2D shapes



and classify them into different categories. Different from pre-
vious cGAN implementations that generate images of automo-
biles [23] or that depend on reflection data motion-corrected to
a defined 2D grid [6], mmSight cGAN operates on mmWave
data from a mobile device with significant pose errors. The
goal of the cGAN is to learn the association between the
imperfect mmWave voxels and the ground-truth images that
are useful in several classification tasks. The cGAN teaches
a Generator G to generate a ground-truth human-perceptible
image from an input pose-corrected 3D mmWave voxel. The
Discriminator D improves the G-generated image by deter-
mining whether the input to D was fake (generated by G) or
real.

GAN fundamentals: GAN is a supervised learning method
that generates a new dataset by learning the patterns present in
the real input data. GAN includes two models: (1) Generator
G, which produces fake samples, and (2) Disciminator D,
which tries to determine if the samples that are produced by
the G are either real or fake. The GAN concept is described
as a zero-sum adversarial game, in which G tries to produce a
better sample to fool D, while D tries to identify whether the
input samples were fake, i.e. produced by G, or part of the
real data distribution [24]. But traditional GANs cannot restrict
the modes of the generated samples since they do not limit the
generated data domain. Thus, we propose to conditionally train
mmSight on ground-truth images to control the distribution of
data generated. The objective function for GAN is [25]:

min
G

min
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[logD(1−G(z))]

(4)

Where, pdata is the probability of the samples being drawn
from the real data, and pz is the probability of the samples
drawn from the generated dataset. The terms of the objective
function in Equation 4 represent the expected value of D to
identify a real sample correctly, and the expected value of D to
determine generated samples, respectively. These probability
values will be between 0 and 1. The entire network should
converge whenever D outputs a probability of ∼0.5, indicating
that the samples produced by G are indistinguishable from the
ground truth samples provided.
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Fig. 6: Overview of mmSight’s deep learning framework.

mmSight Learning System: mmSight includes a Generator
G and a Discriminator D that work together in the cGAN
architecture. The Classifier C uses the output 2D image to
predict supervised class labels automatically. Figure 6 shows
the machine learning model for mmSight.
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Fig. 7: mmSight’s Generator network architecture.
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Fig. 8: mmSight’s Discriminator network architecture.

Generator: The Generator G is responsible for converting
3D mmWave shapes into 2D shapes with human-perceivable
features. To achieve this, we use an encoder-decoder archi-
tecture [6], [26] which converts the 3D mmWave voxel shape
into a 1D feature vector through several 3D convolution layers
and an additional end flatten layer. The 1D representation
compresses the 3D mmWave shape so that abstract features
can be learned by the system. Table I shows the generator
network parameters. Since the object of interest only lies
in a few 2D slices of the reconstructed mmWave voxel,
the encoder-decoder architecture tends to compress the entire
reconstructed volume. G uses a skip connection following
[6], [23] that extracts the highest energy 2D slices from the
3D mmWave voxel to preserve the high-frequency features.
This connection is concatenated to the 2D deconvolution layer.
Figure 7 shows mmSight’s generator architecture.

Discriminator: The Discriminator D teaches G to generate
realistic 2D shapes through adversarial training. The main
goal of D is to increase the probability of D identifying
the fake samples from generated samples. Thus, D takes the
3D mmWave shape, and the 2D shape generated by G or
provided as ground truth to produce an output probability. D
uses similar encoder layers from G to convert the 3D mmWave
shape into a 1D feature vector. In place of the decoder layers
in G, D leverges several 2D convolution layers to convert the
2D shapes to 1D feature vectors with lengths equal to feature
vectors for 3D mmWave shape. Then, these two feature vectors
are cascaded together and fed into 2 fully-connected layers.
These layers output to a single neuron layer that outputs the
probability that the 2D shape is real or fake. Figure 8 shows
an overview of the mmSight discriminator architecture. Table
II shows the discriminator network parameters.

Classifier: mmSight recovers the 2D human-perceptible



TABLE I: Generator Network Parameters. 3DC: 3D Convolution (with batch normalization); 2DDC: 2D DeConvolution (with batch
normalization); Act. Fcn: Activation Function; LRelu: LeakyRelu; Output layer uses linear activation.

