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Abstract—We propose D3PicoNet, which allows network de-
ployers to quickly complete realistic indoor site surveys at D-
band (mmWave) frequency. D3PicoNet models the mmWave
reflection profile of a given environment, considering the primary
reflecting objects. It then utilizes this model to identify places that
optimize the efficiency of the reflectors. D3PicoNet understands
an environment and deploys D-band picocells at such locations
that picocells provide coverage with Non-Line-of-Sight (NLoS)
paths when Line-of-Sight (LoS) is obstructed. The core module of
D3PicoNet is a deep learning network that learns the relationship
between the visual depth images to the mmWave signal reflection
profiles and can accurately predict signal reflection profiles at
any unobserved location, which allows D3PicoNet to find the
best deployment locations maximizing the coverage and data
rate with a minimum number of picocells in an environment.
We implement and evaluate D3PicoNet on two buildings with
multiple indoor environments. D3PicoNet can adapt to new
environments, allowing it to be used in other indoor environments
with minimal adjustments.

Index Terms—Millimeter-Wave; NextG Networks; Convolu-
tional Neural Network; Transfer Learning.

I. INTRODUCTION

Next-generation networks with millimeter-wave (mmWave)
technology are set to revolutionize the existing wireless in-
frastructure, with data rates of 10s of Gigabits per second
(Gbps) and milliseconds (ms) latency, enabling new applica-
tions in multiple sectors [1]. The cost of obtaining hardware
at mmWave of a very high frequency, especially the D-Band
(110 GHz to 170 GHz) being reasonable, makes this the ideal
period to look into the difficulties and potentials of setting up
networks in those frequency ranges. This will enable future
network architectures beyond existing 5G, where an extremely
high density of low-cost, short-range access points, called
“picocells,” can be deployed on indoor and outdoor structures,
and they can operate on hundreds of frequency bands. Besides,
the mmWave frequency above 100 GHz allows wider contigu-
ous bandwidth and makes the antenna size extremely small,
facilitating a higher data rate and lower latency.

Picocell communicates with the clients using very narrow
beams, limiting the signals to Line-Of-Sight (LoS) paths and
allowing only a few reflections in Non-LOS (NLoS) paths.
Picocells often rely on NLoS paths to establish a link to the
client because LoS links are vulnerable to obstructions and
blockages due to narrow beam width. Moreover, not all parts
of the environment can provide a strong NLoS path because of
the specularity and weak reflectivity, so the D-band networks
are prone to frequent outages [3][6]. We can install additional

strong reflectors at required locations to facilitate more NLoS
paths, although this option may not be feasible in some envi-
ronments. Alternatively, we can place picocells where they can
find a maximum number of NLoS paths and avoid link outages
during LoS path obstructions, but finding such locations is a
hard-problem. Thorough, manual site surveys collecting Signal
Reflection Profiles (SRPs) at every environment location can
help network deployers achieve this; however, this process
is both time-consuming and costly. Wireless propagation
simulations, such as Ray-tracing, to estimate SRPs may be an
alternative to complete site surveys, but they are error-prone
due to the unavailability of high-frequency mmWave datasets,
such as D-band.

We propose D3PicoNet to overcome these challenges and
enable robust deployment of D-band mmWave picocells for
indoor environments. Inspired by prior works, such as [2], [3],
that propose a picocell deployment model for lower mmWave
frequencies (24 GHz), we design D3PicoNet specifically for
the deployment of 122 GHz D-band picocells. A key idea
in the model is that if two parts of the environment look
similar, they will likely produce similar NLoS reflections (ac-
counting for the distance and incident angle of the transmitted
signals). By measuring NLoS reflection from one part of
the environment, it is feasible to predict the reflection from
the other part. Thus, the network deployers can avoid time-
consuming thorough site surveys and collect a few random
samples for reflection profile prediction, allowing optimal
deployment. D3PicoNet builds on this intuition and designs
a customized deep-learning framework to predict the SRP
at unobserved locations within the environment. Unlike the
existing works at 24 GHz, SRP measurements at 122 GHz are
very noisy, with high attenuation, scattering, and diffraction,
making it challenging to predict SRP at unobserved locations.
D3PicoNet analyzes the noisy data to determine errors in
ground-truth data collection and incorporates a parametric
Gaussian Noise Layer into the network to compensate for
the error. Adding noise layers makes the network robust and
tolerant of errors.

