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Abstract— In this paper, we address the problem of temporal
logic planning given both hard specifications of the robot’s
mission and soft preferences on the plans that achieve the
mission. In particular, we consider a problem whose inputs
are a transition system, a linear temporal logic (LTL) formula
specifying the robot’s mission, and an ordered sequence of
formulas expressed in linear dynamic logic over finite traces
(LDLf ) specifying the user’s preferences for how the mission
should be completed. The planner’s objective is to synthesize,
on this transition system, an infinite trajectory that best fits
the user’s preferences over finite prefixes of that trajectory
while nonetheless satisfying the overall objective. We describe
an algorithm for this problem that constructs, from the inputs,
a product automaton —which is, in fact, a special kind of state-
weighted Büchi automaton— over which an optimal trajectory
is synthesized. This synthesis problem is solved via reduction to
the minimax path problem in vertex weighted graphs, which can
be solved by variants of the standard algorithms for computing
shortest paths in a graph or by algorithms for the all-pairs
bottleneck paths problem on vertex-weighted graphs. We show
the applicability of the approach via some case studies, for
which we present results computed by an implementation.

I. INTRODUCTION

As techniques to solve traditional problems in motion
and path planning —those concerned with constructing a
finite trajectory that starts from an initial state and ends
in a goal state while avoiding obstacles [19]— have ma-
tured, the community’s focus has expanded to include richer
classes of problems, including those grounded in temporal
logic. Temporal logic planning problems [4], [10], [27]
extend the classical conception of motion planning in several
ways, most notably by generalizing the constraint of merely
avoiding obstacles to any user-specified temporal or spatial
constraints, and by allowing the trajectory to be infinite.
Progress on these problems has been achievable thanks, first,
to the maturity of temporal logics, primarily Linear Temporal
Logic (LTL), which allow the user to use simple, high-level
logical formulas to express complex missions; and second,
to the maturity of model checking techniques that enable the
robot to automatically make plans for those missions.

In this paper, we consider an extension to temporal logic
motion planning in which an LTL task specification is
augmented with an ordered collection of preferences, which
function as soft constraints on the robot’s motion. As an
illustrating example of the kind of missions our approach
can handle, consider the environment in Figure 1a, inspired
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Fig. 1. a) An environment in which a mobile robot patrols the bathroom
and the kitchen such that each must be visited infinitely often. b) A transition
system model of this environment.

by the examples in Lahijanian et al. [17], in which a mobile
robot in a home is tasked to patrol the kitchen (k) and
bathroom (h) to detect water leakage. This environment is
modeled as a transition system, as shown in Figure 1; such
a model might be formed in a variety of ways, for example
using the approach proposed in [20]. The patrolling mission
for this robot can be characterized as “visit the bathroom and
the kitchen, each one infinitely often,” expressed in the LTL
formula �♦k ∧�♦h.

Such a mission can, in general, be satisfied by many
plans. But the user may prefer, if possible, some additional
properties to hold on the robot’s plan. Therefore, he or
she may, in advance, guide the planner by specifying their
preferences. The planner must generate a plan that satisfies
these preferences, if it is possible to do so. For example, the
user of the robot in Fig. 1 might have preferences such as:
(a) “The robot should not go into room d1.”
(b) “The robot should not go into room d2.”
(c) “If the robot enters a bedroom d1 or d2, it should first

put in the slippers from the closet c.
In general, it will not be possible for the robot to satisfy all of
the specified preferences at once. We assume, therefore, that
the user has specified the preferences in order of importance,
from most important to least important.

We are interested in planning algorithms that allow the
robot to complete its mission while satisfying as many of
the preferences as possible, subject to the stipulation that a
higher priority preference should not be sacrificed in order to
satisfy lower-priority preferences. In our example, an optimal
trajectory would, starting from l, travel to c, then alternate
between k and h, traveling via d2. This infinite trajectory
would satisfy preferences (a) and (c), but not (b). Note that
no trajectory can satisfy all three of the given preferences.

The contribution of this paper is a general formulation of
this type of problem, in which the overall mission is specified
as an LTL formula and the preferences are expressed as



an ordered set of LDLf formulas. To achieve this goal, we
first review some related work (Section II), and preliminary
definitions (Section III). We then provide a precise problem
statement (Section IV). Then we describe an algorithm to
solve this problem, based on the construction and analy-
sis of a certain type of state-weighted Büchi automaton
(Section V), along with some case studies solved by our
implementation of this algorithm (Section VI) and some
concluding discussion (Section VII).