3DC1 3DC2 3DC3 3DC4 2DDC1 2DDC2 2DDC3 2DDC4 2DDC5 2DDC6 2DDC7 2DDC8 Output
Filter # 16 32 64 128 1024 512 256 128 64 16 8 1

Filter Size 6x6x6 6x6x6 6x6x6 6x6x6 4x3 4x4 4x4 4x4 4x4 4x4 4x4 4x4
Dilation 2x2x2 2x2x2 2x2x2 2x2x2 1x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2
Act. Fcn LRelu LRelu LRelu LRelu Relu Relu Relu Relu Relu Relu Relu Relu Linear

TABLE II: Discriminator Network Parameters. 3DC: 3D Convolution (with batch normalization); FC: Fully Connected; 2DC: 2D Convolution
(with batch normalization); Act. Fcn: Activation Function; LRelu: LeakyRelu; Output layer uses sigmoid activation.

3DC1 3DC2 3DC3 3DC4 FC1 2DC1 2DC2 2DC3 2DC4 2DC5 2DC6 2DC7 FC2 FC3 FC4 Output
Filter # 16 32 64 128 4 8 16 32 64 128 256

Filter Size 6x6x6 6x6x6 6x6x6 6x6x6 4x3 6x6 6x6 6x6 6x6 6x6 6x6
Dilation 2x2x2 2x2x2 2x2x2 2x2x2 2x2 2x2 2x2 2x2 2x2 2x2
Act. Fcn LRelu LRelu LRelu LRelu Relu LRelu LRelu LRelu LRelu LRelu LRelu LRelu Relu Relu Relu Sigmoid

TABLE III: Classifier Network Parameters. 2DC: 2D Convolution (with batch normalization); FC: Fully Connected; Categorical class output
layer uses softmax, and Binary output layer uses sigmoid activation functions.

2DC1 2DC2 2DC3 2DC4 2DC5 2DC6 2DC7 FC1 FC2 FC3 Category Output Binary Output
Filters # 4 8 16 32 64 128 256

Filter Size 4x3 6x6 6x6 6x6 6x6 6x6 6x6
Dilation 2x2 2x2 2x2 2x2 2x2 2x2 2x2
Act. Fcn LRelu LRelu LRelu LRelu LRelu LRelu LRelu Relu Relu Relu Softmax Sigmoid

shape from the pose-corrected mmWave voxel. mmSight can
be used to automatically classify real-life examples, which
would aid in several applications, such as discriminating
common objects for security purposes. We define 8 categorical
outputs including objects that may be found in an airport bag
(CD, scissor, box cutter, metal pen, screw driver, hammer,
metal mug, etc.) that may be useful to automatically clas-
sify. We propose a Classifier C that can be used for such
applications, which uses the predicted 2D shape from the
Generator G to classify the object automatically. C includes
7 2D convolution layers and 2 fully-connected dense layers.
In this implementation, we include 9 output classes, with 1
output designated for miscellaneous items that the network
had not seen. We can extend the classifier network to classify
more objects for several different use cases. Table III shows
the classifier network parameters.

cGAN Loss Functions: mmSight’s loss function must mea-
sure how well the 2D shape produced by G matches the ground
truth, including the shape quality. We use both the traditional
GAN loss L(G) [25] and the L1-norm loss L1(G) [27] to train
the cGAN networks. The traditional GAN loss maintains the
adversarial game with D and G. The L1-norm loss is specific
to this application and takes into account the pixel-to-pixel
differences between the generated images and the ground truth
images.

LcGAN = L(G) + λI · L1(G)

where, L1(G) = E‖x1 −G(z1)‖1
(5)

The Classifier network C loss Lclass leverages the LcGAN ,
categorical loss LC , and binary loss LB [6].

Lclass(G) = LcGAN + λC · LC(G) + λB · LB(G) (6)

The hyperparameters, λI , λC , and λB , affect the system’s
ability to perform accurate shape reconstruction with emphasis
on image perceptibility and classification.

IV. IMPLEMENTATION

Hardware: Since existing 5G smart devices do not have an
exposed programming interface to control and synchronize the
mmWave signals with other on-board hardware modules, we
prototype our design with hardware that emulates the sensors
available on camera-based self-positioning systems [28]. We
use the Intel Realsense T265 Tracking Camera [29], which
features two fish-eye lenses and a specialized vision processing
unit, for self-localization. The T265 is most susceptible to
drift along the Z-axis on the order of several millimeters
[30], similar to common smart devices, making it useful as
a testing platform. For mmWave signal collection, we use the
77-81 GHz TI IWR1443BOOST [31]. The IWR1443BOOST
has 4 Rx and 3 Tx antennas, which can generate up to
12 virtual channels using time multiplexing. Our FMCW
parameters include: Frequency slope: 70.295 MHz/µs, ADC
Sample Count: 256, Sampling rate: 5 Msps, Ramp duration:
60 µs. These parameters allow the objects within the mmWave
device’s view to appear quasi-stationary within each frame,
even under the speed of handheld motion.