Due to the unavailability of any open-source dataset at 122
GHz mmWave frequency, we design a custom data collection
hardware by integrating an ASUS Zenfone AR smartphone
with a 122 GHz mmWave transceiver [4], [5] to collect the
mmWave SRPs, visual Point Cloud Data (PCD), and poses
of the device. In total, we have collected over 45 GB of the
dataset with ∼4.2 million data samples for 4 months. We have



used only ∼420K samples for training, and the rest of ∼3.8M
pairs are used for testing and benchmarking all our design
components. Our evaluation of a base SRP prediction model
on a building shows an average SRP prediction error of 3.0 dB.
But the error reaches more than 8 dB when the model is tested
in different environments. However, a semantic-aware global
feature augmentation to the base model can reduce the SRP
prediction error to 2.2 dB with little fine-tuning (∼4 mins).
D3PicoNet places the D-band picocells with more than 96%
accuracy (an Optimal scheme is 100% accurate) to support
data throughput up to 35 Gbps, which is more than 1.3×
improvement over Random.

In summary: (1) We propose an SRP prediction model at
the D-band mmWave frequency based on visual data and
deep learning. (2) We design and evaluate picocell deployment
methods for 122 GHz and present challenges and opportunities
for deploying lower and higher mmWave frequencies together.

II. BACKGROUND AND MOTIVATION

Recall that the link between picocell and the client can be
established either via LoS path or NLoS path. Even though
LoS path provides a higher Signal to Noise Ratio (SNR),
indoor environments are most likely to starve from such an
advantage [6], [7] because of the directionality and blockage.
We must consider NLoS paths along with LoS paths to
increase network reliability. Surrounding strong reflectors such
as metal, glass, wooden structures, etc., can reflect mmWave
signals, and picocell can use NLoS path by steering its beam
towards one of them. Figure 1(a) shows three possible link
statuses between picocell and client for an environment. The
environment has few strong reflectors and comprises areas near
the building elevator. In Case 2, the client and the picocell have
LoS paths because there is no blockage. Figure 1(c) shows an
example of SRP with LoS path where we get a strong signal
strength of -55 dB at 1.8 m. However, in Case 1, the client
is not in direct sight because of the wall, but the picocell
can establish a link via a strong reflector on the other side
of the wall. Figure 1(b) shows an example SRP with NLoS
path, where picocell receives the signal strength of -69 dB
(less than LoS case but enough to establish a link) with a
strong reflector at 4.1 m. Unfortunately, in Case 3, picocell
cannot find any possible NLoS paths to establish a link to
the client. Figure 1(d) shows the example SRP if there are no
reflecting objects under its vicinity. Thus, Case 3 highlights the
necessity of deploying picocell at the correct location based
on the location of strong reflectors. To use the maximum
possible NLoS paths, we should know strong reflectors and
SRPs at every environment location. But measuring SRPs has
the following challenges: (1) Using the Ray-tracing method
[8] to estimate SRPs is error-prone due to the unavailability of
path loss models at the high frequency and lack of open-source
data to model them, and (2) Manual thorough site surveys to
measure SRPs at all possible location is time-consuming and
costly.

III. D3PicoNet DESIGN

A. System Overview

In D3PicoNet, we use the learning-assisted SRP prediction
to allow network deployers to deploy picocells to maximize
the use of NLoS paths in the absence of LoS path. D3PicoNet
focuses its design and deployment at D-band frequency be-
cause it offers wider, contiguous bandwidth. Deployments
utilizing NLoS paths depend on strong reflectors’ availability
and location, and their role is even more vital at a higher
frequency due to high path loss and narrow coverage. One
could measure SRPs at every corner of the environment to get
the correct location of strong reflectors. However, D3PicoNet
estimates SRPs at every location with learning and a data-
driven approach to eliminate costly manual site surveys. A
network deployer can quickly collect visual information using
an AR device, such as Google Tango [4], to create the
visual PCD and collect the SRPs using a co-located mmWave
transceiver [5]. Deployer can then use the D3PicoNet’s Deep
Convolutional Neural Network (DCNN) model to map visual
PCD into SRPs. After mapping, the deployer can predict SRPs
at unobserved locations using visual PCD only.

Figure 2 shows the overview of the D3PicoNet system.
D3PicoNet first collects the visual measurements of the envi-
ronment as PCD and synchronizes with SRPs collected via co-
located mmWave transceiver at random locations. D3PicoNet
uses convolution layers to extract features from visual depth
images and map those features into SRPs. The SRP prediction
network then learns from thousands of samples from the
environment and can predict SRPs at locations not used in
training. Finally, predicted SRPs help the deployer find the
best picocell locations based on the data rate requirement of
the client.