II. RELATED WORK

A vibrant community of researchers has been investigating
the use of formal methods to plan the motions of robots for
some time. Such techniques play an established and growing
role in robotics for specifying the robots’ goals, verifying
correctness of parts of systems, and synthesizing controllers
with desired properties [5], [6], [8], [11], [12], [14], [15],
[21], [24], [26]. A recent survey by Kress-Gazit, Lahijanian,
and Raman reviews the current status of the field [16].

A number of papers in this area address problems that
are related to the problem we address in this paper. Smith et
al. [27] consider synthesizing an optimal trajectory satisfying
an LTL formula. The generated plans are optimal in the sense
of minimizing the maximum time delay between visiting
states of a certain property. Our approach uses a different
optimality criterion, based on user-specified preferences.

Tumova et al. [30] show how, for the finite horizon case, to
synthesize a strategy violating the least important safety rule
for the shortest amount of time. Our work differs in our focus
on an infinite rather than finite horizon, which complicates
the notion of the amount of time the preferences are violated.

More broadly, other research considers automatic synthesis
under LTL specifications for which the system has no trajec-
tory satisfying the specifications. Lahijanian et al. [17] con-
sider synthesizing a trajectory that has “the closet distance”
to a given co-safe LTL formula, quantified by assigning costs
to violations of atomic propositions. Kim et al. [15] consider
the problem of making a specification automaton for which
the system has a satisfiable trajectory such that the made
automaton has minimal distance to the original specification
automaton. A similar problem has been addressed for prob-
abilistic systems by Lahijanian and Kwiatkowska [18].

Alur et al. [1] addressed the problem of assigning priorities
on infinite words. They extended the classical definition of
Büchi automaton with a function assigning to each state a
rank; accordingly, words which pass infinitely often through
states with higher ranks have higher priorities. However,
constructing such automata may be challenging for users.
The problem we consider in this paper ultimately leads to
finding, on a state-weighted Büchi automaton, an accepting
run with the highest priority in sense of their definition.

Two other recent papers [9], [29] consider a maximum
realizability problem that similar to our problem is a syn-
thesis problem under hard specifications and a set of soft
constraints. Their problem, however, calls for the synthesis
of a transition system, rather than of a trajectory over a given
transition system.

Finally, recent work by Wilde et al. [32] and by Nardi and
Stachniss [22] shows how to elicit and exploit users’ prefer-
ences about the robot’s movements through its environment.

III. PRELIMINARY DEFINITIONS: WORDS, TRANSITION
SYSTEMS, LTL, BÜCHI AUTOMATA, AND LDLf

In this section, we review the definitions of several formal
tools that we utilize to define and solve the preference-guided
temporal planning problem. We present these standard def-
initions here to help ensure that this paper remains self-
contained; readers already familiar with these tools may wish
to skip ahead to Section IV.

A. Words, finite and infinite

The set of all finite words over an alphabet Σ is denoted
Σ∗; the set of all infinite words on the same alphabet is
denoted Σω . For any integer j ≥ 0 and infinite word
w = a0a1a2 · · · ∈ Σω , we use w[..j] and w[j..] to denote
respectively the prefix a0a1 . . . aj and the postfix ajaj+1 . . .
of w. We write w[i..j] and w[i] to denote aiai+1 · · · aj and
ai, respectively. For finite words, these same four notations
apply. The infinite repetition of a finite word r ∈ Σ∗, which
is an infinite word in Σω , is denoted rω .

B. Transition systems

Next we consider a structure to model the environment.

Definition 1: A transition system is a tuple T =
(S,R, s0, AP, L), in which S is a finite set of states; R ⊆
S × S is a transition relation; s0 ∈ S is the initial state;
AP is a set of atomic propositions; and L : S → 2AP is a
function associating atomic propositions to each state.

A transition system may perhaps be most readily understood
as a directed graph; see Figure 1. An infinite path on the
transition system is a sequence of states s0s1s2 · · · ∈ Sω ,
starting from the initial state s0, and for which (si, si+1) ∈ R
for all i ≥ 0. Since we are interested in infinite paths, we
assume that the transition system does not have any blocking
states, that is, states without any outgoing edges.

To each state s, the labeling function L assigns a (pos-
sibly empty) set of atomic propositions L(s), describing
the properties of interest that hold at that state. For any
infinite path π = s0s1s2 · · · ∈ Sω , we define its trace as
trace(π) = L(s0)L(s1)L(s2) · · · ∈ (2AP )ω . The trace of a
finite path is defined similarly.

C. Linear temporal logic

The overall mission for our robot is expressed as a
formula expressed in LTL over the atomic propositions in
the transition system.

