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Abstract—We propose ReSense, a residual network
for spectrum sensing high-frequency signals with
low-frequency samplers. ReSense first transforms the
aliased signal from low-frequency samplers into image-
like inputs and uses multiple convolution layers and
skip connections to predict the signal’s frequency
components to enable spectrum sensing. We evaluate
ReSense on the signal dataset with single and double
frequencies and achieve 95% and 40% accuracy in
detecting modulation type on respective datasets, in-
dicating accurate spectrum sensing.
Keywords: Spectrum Usage and Cognitive Radio sys-
tems; Convolutional Neural Networks; Residual Net-
works.

I. INTRODUCTION

The proposed 6G wireless communication system
requires an extensive frequency range of 300 GHz to
10 THz to achieve peak transmission speeds of 100
Gbit/s to 1 Tbit/s and low communication delays. To
manage spectrum resources efficiently in the complex
and ultra-dense network, cognitive-based intelligent
spectrum management systems are necessary [1]. Dy-
namic spectrum sharing is crucial to allow multiple
devices to access different parts of the spectrum
without fixed assignments. Mobile devices must be
able to detect available spectrum and its utilization to
reduce the chance of interfering with primary users.
For detecting spectrum usage at higher frequencies,
a high-bandwidth Analog-to-Digital converter (ADC)
with several GHz of sampling frequency is needed.
But these are costly and consume much power, hence
they are often impractical for wireless and mobile
devices. Low-bandwidth ADCs, on the other hand,
are feasible for mobile devices as they have low cost
and consume lower power, but the device can only
sample the spectrum at a sub-Nyquist rate.

Spectrum recovery with sub-Nyquist is challenging
for the following reasons: (1) due to the low sam-
pling frequency of analog-to-digital converters, high-
frequency components of the signal merge with the
low frequency of the signals causing signal aliasing,
and (2) only a few cosets, far less than the number
of channels, are sampled with multi-coset sampling
to reduce the number of sampling ADCs, which in

turn losses the information of the signal, and needs
suitable compressed sensing method to recover them.

To approximate the same functionality of high-
bandwidth ADCs, low-bandwidth ADCs should be
used, allowing for more effective utilization of the
spectrum. Besides, multiple low-bandwidth ADCs can
be combined to recover signals at high-frequencies
[2]. Additionally, the signal can be sampled at specific
delays, and with compressed sensing [3], and multi-
cosets sampling [4], prediction of signals at other
delays is possible without having to sample them.
Modulation-type detection of the received signal is
a crucial part of spectrum sensing for the following
reasons. First, it affects the spectral characteristics
of the signal, such as bandwidth, center frequency,
and the signal’s shape, which are crucial for spec-
trum recovery. Second, different modulation types
have different energy around the center frequency,
which controls the energy distribution of the sig-
nal. Third, modulation type determines the Signal-to-
Noise (SNR) of the signal because some modulation
types are more prone to noise than others.

In this work, we propose ReSense, which aims
to find signal locations in the frequency domain
indicated by pre-defined discrete channel indexes and
the modulation types of the signals located some-
where in the baseband in two datasets of signals
with single and double frequency components. The
signals are aliased and do not have all cosets. To
solve this problem, ReSense utilizes a deep learning
platform that enables compressed-sensing and anti-
aliasing filters. The convolution layers of the deep
learning network are designed to re-sample signals
at various frequencies and combine them to recover
the actual frequency and modulation type. ReSense
achieves 95% accuracy for detecting the modulation
type of a single frequency and more than 40% for
the signal with two different frequencies at various
sub-bands.

II. SPECTRUM SENSING CHALLENGES

Spectrum Sensing Fundamentals: Spectrum sensing
is the presence of a signal of a specific spectrum.
Frequency spectrums are not utilized all the time, and



it opens an opportunity to allow dynamic spectrum
sharing. There are multiple ways we can detect the
spectrum, such as energy detection at the particular
band, detecting the pattern of the signal, template
matching with known signal, etc. Currently, machine
learning methods help to detect the signal. Such
machine learning models can be configured to sense
the spectrum based on the requirements and are more
generalizable.
Multi-Coset Sampling: Multi-coset sampling is a
popular technique in different disciplines to sense the
signal with low-cost samplers. The key idea is to beat
the Nyquist requirement, which requires the sampler
with a frequency at least more than double of maxi-
mum frequency components of the signal. However,
designing such a high-frequency sampling analog-to-
digital converter (ADC) is costly and unavailable on
mobile devices. But, to utilize the available spectrum,
devices first need to sense the spectrum and ensure
it is currently not utilized by other devices. Since the
frequency spectrum is at higher frequencies, there is
a need to achieve high-frequency sensing with low-
sampling ADCs, which can be achieved with Multi-
Coset sampling with properly designed cosets.