B. Data Correlation

D3PicoNet’s main idea is to use the visual depth images to
predict SRPs at unobserved locations to reduce site surveys.
We explore and analyze the correlation between visual depth
images, SRPs, and visual depth images to SRPs before finding
a suitable model to predict SRPs from depth images.

Visual-to-Visual & SRP-to-SRP: First, we explore the visual-
visual and SRP-SRP similarity between environments with
similar reflecting objects in their surroundings. We use the t-
SNE [9] on 16K samples to extract two-dimensional features,
Feature 1 and Feature 2. Figures 4[a–b] show that Env
A.3 and Env A.7 (marked with green arrows) map close
because of their similar surrounding objects, while Env A.3
and Env A.6 (marked with red arrows) are separate due to
dissimilarity. Results demonstrate that we can predict SRPs
from visual depth images because visual depth images carry
enough information about strong reflecting objects.

Visual-to-SRP: However, implementing the learning-based
system to predict SRPs, there should be a strong correlation
between visual depth images and SRPs. Our hypothesis is
that visually similar images produce similar mmWave signal
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Fig. 1: (a) Illustration of picocell to the client link via NLoS path (Case 1) and LoS path (Case 2); and no connectivity (Case 3). (b–d)
Examples of mmWave SRP with device noise floor for each case.
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Fig. 2: System overview of D3PicoNet.

reflections. To this end, we use 320K visual depth image-SRP
pairs from buildings commonly used for office spaces to find
the correlation between them. We use the Structural Similarity
Index Measure (SSIM) to find the similarity between the
visual depth images and Mean Squared Error (MSE) between
SRPs to compute the similarity between SRPs. Figure 3 shows
the scatter plot of the relationship between the similarity of
SRPs and the similarity of visual depth images. The non-
linear relationship between data requires a complex, non-linear
model.

C. Signal Reflection Profile Prediction

1) Deep Learning Based SRP Prediction: Deep learning-
based systems can approximate a solution from a random
guess [10]. D3PicoNet’s learning network is similar to the
approximation methods using deep learning networks. To
this end, D3PicoNet uses convolution layers to extract the
features from the visual depth image and predict the SRP
measurements at the output layer. D3PicoNet includes the
mmWave device pose on its input because SRPs are dependent
on the number and location of reflectors that are reflecting.
Finally, we use MSE and MAE loss combination to train the
DCNN network.

Error on Ground-Truth: Measured SRPs have a resolution
of 1 dB and may have an error on ground-truth. Even though
the error is small, using it helps the DCNN model to converge
faster [11]. To analyze our hypothesis that SRP measurements
are more erroneous at a higher frequency, we collect ∼21K
SRPs at both 122 GHz and 24 GHz by steering the mmWave
beam towards a hard metallic reflector. Figure 6 shows that the
median error is 0.77 dB at 122 GHz, ∼2× that of 24 GHz.
D3PicoNet compensates for error on ground-truth at 122 GHz
by using Gaussian Noise Layer [12]–[14].

Data Preprocessing: Removing redundant information and
transforming it into the correct format is essential in
D3PicoNet. Moreover, due to the unavailability of single
hardware to collect both visual images and SRPs, data syn-
chronization is also a necessary step before feeding input-
output pairs into the network. We use the AR device to collect
visual Point Cloud Data (PCD) co-located with the mmWave
device to gather SRPs. We then use the transceiver pose, which
has the measurement location and orientation from the Global
PCD (GPCD), to obtain Local PCD (LPCD) (see Figure 5)
with mmWave beampattern [15], [16] to remove non-reflecting
points that are outside field-of-view (FoV) (θ = 60◦). To get
the depth images, we project the 3D points of LPCD on a
2D plane, assign the distance as depth values, and ignore
reflections beyond ∼10 m because the signal strength is low.
We take the inverse of depth values in Inverse Depth Image
(IDI) since signal strength is inversely related to depth. Also,
we mask the IDI with the beam pattern of the mmWave
transceiver to encode antenna gain on DCNN input, obtain
Mask Inverse Depth Image (MIDI), and pair with transceiver
pose and SRPs. Finally, we follow the data preprocessing and
filtering steps for each environment to generate the thousands
of MIDI, transceiver pose, and SRP pairs, which will be used
for training and validation of the DCNN network.