Definition 2: Given a set of atomic propositions AP , an
LTL formula ϕ over AP is a word generated by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ©ϕ | ♦ϕ | �ϕ | ϕ Uϕ,

in which p ∈ AP ; ¬ (negation), ∧ (conjunction), and ∨ (dis-
junction) are Boolean operators; © (next), ♦ (eventually),
� (always), and U (until) are temporal operators.



Fig. 2. A Büchi automaton Aϕ for LTL formula ϕ = �♦k ∧ �♦h. For
the transition system in Figure 1, both the formula and the corresponding
automaton shown here specify trajectories that infinitely often visit both the
kitchen and the bathroom.

Such a formula is interpreted as follows.

Definition 3: Let σ = A0A1A2 · · · ∈ (2AP )ω be a trace,
and ϕ be an LTL formula. We say that σ satisfies ϕ, denoted
σ � ϕ, if the tuple (σ, ϕ) is related by the satisfaction relation
�, defined recursively as follows:
• σ � p iff p ∈ A0;
• σ � ¬ϕ iff σ 2 ϕ;
• σ � ϕ1 ∧ ϕ2 iff σ � ϕ1 and σ � ϕ2;
• σ � ϕ1 ∨ ϕ2 iff σ � ϕ1 or σ � ϕ2;
• σ �©ϕ iff σ[1..] � ϕ;
• σ � ♦ϕ iff ∃k ≥ 0, σ[k..] � ϕ;
• σ � �ϕ iff ∀k ≥ 0, σ[k..] � ϕ;
• σ � ϕ1Uϕ2 iff ∃j ≥ 0, σ[j..] � ϕ2 and ∀0 ≤ i <
j, σ[i..] � ϕ1;

As an example, recall the mission of the robot in Figure 1,
ϕ = �♦k ∧ �♦h, which describes trajectories that always
eventually visit the kitchen (that is, visit the kitchen infinitely
often), and also always eventually visit the bathroom. The
formula ϕ2 = ♦(k ∧ ♦(c ∧ ♦�h)) specifies all trajectories
in which the robot visits the kitchen, the closet, and the
bathroom, in that order at least once, and then ultimately
stays in the bathroom forever. The LTL formula ϕ3 =
ϕ2∧�(¬k∨©�¬k) imposes the restriction of “not allowing
the kitchen to be visited more than once” onto ϕ2.

D. Büchi automata

Though our approach accepts the mission specification as
an LTL formula, the operation of our algorithm constructs
and utilizes a different representation of the mission, called
a Büchi automaton, defined as follows.

Definition 4: A Büchi automaton is a tuple A =
(Q,Σ, δ, q0, F ), in which Q is a finite set of states; Σ is
an alphabet; δ ⊆ Q×Σ×Q is a transition relation; q0 ∈ Q
is the initial state; and F ⊆ Q is a set of accepting states.

Büchi automata may readily be visualized as directed
graphs. See Figure 2. Note the structural similarities to
nondeterministic finite automata.

An infinite run r over a Büchi automaton is an infinite
sequence of states r = q0q1q2 · · · ∈ Qω starting at the initial
state q0, such that for all i ≥ 0, there exists an a ∈ Σ such
that (qi, a, qi+1) ∈ δ. A sequence r = q0q1q2 · · · ∈ Qω is a
run for a word w = a0a1 · · · ∈ Σω if (qi, ai, qi+1) ∈ δ for
each i ≥ 0. We use inf(r) to denote the set of states that
appear infinitely many times in an infinite run r = q0q1q2 . . .,

that is, inf(r) = {q ∈ Q | ∀i ≥ 0,∃j ≥ i, qj = q}. Run r
is accepting if inf(r) ∩ F 6= ∅. The language of a Büchi
automaton A, denoted Lω(A), is defined as follows:

Lω(A) = {w ∈ Σω | there exists an accepting run r for w}.

Büchi automata are of interest to us because they can
encode our robot’s LTL mission in a form more amenable
to algorithmic analysis. Specifically, for any LTL formula
ϕ over a set of atomic propositions AP , there exists a
Büchi automaton Aϕ with alphabet Σ = 2AP such that
Lω(Aϕ) = {σ ∈ (2AP )ω | σ � ϕ}, that is, automaton Aϕ
accepts exactly all traces satisfying ϕ. Algorithms to perform
this kind of construction of a Büchi automaton from an LTL
formula are well-known [2], [13], [28], [31].

E. Linear dynamic logic over finite traces

Finally, we review the formal language, namely Linear
Dynamic Logic Over Finite Traces (LDLf ), used to specify
preferences as part of the problem input. The syntax of LDLf
is defined below.