Figure 1 describes the process of recording data
samples with multi-coset sampling. The original sig-
nal x(t) has frequency fmax, and requires sampling
frequency of fNY Q, such that fNY Q ≥ 2 × fmax.
Now, we divide the signal into 40 different chan-
nels, where each channel samples the signal with
low sampling frequency ADC. Since we divide it
into L different channels, we record signals with
sampling frequency fs =

fNY Q

L . These L channels do
not sample the signal simultaneously; instead, they
sample the signal with a certain delay to capture the
samples not captured by other channels. The key idea
here is to arrange L channels and design delay in
such a way as to record the frequency-aliased signals
with Nyquist period T = 1

fNY Q
. However, we might

not need samples from all the channels to reconstruct
the signal because signals are sparse, and only a few
frequency components can faithfully reconstruct the
signal. We store C cosets, C ≪ L, and reconstruct
estimate L channels using compressed sensing. Figure
1 shows multi-coset sampling, where x0(t), x1(t),
x11(t), and x37(t) are four different cosets with signal
samples. We can observe the sampling frequency is
reduced for cosets.

III. ReSense DESIGN

A. Dataset Description & Preprocessing

We use low-sampling ADCs to collect a data sam-
ple with 8 cosets out of 40 channels. Each coset
has I and Q components of the signal and com-
prises 1024 samples, with one of 13 different mod-
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Fig. 1: Multi-coset sampling principle and multi-cosets from the
original signal.
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Fig. 2: Frequency occupancy of input signals for QAM64, BPSK,
and APSK32 on: (a) single frequency signal. (b) two frequency
signal.

ulation types (APSK16, APSK32, APSK64, ASK8,
BPSK, OQPSK, PSK16, PSK8, QAM128, QAM16,
QAM256, QAM64, QPSK) (see Figure 2), resulting
in 1024 × 16 real numbers. To predict modulation
type from cosets, we convert the signal 1024 × 16
into 128 × 128 images to utilize 2D convolution
neural networks to extract features from the aliased
signal. This has proven to yield better results than 1D
signal [5]. We then up-sample the 128 × 128 images
to 244 × 224 and concatenate 3 times to create a 3 ×
224 × 244 RGB color image (see Figure 3 [a–b]). The
converted RGB image is fed into the ResNet Network
[6]. Predicting the modulation type is formulated as
a classification problem using one-hot coding, which
allows us to code each class with orthogonal coding
[7].

B. Anti-aliasing with ResNet

Low-sampling ADCs often mix high-frequency
components with low-frequency ones. As a result, it
is not easy to construct an algorithm that can recover



Fig. 3: Image representation of input signals: (a) single frequency
signal. (b) two frequency signal.
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Fig. 4: Anti-aliasing process with residual networks.

the original signal from the aliased signal, with the re-
covered signal being an approximation of the original.
In the past, multiple methods have been proposed to
achieve this goal [8], [9]; however, only a few of these
involve deep-learning techniques [10]. Deep learning
networks have revolutionized the vision domain in a
way that was unimaginable a decade ago, as they can
approximate any mathematical relationship between
input and output. The core method for recovering
the aliased signal involves sampling it at different
frequencies to separate and accurately identify the
frequency signal.