Base DCNN Model: In the base DCNN model, we use the
depthwise and pointwise convolution layers from MobileNetV2
[17] to make the model fast and less memory-consuming,
so mobile devices can deploy the model. Convolution layers
extract the 1D abstract features from the MIDI after successive
convolution operations. The hierarchical nature of the con-
volution process allows the convolution layers to capture the
relationship between local and global points in MIDI. We use
the transceiver pose as input in the second last layer of the fully
connected dense layers to provide the location and orientation
to the network because it determines the dominant reflectors
that are contributing to SRP. The output layer generates the
1×64 vector, which corresponds to the SRP at that pose of
the environment. The base DCNN model uses the MSE loss
function to train the network and Adam optimizer to update
its parameters. The Base DCNN model accurately predicts
new SRPs in the same environment but fails to incorporate
transfer-learning to predict SRPs in different similar-looking
environments. However, D3PicoNet’s aims to use one trained
model across multiple environments. Since the base DCNN
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Fig. 3: Non-linear relationship between the SRPs and visual depth images for four environments of two buildings.
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Fig. 4: The t-SNE plot of diverse environments of one building for
(a) Visual - Visual depth images. (b) SRPs - SRPs.

model lacks the semantic labels required to identify the envi-
ronment, they perform poorly across them. Next, we explain
D3PicoNet semantic-aware DCNN to support transfer learning
between environments.

2) Semantic-Aware Network: This network aims to make
the trained DCNN generalizable over diverse environments.
For example, if we train a network with Env A.3 (first floor -
area near elevator) data samples, it should be useful for Env
A.7 (second floor - area near elevator) since they have similar
surrounding objects and properties. The base DCNN model
couldn’t achieve this because it lacks semantic features on its
input. In a semantic-aware network (Figure 8), we provide
Global Features to the base model’s Local Features to help
the DCNN better understand the environment. D3PicoNet first
applies semantic segmentation [18] on its GPCD to obtain
semantic labels for each point of GPCD. We assign a semantic
label to the PCD, which could be one of 13 different classes,
such as floor, ceiling, wall, clutter, etc. Second, we use a
transceiver pose to get LPCD from semantically segmented
GPCD. Third, we extract Local Features of size 1×64 with
MobileNetV2 convolution layers on MIDI (obtained from
LPCD). Fourth, we use LPCD to construct Semantic Features,
which is 1×22 one-dimensional vector [X, Y, Z, R, G, B, NX ,
NY , NZ , 1×13 one-hot coded vector of semantic label], where

X, Y, and Z are the 3D location values of the point, R, G, and
B are the color values of the point, and [NX , NY , NZ] are
surface normals of X, Y, Z axes, respectively, to describe the
surrounding objects. D3PicoNet extracts the Global Features
1×32 with PointNet [19] on Semantic Features. Finally, we
concatenate the Local Features and Global Features and pass
them through two more fully connected layers with Relu [20]
activation to predict SRP of size 1×64 at the output layer. To
compensate for the hardware measurement error of the 122
GHz mmWave device, we add the Gaussian Noise Layer with
(µ, σ) = (0, 0.77) before the output layer. Furthermore, SRPs
are highly sparse [21], and most signals are noise floors. Thus,
to reduce the load of the network and help in fast convergence,
we don’t detect those SRP values below a certain threshold γ.
We accomplish this by using the mask M in the network’s loss
function, which is set to 1 if the SRP value falls above 75th

percentile, otherwise 0.

Network Loss Functions: Data samples are noisy at 122 GHz,
and using Mean Squared Error (MSE) loss is insufficient for
optimal network convergence. We build a custom loss function
with a combination of MSE and Mean Absolute Error (MAE)
as LC = λMSE×LMSE+λMAE×LMAE , where λMSE and
λMAE are hyper-parameters that need to be optimized [22]–
[25] to control the direction of network convergence. Their
value ranges from 0 to 1.

D. SRP Prediction-aided Picocell Deployment

Accurate prediction of SRPs with a semantic-aware network
allows us to reuse the pre-trained DCNN models from the
different environments into the current environment for SRP
prediction at unobserved locations. Predicted SRPs carry in-
formation about the number and location of strong reflectors.
To increase network reliability, we have to use the maximum
number of NLoS paths in the absence of LoS path due
to frequent indoor blockage. However, finding the picocell



−30

−20

−10

0

10

20

−200 −150 −100 −50 0 50 100 150 200
P

ow
er

 (
dB

)
Angle (degrees)

E−Plane
H−plane

FoV = θ  

FoV = θ  

Fixed Field-of-View (FoV) 

 Local PCD Global PCD 

Transceiver
Beam Pattern 

Masking

Fig. 5: D3PicoNet’s data preprocessing steps to generate MIDI, SRP, and transceiver pose.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5

C
D

F

Measurement Error (dB)

24 GHz
122 GHz

Fig. 6: Measurement error at 24 GHz and 122 GHz with a metallic
reflector located at distances from 1.0 m to 3.5 m.

locations based on the SRPs of the environment to utilize
the maximum available NLoS paths is complex and requires
an efficient algorithm to solve it. Next, we describe the
SRP emulation process and picocell deployment methods to
maximize NLoS path’s utilization.