Fig. 9: (a) Experimental setup includes 2D mechanical con-
troller, mmWave device, and vision-based self-tracking unit; (b) TI
IWR1443BOOST [31] and Intel RealSense T265 [29].

We post-process the data collected through the window-
based pose correction framework and the cGAN on a host
PC using Matlab and Python. The post-processing takes the
erroneous pose estimates with the associated mmWave re-
flections and generates the perceptible 2D shape and feature



category of the imaged object. Since the TI mmWave device
and the T265 vision-based tracking unit cannot be triggered
synchronously, we initially post-process the data so that the
mmWave reflections and poses are synchronized. To this end,
we keep the device stationary for 10 seconds during the start
of the scanning period and align common start points between
the mmWave reflections and the poses. Since the T265 samples
faster than the TI IWR1443BOOST, we assign the nearest pose
sample to each mmWave reflection.

Real Data Collection: It is difficult to obtain sub-millimeter
scale ground truth of handheld motion data to compare the
pose accuracy before and after pose correction. So, we use
fixed motions that still contain significant drift errors from
the vision-based self-tracking device for testing. To test the
effectiveness of mmSight under conditions with position drift
error caused by the vision-based self-tracking system’s pose
estimates, we mount the mmWave device and T265 together
onto a 2D mechanical controller moving in a 20 × 20 cm2

zig-zag motion. The controller moves at a speed of 2 cm/s
while the mmWave device collects frames at a rate of 100
frames per second, which is well within the spatial sampling
criterion to prevent aliasing in the ideal case. We collect data
for several objects, categorized into 8 different categories,
including miscellaneous items, totaling 90 real samples. We
also include objects hidden behind a cloth shirt within 10
cm of the objects surface to test the occluded scenario,
shown in Fig 10. We post-process the data using the pose-
correction framework, which generates mmWave voxels with
size 200 × 200 × 24 after image reconstruction with TDBP.
We generate several samples by varying the window length and
overlap size from 250 to 1000 frames. To process the data into
a perceptible 2D shape using the cGAN, we resize the output
voxel to 32× 64× 24. We additionally extract the 8 highest-
energy voxels from the resized mmWave data to provide as
skip-data to the cGAN. We manually label each dataset with
the associated ground truth image and object category.

(a) (b)

Fig. 10: (a) Occlusion setup with cloth shirt; (b) Object hidden behind
occlusion.

Synthetic Data Generation: Since mmWave datasets are not
generally available and are time-consuming to collect, we
generate thousands of synthetic datasets to train the GAN.
We first collect 2D ground truth images and generate their
synthetic mmWave reflections and aperture positions using a
ray tracing simulator as in [6]. We keep the same mmWave
parameters previously described for the simulator. The simu-

lator can generate several mmWave voxels at varied depths,
orientations, etc. Once the ground-truth aperture positions and
reflections have been generated, we apply a mean and standard
deviation motion error, varying from 0 to 1 cm and 0 to 1
mm, respectively, to all the points to simulate imperfect pose
correction. We use TDBP to reconstruct the voxels. Then, we
resize the output voxel to a 32× 64× 24 mmWave voxel for
input to the cGAN.

Training: We train mmSight with thousands of samples to
learn the association between the pose-corrected mmWave
shape and the ground truth 2D image. Since real mmWave
datasets for specific applications are limited, we primarily
train mmSight using synthetic data. We first train the cGAN
with 8500 synthetic samples for 1000 epochs. Then, we train
the cGAN with real collected datasets. Both the cGAN and
classifier network architectures are implemented in Python
using TensorFlow 2.1 [32]. We train them together on a
machine with 32 CPU cores @ 2.8GHz, 256 GB RAM,
and an NVIDIA RTX A6000 core [33]. These networks take
approximately 50 hours to train.

V. PERFORMANCE EVALUATION

We use the following metrics to evaluate mmSight:

• Mean Squared Error (MSE) - Measures the absolute dis-
tance between the ground truth poses and the poses esti-
mated by mmSight.

• Structural Similarity Index Measure (SSIM) - Measures the
structural similarity between two images [34]. A perfectly
reconstructed image has an SSIM of 1.

• Classification Confusion Matrix - Columns represent the
actual values, and rows represent the predicted values. Each
value corresponds to the % of samples predicted.