The solution to recovering aliasing can be best de-
scribed with the mod function. For example, consider
an array, A = [5 6 4 7 11 12 8]. If we perform the B
= (A mod 2) then [6 4 12 8] fall into the same space
in new array B. However, when we perform C = (A
mod 3), then only [6 12] falls into the same space.
Similarly, we can construct D, E, F, etc., with different
mod functions. Next, we can analyze B, C, D, E,
F... to recover A. Analogous to the mod function, we
perform multiple sampling operations on the aliased
signal to create sub-signals Si = downsample (S,
fi), where Si are downsampled signals with corre-
sponding sampling frequency fi. Next, we analyze
Si to recover the original signal’s different frequency
components. This formulates the hard optimization
problem. In ReSense, we don’t solve this problem as
the explicit optimization problem but use the suitable

deep learning framework to achieve a similar result.
Residual network [6] allows the connection between
different convolution layers, where each successive
layer contains the max-pooling function that acts as
the down-sampling layer. Skip connection then allows
the connection between down-sampled data and orig-
inal data, which is equivalent to mixing different Si

to obtain the actual frequency components. Figure
4 illustrates the anti-aliasing process and Figure 5
shows the residual network architecture with fully
connected layers.
▶ Network for Single Frequency: Data samples

with single frequency component [11] has a center
frequency ranging between [-600, 600] MHz with a
wider bandwidth. Only 8 cosets are used to record
data samples, which creates an input size of 1024 ×
16. Subsequently, the I-Q signal from these cosets
is resized and passed through a feature extraction
network composed of convolution and pooling layers.
The output features are then passed through multiple
fully connected layers to predict a one-hot coded
vector (1 × 13) that is generated by the softmax
function. This vector is then used to determine the
modulation type of the signal.
▶ Network for Two Frequencies: We also have

two signals with different frequencies sampled with
low sampling ADCs. The range [-600, 600] MHz is
divided into 24 sub-bands where two distinct signals
are placed in two of them. Sampling ADCs provide
the same sampling frequency and the same number
of cosets of a single frequency; thus, the number of
samples remains the same (1024 × 16). However,
the sampled signal includes the aliased version of
both signals 1 and signal 2 (see Figure 2). First, we
use the residual network to extract features from the
input signal and tune network parameters to recognize
both signals’ location and type of modulation. The
output prediction is a 1 × 24 vector where only
two elements have a value between 1 and 13, the
rest being zero. This vector is then converted into a
1 × 4 vector by recording the index and value of
each modulation type. This reduces the size of the
output and the burden of the network. Additionally,
we convert a vector of 1 × 4 into one-hot coding to
enhance classification. The network’s output is [1 ×
24, 1 × 13, 1 × 24, 1 × 13].

▶ Loss Functions & Training: We train neural
networks using Mean Squared Error (MSE) loss to
compare predicted and actual values. Non-linear Relu
activation functions help adjust the network’s parame-
ters for accurate modulation type prediction. AdamW
optimizer is used for training, and the best model is
stored for inference. The training process took about
72 hours on a server with NVIDIA RTX A6000 GPU
machine and 256 GB RAM.
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Fig. 5: ReSense’s residual network architecture for anti-aliasing and compressed sensing.

IV. RESULTS & DISCUSSION

We assess the performance of the trained models
for datasets with single and double frequencies. With
the test dataset, we first predict the modulation type
and then compare the predicted modulation type to
the ground-truth modulation type. This allows us to
calculate the accuracy. For datasets with two frequen-
cies, we separate the accuracy into two categories;
index accuracy and value accuracy. The index ac-
curacy measures how accurately the trained model
can identify the signal position in the 24 sub-bands.
The value accuracy calculates whether the modulation
types are correctly predicted. We only count accurate
classification for two frequency signals when we
accurately predict index and value. We use ∼ 31K test
samples for single frequency and predict modulation
type with more than 95% accuracy. Similarly, we
use 10K test samples for two frequencies and get
an overall accuracy of 40%. However, we separate
the accuracy into index and value accuracy, where
we determine the index of frequencies with 99%
accuracy and modulation type with 41% accuracy. We
can improve the two frequencies with other attention-
based networks that can separate and recover two
signals; however, they might require more memory
and inference time than our current implementation.

V. CONCLUSION

In this work, we present a deep learning-based
spectrum sensing system for signal with one and two
frequencies. ReSense’s residual network architecture
combines the aliased signal at various sub-sampling
spaces to predict the actual frequency component of
the signal for spectrum sensing. High accuracy in

spectrum sensing allows ReSense to be deployed in
mobile devices to detect unused frequency with low-
cost sampling ADCs of the mobile devices for better
spectrum utilization.
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