Emulating SRPs: D3PicoNet’s SRP prediction uses the co-
located transmitter and receiver, which is different from the
actual picocell deployment scenario where the transmitter
(picocell) and receiver (client) may be located at different
locations. But D3PicoNet’s SRP prediction model provides
errors in SRP estimation for the given environment based
on actual measurements and can be used to correct the SRP
estimation from simulation-based techniques. So, D3PicoNet
first uses the Ray-tracing method to simulate SRPs at the
measured locations (20K+ samples) to calculate the difference
between measured and simulated SRPs. Recall that we place
the picocell and the client at the exact location since our
measurement device is the transceiver. We observe a constant
offset (called “SRP Offset”) between the simulated and mea-
sured SRPs however, the nature of the signal profile is similar.
The offset between simulated and measured SRPs is due to
the lack of certain factors in the simulation, such as noise
from the environment, hardware, and surrounding interference
[26], [27]. Now, D3PicoNet virtually places the picocells and
clients at different environment locations, uses the Ray-tracing
method to estimate the simulated SRPs, and uses the median
of SRP offsets to set the correct amplitude of simulated SRPs.

Deployment Process: We consider emulated SRPs from each

picocell to find their effective locations at 122 GHz.
I Homogeneous Deployment: Homogeneous deployment

refers to deploying only single frequency (122 GHz) picocells
across the environment. D3PicoNet aims to place picocells to
maximize the number of clients with specific data through-
put, referred to as the reduction of Link-Outage Probabil-
ity. D3PicoNet compares its deployment strategy with three
other methods: (1) “Random,” where picocells are placed
randomly at any location. (2) “Common-Sense” a.k.a. corner
deployment, where we deploy picocells at equal distances. (3)
“Optimal” refers to deploying picocell without any error in
SRP prediction.
I Heterogeneous Deployment: It refers to deploying

different frequency picocells in an environment to cover the
maximum area with a minimum number of picocells to support
desired data throughput. Recall that deployment at a low-
frequency range may provide broader area coverage with a
picocell, but due to its limited bandwidth, it may need help to
support data-hungry applications. To ensure wider coverage
and high data throughput support, we can deploy 24 GHz
and 122 GHz picocells to work in conjunction. To this end,
D3PicoNet first emulates SRPs at 24 GHz and 122 GHz
using Ray-tracing method and then uses these SRPs to find
24 GHz and 122 GHz picocell locations that help to reduce
Link-Outage Probability of the client in an environment for a
specific data throughput support.

IV. IMPLEMENTATION

Hardware Platform: We implement and evaluate D3PicoNet
with real measurements from our custom-made platform with
a 122 GHz mmWave transceiver [5] and a Google Tango
device, ASUS Zenfone AR [4] (see Figure 9[b]). The mmWave
transceiver has 4 transmit and 4 receive phased-array antenna,
each placed with 2×2 format, capable of different beam
patterns. The transceiver can collect SRPs in real-time, with
a sampling rate of ∼67 milliseconds (ms) per frame, and is
connected to a host laptop via a USB cable for storing the
data. The transceiver operates on a 1 GHz bandwidth at the
center carrier frequency of 122 GHz. We use the following
parameters for SRP measurement: Start frequency, 119.6 GHz;
frequency ramp slope, 1.43 MHz/µS; number of complex ADC
samples, 512; ADC sampling rate, 487 Msps; sweep duration,
0.70 ms; pulse repetition rate, 15 Hz; and maximum receive
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antenna gain, 56 dBi. The measured SRP at a particular pose
is a 256 element vector corresponding to the number of ADC
samples. Since the transceiver operates at 1 GHz bandwidth,
each SRP element has a resolution of ∼0.1499 m [28]; hence,
the device can gather reflections up to ∼38.40 m. However, the
reflection strength at such a long distance is below the noise
floor, and the picocells are supposed to operate within 10s of
m in indoor settings; so, we limit the maximum range to ∼10
m, which corresponds to the first 64 elements. We keep the
distance between the transceiver and AR device fixed during
all the data collection and use the known distance offset to
calibrate the transceiver’s pose.