Summary: (1) mmSight improves the velocity estimate
by an average of 17 mm/s compared to the baseline T265
measurements. (2) mmSight reduces the magnitude of large
drift error in the self-positioning device, especially along
the Z (range) dimension, which suffers from the most error,
from a median of 5 mm to 1 mm, to enable SAR focusing.
mmSight improves the median SSIM of the output image
voxel before and after pose correction from 0.01 to 0.08. (3)
mmSight’s shape improvement and classification framework
further increases the median SSIM to 0.92 and achieves 98%
object classification accuracy.

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12  14  16

A
b
s
o
lu

te
 e

rr
o
r 

(m
m

)

Device Movement Speed (mm/s)

T265
mmSight

Fig. 11: Effect of device movement speed on pose error.
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Fig. 12: (a) Velocity measurement error before and after excluding
bright reflectors for velocity estimation; (b) Velocity output while the
device moves in front of a flat reflector before and after excluding
bright reflectors.

A. Velocity Estimation

We test the accuracy of mmSight’s velocity estimation
method under various conditions, including: (1) Flat, incident
reflectors that contribute to high signal similarity and (2)
Varied speed. We use the same setup for imaging but restrict
the motion to a single linear motion of 20 cm along the X-
axis. We perform the tests in an office environment with many
whiteboards, desks, and walls within the field of view of the
device. To test the velocity measurement accuracy at varying
speeds, we ensure that there are no objects at least a meter
within the device’s field of view. Then, we move the controller
at several speeds. Figure 11 shows the error of the mmWave-
based velocity estimation method compared with the velocity
output reported by the T265. It can be seen that the T265
device incurs more significant errors at faster motions, while
the error remains limited under the correlation-based method.

To test the accuracy of the velocity estimation method
after introducing flat reflectors, we place a 20 × 24 cm2

metal plate directly parallel to the aperture plane. We vary
the distance of the metal plate from 10 cm to 100 cm. For
all trials, we keep the velocity of the motion controller at
2 cm/s, which would provide a reliable velocity estimate.
Figure 12 shows the velocity estimation error before and
after introducing flat reflectors for a single linear motion.
It can be seen that automatically removing bright reflectors
allows the velocity estimation to succeed as if there were no
homogeneous reflectors.

B. Window-Based Pose Correction

Since the velocity estimation method cannot be applied to
all poses exhaustively due to Z-translation motion, we now
evaluate the window-based pose correction technique (Section
III-B) with the velocity estimation to identify any imaging
improvements.

Figure 16 shows the ground truth optical 2D shape and the
mmWave image generated with and without window-based
pose correction. Although the window-based pose correction
method cannot completely recover the shape, we can use key
features to determine the object. Since the ground truth image
is a masked version of the original optical image, the pose
correction method only improves the SSIM compared to the
optical image from .01 to .08. For example, the millimeter-
wave image of the hammer shown in Figure 16 does not

visually match the optical image since the rubber handles are
not visible to traditional SAR.
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Fig. 13: (a) Device localization error before pose correction; (b)
Residual error after pose correction.

Figure 13 shows the pose error before and after applying
window-based pose corrections. The Z-axis suffers from the
most errors, but the pose correction method suppresses most
of the Z errors.

C. Shape Improvement and Classification

Shape Recovery from GAN: The output pose-corrected
mmWave voxel may not be human-perceptible due to signal
specularity, signal loss, and imperfect pose correction. For
example, the pose correction method recovered the arch of the
head of the hammer but failed to recover the handle because
mmWave reflections do not return to the mmWave device (see
Figure 16). Figure 15 shows a few objects after processing the
output voxel through mmSight’s cGAN networks. Additionally,
Figure 14 shows the SSIM of the pose-corrected image and
the generated images across 1000 samples. For most samples,
the SSIM improves to within 0.90. The pose-correction step
is necessary to improve the outcome of the GAN.

Classifier: The Classifier C predicts an object category given
a 2D mmWave shape. We select 520 test samples (65 samples
from 8 object categories) and use cGAN to produce their 2D
shape. We input these 2D shapes to C and record the predicted
class labels. Table IV shows the confusion matrix related to the
labels that C automatically classified the objects with, which
shows around 98% accuracy in predicting the class of objects.
Table V shows the confusion matrix for occluded objects.

VI. RELATED WORKS

Position Tracking: Methods for building a map and pose
rely on 2D range maps generated by a sensing device, such
as LiDAR [35]. Scanning radar can perform coarse-grained
motion tracking, but such radar sensors are expensive and
large [36]. [37] use IMU-integrated multiple scans to produce
a more feature-rich scan to find the device pose from tradi-
tional scan-matching on single-chip mmWave radar. RF-based
Intertial Measurement (RIM) [17] achieves motion tracking
by monitoring the Channel State Information from transmitted
packets and leverages MIMO hardware to deduce the device’s
motion. RIM can measure the distance, heading direction,
and rotation angle in a 2D plane, but cannot successfully
measure 3D motion due to limitations in physical antenna
configurations. In contrast, our design uses the mmWave
reflections and the poses reported by a coarse-grained tracking
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Fig. 14: mmSight’s cGAN improves
SSIM for pose-corrected images.

TABLE IV: Confusion matrix of categorical classifier in mmSight.

Predicted/Actual Knife Toy Gun Scissor CD Pen Hammer Clip Screwdriver Other
Knife 98.5 0 1.5 0 0 0 0 0 0

Toy Gun 0 100 0 0 0 1.5 0 0 0
Scissor 0 0 98.5 0 0 0 1.5 0 1.5

CD 0 0 0 98.5 0 0 0 0 1.5
Pen 0 0 0 0 100 0 0 0 0

Hammer 0 0 0 0 0 98.5 0 0 0
Clip 1.5 0 0 1.5 0 0 98.5 0 1.5

Screwdriver 0 0 0 0 0 0 0 100 0
Other 0 0 0 0 0 0 0 0 95.5

TABLE V: Confusion matrix of categorical classifier in mmSight for hidden objects.

Predicted/Actual Knife Toy Gun Scissor CD Pen Hammer Clip Screwdriver Other
Knife 98.5 0 0 0 0 0 1.5 0 0

Toy Gun 0 100 0 0 0 0 0 0 0
Scissor 0 0 100 0 0 0 0 0 0

CD 0 0 0 98.5 0 0 1.5 0 0
Pen 0 0 0 0 100 0 0 0 0

Hammer 0 1.5 0 0 0 98.5 0 0 0
Clip 0 0 0 0 0 0 100 0 0

Screwdriver 0 0 0 0 0 0 0 100 0
Other 0 0 1.5 0 0 0 0 0 98.5

MmWave Image 
Using Raw Poses

After cGAN
Ground Truth 
Optical Image

Fig. 15: Multiple mmSight reconstructions after cGAN.

device to limit the pose errors without modifying the hardware
to include antenna spacings along the Z dimension.

Mobile MmWave Imaging: [30] directly uses a similar stereo-
scopic self-tracking system to produce images with freehand
trajectories and a delay-and-sum reconstruction algorithm, but
is still susceptible to drift caused by the vision-based self-
tracking device and suffers from defocusing. Radar sensors
are already widely used in parking assistance and can estimate
coarse ego-motion through doppler [38]; however, they can
only estimate motion up to several centimeters or meters,
which would not support high-quality SAR imaging. Milli-
point [16] uses a similar motion-tracking method as in RIM

Fig. 16: MmWave image reconstructions after pose correction.

to achieve the sub-millimeter accuracy required for focusing
for vehicles moving in a strictly linear motion.

MmWave Image Resolution Improvement: HawkEye [23]
uses a conditional Generative Adversarial Network architec-
ture [22] to learn the mapping from a 3D mmWave heatmap
to a 2D perceptual depth map image to address low-resolution
mmWave imaging. [6] produces perceptible mmWave images
for the handheld case by using motion compensation to adjust
the poses and their associated radar sample so that they all
lie on a uniformly sampled grid, sufficient for FFT-based
image reconstruction. They use a cGAN network to learn the
association between 3D mmWave shapes and their perceptible
2D images containing high-frequency information.



VII. CONCLUSION

This paper proposes mmSight, a system for mmWave imag-
ing on mobile smart devices. mmSight emulates the principle
of SAR imaging by correcting the erroneous poses from the
vision-based self-tracking device through an initial local pose
correction and then a global drift error correction. mmSight in-
cludes a velocity estimation method to correct local pose errors
and addresses the depth drift error with linear approximations.
Then, the system adjusts the locally accurate poses using a
3D feature registration method to recover globally accurate
poses sufficient for improved SAR focusing. mmSight applies
cGAN and Classifier networks to recover the perceptible 2D
shape and label of the objects, demonstrating that mmSight
can adapt to a wide variety of applications requiring beyond
line-of-sight vision.
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