Real Data Collection: Due to a lack of tight synchronization
between AR device and the mmWave transceiver, we post-

process the collected dataset in software. A Matlab program
running the host PC first starts the AR device to collect the
visual data using the RTAB-SLAM app [29] and waits for
scene stabilization while the transceiver starts recording the
reflected signals. After the scene stabilizes, we move the setup
around to construct the visual map of the environment and
gather SRPs from various poses. A single scan of ∼4 mins
generates a PCD of a typical indoor environment and can
gather reflected signals from ∼3700 unique transceiver poses.
We then apply 1D FFT on the reflected signals to obtain
the SRPs. We post-process the pose and SRPs to match the
SRP sampling rate. We identify timestamps by correlating
consecutive SRPs to find movement and match with AR
device’s timestamp by observing self-pose change. Since AR
device and transceiver are co-located, we can calibrate their



local timestamps and get synchronized SRPs and poses.
Figures 9(c–d) show an example environment and the

measured SRP from one of the locations (marked in a blue
circle). There are two strong reflectors at ∼2.6 m and 4.6 m
from this location, corresponding to two strong peaks in the
SRP. We collect the PCDs, poses, and SRPs from 16 different
environments [2] to train and evaluate D3PicoNet. Although
we use only a few minutes of scans to the train network, we
scan environments thoroughly up to ∼20 hrs at multiple days
to evaluate the temporal behavior and compare D3PicoNet
with complete site surveys. In total, we have collected and
analyzed over 45 GB of the dataset with ∼4.2 million data
samples. We have used only ∼420K samples for training, and
the rest of ∼3.8M pairs are used for testing and benchmarking
all our design components. Such data diversity and scale allow
us to evaluate the performance of D3PicoNet and understand
its generalizability across multiple environments.

Neural Network Training: We train and evaluate the SRP
prediction model with a combination of MSE and MAE loss.
We follow a similar training process, number of epochs, and
optimizer of prior implementation [2] and find that “Adam”
optimizer [30] with a learning rate of 0.002 works best
for both base and semantic-aware models. Finally, all the
DCNN models are designed and implemented with Python
programming language and PyTorch [31] packages on Nvidia’s
GPU (RTX A6000) [32]. All our networks require ∼4-6 hours
to train. However, uploading the data to the Cloud TPUs [33]
can further reduce the training time.

V. PERFORMANCE EVALUATION

We evaluate D3PicoNet with two standard metrics: Absolute
Error and Link Outage Probability.
I Absolute Error: The absolute difference between the

actual and predicted values of SRPs, measured in dB.
I Link-Outage Probability: The probability of a client

without an established link to the picocell (0% to 100%).

Evaluation Summary: (1) D3PicoNet’s base model predicts
SRPs with a median error of 3.0 dB, but the error increases
to 8.0 dB when the model is tested in similar-looking en-
vironments because it lacks generalizability. Semantic labels
and surface normal of PCD as “Global Features” reduce SRP
prediction error to 6 dB and drop to 2.2 dB with just ∼4
mins. of additional model fine-tuning. (2) D3PicoNet finds the
picocell locations with more than 96% accuracy (compared to
Optimal) and can provide coverage to nearly 100% of regions
with data throughput up to ∼35 Gbps.

A. SRP Prediction

Base DCNN Model: We evaluate the base DCNN model
on environments Env A.1, Env A.2, Env A.3, and Env A.4,
which contains regions for office spaces and areas near the
elevator, with 20K data samples from each environment. Out
of 20K, we use 18K for training and 2K for testing. First, we
preprocess the data to generate each sample’s MIDI, Pose, and
SRP. We then use training samples to train the base model
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for each environment until the models converge. We take
the L1-norm between the predicted SRPs and actual SRPs of
2K test samples to determine the Absolute Error of the SRP
prediction after training. Figure 10(a) shows an example of
SRP of Env A.1 and its predicted values. SRP prediction is
accurate irrespective of reflector distances (see Figure 10[b]).
Finally, Figure 11(a) shows that the SRP prediction error is 3.0
dB on average across Envs A.1 to A.4, and the prediction error
doesn’t exceed 11 dB. Across all environments, we observe
that the SRP prediction error for the base DCNN model is
slightly higher for 122 GHz than 24 GHz. Higher error is
due to the increased sensitivity of SRPs with their operating
frequency [34]. So, the base model performs exceptionally
well within the environment, but the error is more than 8 dB
when tested in different environments, which is unacceptable
in practice (see Figure 12[a], red curve).

Semantic-Aware Model: The base model performs poorly
across different environments because it needs the Semantic
Features to enable transfer learning. In D3PicoNet, we first
correct the surface normals with [35] and apply semantic
segmentation on GPCDs [18] for all data samples of building
A & B. Since two buildings have multiple environments within
themselves, we intend to develop a model for each building
and use it across different environments within the building.
GPCDs of building A & B are semantically segmented and
pre-processed to generate Semantic Features, MIDI, SRP, and
Pose. We use Envs A.1 to A.4 and Envs B.1 to B.4 to train
models for building A & B, respectively. We use the rest of
the Envs of both buildings for testing. Figure 12(a) shows
the result of the semantic-aware model for building A. The



semantic-aware model can reduce SRP prediction error from
8 dB of the base model to 6.5 dB by including the Semantic
Features. The SRP prediction error is further reduced to 6.0
dB by ignoring the noise floor of the SRP and reaches 2.2
dB by fine-tuning with ∼4 mins. of samples. We observe the
consistent performance of the semantic-aware model across
building A and B. Figure 12(b) shows that we can achieve
SRP prediction errors of 8.0 dB and 6.75 dB without fine-
tuning; 2.2 dB and 1.5 dB with limited (4 mins) fine-tuning
for two buildings.
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Fig. 12: (a) SRP prediction error for transfer-learning with Base
Model, Base Model + Semantic Label, D3PicoNet, D3PicoNet +
Fine-tuning. (b) SRP prediction error with transfer-learning with Base
Model and D3PicoNet + Fine-tuning for buildings A and B.

Scanning Time Requirement for Fine-Tuning: Even though
D3PicoNet performs sub-optimally with the inclusion of
Global Features, we can achieve near-optimal performance
with limited fine-tuning of a previously trained model with
current environment samples. Introducing more samples from
the current environment into the model reduces the prediction
error on the rest of the test samples. However, the number
of data samples necessary to achieve the near-optimal perfor-
mance depends on how well the previously trained models
have learned the Global Features. In D3PicoNet, we use
building A to analyze the scanning time requirement. We use
the previously trained model for building A (with Envs A.1 to
A.4) as the starting configuration of the semantic-aware model
and gradually feed the data samples from testing environments
i.e. Envs A.5 to A.7, to fine-tune. We then use the remaining
samples (not used in fine-tuning) to predict the SRPs and
compute the SRP prediction error. Figure 11(b) shows the
SRP prediction error to 6.0 dB from 8.0 dB (with no fine-
tuning), and the error drops significantly and drops to 2.2
dB with just 5 mins. of data samples. The prediction error
remains flat at 2.0 dB with additional fine-tuning showing that
D3PicoNet achieves near-optimal results with only 5 mins. of
samples. The results show that D3PicoNet is robust and can
adapt well across multiple environments without a deployer
spending time collecting more samples.

Temporal Performance of SRP Prediction: Indoor environ-
ments such as a hallway, classrooms, meeting offices, etc.
may be subject to change in their surrounding structures, such
as the reorientation of desks and benches and the addition
or removal of wall paintings. Since D3PicoNet relies on the
previously randomly measured SRPs to train and build the
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model, these changes may affect the model performance. In
D3PicoNet, we would like to explore how these changes
affect the accuracy of SRP prediction. We use building A
for temporal performance analysis, collecting more samples
on various days and evaluating them on a previously trained
model. Figure 13 shows that the median SRP prediction stays
∼6.5 dB on average over 51 days. The average median error
reduces with fine-tuning of the model around 31st day. The
result shows that the trained model stays applicable with
periodic fine-tuning.

B. Picocell Deployment

Homogeneous Deployment: We evaluate 122 GHz homoge-
neous deployment on Env A.1 and Env A.2 because they repre-
sent the diverse set of environments with different structures of
building A. We first emulate SRPs in these two environments
using the Ray-tracing method (process described in section
III-D). Emulated SRPs indicate 100% accurate SRPs at all
unobserved locations and correspond to Optimal deployment.
We use the mean, and standard deviation of the SRP prediction
error from measurements to re-estimate SRPs at all locations
since D3PicoNet’s SRP prediction is not 100% accurate. We
hypothesize that since we can predict SRP with a learning-
based model, we can then predict signal strength from picocell
to reflector and reflector to the client.

Figure 15(a) shows the location of picocells obtained with
Common-Sense, Random, D3PicoNet, and Optimal to reduce
Link-Outage Probability. We see that D3PicoNet’s locations
are overlapped more than 96% with Optimal (62 out of 64),
showing that D3PicoNet achieves near-optimal deployment
results. Figure 15(b) shows the 2D top-view layout of Env
A.2, and we observe that most picocells are located near the
lower center to maximize the use of metallic reflectors near
the building entrance. Figure 16(b) shows that Optimal and
D3PicoNet ensure that Link-Outage Probability remains below
15% across all samples indicating wide coverage. Based on the
SRPs, we estimate the data throughput at the client location
using the available bandwidth ∼7 GHz and noise floor (-
120 dB for 122 GHz). Figure 16(a) shows that D3PicoNet
and Optimal require an equal number of picocells to support
data throughput of 27 Gbps. Also, D3PicoNet always selects
picocell locations better than Random (red and black curves
of Figure 16[a]). This result shows that D3PicoNet deploys
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picocells with more than 96% accuracy.
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Heterogeneous Deployment: We use Env A.2 for heteroge-
neous deployment. Based on the practical bandwidth range, we
use the bandwidth of 1 GHz and 7 GHz for 24 GHz and 122
GHz, respectively, to calculate data rates based on their SRPs.
We simulate D3PicoNet to find the number of picocells needed
to support different data throughput and environment coverage
in three different settings: (a) with 24 GHz, (b) with 122 GHz,
and (c) with 24 GHz and 122 GHz together. Figures 14(a–
c) show a heatmap of the picocells needed to cover a given
environment region with specific data throughput support. We
find that 24 GHz can only support up to ∼5 Gbps on average,
while a higher number of picocells (Dense Deployment) are
needed to support a wide area of the environment. However,
D-band (122 GHz) can support up to ∼35 Gbps with a smaller
number of picocells (Light Deployment). Deploying 24 GHz
and 122 GHz together reveals that most of the coverage is
dominated by 122 GHz picocells, thus requiring more 122

GHz picocells to support higher data throughput. However, a
more realistic approach requires a detailed analysis of picocell
cost at 122 GHz and 24 GHz, the data rate requirement of
clients in a heterogeneous environment.

VI. RELATED WORK

Signal Reflection Prediction at D-Band: Signal attenuation
increases with the operating frequency of the mmWave and
requires a careful analysis of the environment before their
prediction. Simulation-based methods such as the Ray-tracing
propagation model [36] are accurate at low-frequency deploy-
ments and mostly applicable for outdoor settings. Matlab’s ray
tracing models for diverse environments are currently limited
to 100 GHz, and there are extremely limited datasets about the
signal reflection profile model at D-band. [21] used the sim-
ulation approach after finding the strong reflectors explicitly
and achieved the prediction error of 2.8 dB. But their approach
requires modeling each environment separately and needs to
be more generalizable. Various commercial products aim to
help outdoor deployment by implementing signal repeaters and
exploiting channel multipath [37], [38], but they are primarily
focused on outdoor settings and have minimal research on
them. Besides, the specularity of mmWave [39] and weak
reflectivity [40] of the indoor reflectors at higher frequency
demands extensive surveys to know the SRP of the environ-
ment locations. In D3PicoNet, we propose the vision-assisted,
semantically-corrected, and deep learning-based approach to
predict SRPs across the entire environment based on a few
random observations.

SRP-aided Picocell Deployment: Accurate signal reflection
profile prediction allows multiple applications [41]–[45]. All
these applications rely on the network to choose the cor-
rect coding scheme [46] to transmit data with higher data
throughput. Multiple commercial tools [37], [47] include the
enhanced vegetation segmentation on Ray-tracing modeling
to effectively deploy small 5G cells outdoors to support the
maximum number of clients. Prior work has explored the
optimal deployment at 24 GHz [2] to help maximize the
number of clients and provide better fairness. Furthermore, the
heterogeneous deployment of 24 GHz and 122 GHz picocells
together allows the picocell to support the nearby client based
on their data throughput requirement. In D3PicoNet, we find
the trade-off between the cost, coverage, and data throughput



to explore the possibility and challenges of deploying multi-
frequency picocells to support various applications.

VII. CONCLUSION

This work presents a deep-learning approach to reduce
the manual site survey requirements for effective deployment
of picocells at D-band mmWave frequency. D3PicoNet only
uses a few randomly collected samples to learn and predict
the SRPs at all remaining unobserved locations. D3PicoNet
leverages the SRP prediction and D3PicoNet’s deployment
algorithm to find the number of picocells and their locations to
provide the required level of coverage across the environment
with specific data throughput guaranteed. D3PicoNet also
generalizes to diverse environments making it suitable for any
indoor deployment with a limited model update to enable
reliable next-generation connectivity.
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