Definition 5: Given a set of atomic propositions AP , an
LDLf formula ψ over AP is a word generated by the
following grammar, with start symbol ψ:

ψ ::= p | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | 〈ρ〉ψ | [ρ]ψ

ρ ::= φ | ψ? | ρ; ρ | ρ+ ρ | ρ∗

in which p is an atomic proposition in AP and φ is a
propositional formula over the atomic propositions in AP .

Notice that LDLf formulas can combine two types of
constructions, realized in the symbols ψ and ρ. The first type,
denoted ψ, is similar to an LTL formula except that it has
modal operators (〈〉 and []) instead of temporal operators. The
second type, denoted ρ, is called a path expression, in which
operators ‘;’(concatenation), ‘+’(union), and ‘*’(Kleene star)
are exactly the operators used within regular expressions. As
an example path expression, consider ρ = k; (true)∗;h over
AP = {l, k, d, h, c}, the set of automatic propositions used
for the example in Figure 1. This formula specifies all finite
traces that start from the kitchen and end in the bathroom.

LDLf uses the operators 〈〉 and [] to encapsulate an REf
expression ρ to create formulas of the form 〈ρ〉ψ and [ρ]ψ.
Informally, the former means that from the current time
instance (the current position), with a trace satisfying ρ we
can reach a time satisfying formula ψ; while the later means
that from the current time instance, all traces satisfying ρ
end in a time instance satisfying ψ.

Each LDLf formula ψ over AP specifies a set of finite
traces traces(ψ) ⊆ (2AP )∗ such that each finite trace
σ̂ ∈ traces(ψ) satisfies ψ, which is denoted σ̂, 0 � ψ. The
semantics of LDLf is defined as follows.

Definition 6: Given a set of atomic propositions AP and
a finite trace σ̂ ∈ (2AP )∗, it is inductively defined whether
formula ψ is true at an instant 0 ≤ i ≤ |σ̂|−1 of σ̂—denoted
σ̂, i � ψ—as follows:
• σ̂, i � p iff p ∈ σ̂[i]



• σ̂, i � ¬ψ iff σ̂, i 2 ψ
• σ̂, i � ψ1 ∧ ψ2 iff σ̂, i � ψ1 and σ̂, i � ψ2

• σ̂, i � ψ1 ∨ ψ2 iff σ̂, i � ψ1 or σ̂, i ∨ ψ2

• σ̂, i � 〈ρ〉ψ iff for some i ≤ j ≤ |σ̂| − 1, it holds that
(i, j) ∈ R(ρ, σ̂) and σ̂, j � ψ

• σ̂, i � [ρ]ψ iff for all i ≤ j ≤ |σ̂| − 1 such that (i, j) ∈
R(ρ, σ̂), it holds that σ̂, j � ψ

where the relation R(ρ, s) is defined recursively as follows:
• R(φ, s) = {(i, i+ 1) | s, i � φ}
• R(ψ?, s) = {(i, i) | s, i � ψ}
• R(ρ1; ρ2, s) = {(i, j) | exists k such that (i, k) ∈
R(ρ1, s) and (k, j) ∈ R(ρ2, s)}

• R(ρ1 + ρ2, s) = R(ρ1, s) ∪R(ρ2, s)
• R(ρ∗, s) = {(i, i)} ∪ {(i, j) |

exists k such that (i, k) ∈ R(ρ, s) and (k, j) ∈
R(ρ∗, s)}.

To illustrate the idea of LDLf , recall the example prefer-
ences from Section I. Preference (a), which states that the
robot should ideally not go into d1, can be expressed by
ψ1 = [true∗]¬d1, or by the formula ψ′1 = ¬〈true∗〉d1,
which is obtained via the duality rule between the operators
〈〉 and [], according to which [ρ]¬ψ ⇔ ¬〈ρ〉ψ for any ψ
and ρ. Similarly, preference (b) can be expressed in LDLf as
ψ2 = [true∗]¬d2 and preference (c) as ψ3 = ([true∗]¬(d1∨
d2)) ∨ (〈(¬(d1 ∨ d2))∗〉c). The first part of ψ3 says that the
robot does not go into any of d1 and d2, and the second part
says that the robot should go to c before going to d1 or d2.

IV. OPTIMAL PREFERENCE PLANNING

This section presents the definition of our optimal pref-
erence planning problem. An instance of this problem is
defined by three elements: (1) a transition system T , describ-
ing the connectivity of the environment in which the robot
moves; (2) a goal specification, an LTL formula ϕ; and (3)
an ordered list of n preferences, expressed as LDLf formulas
ψ1, ψ2, . . . , ψn that the user would prefer to be satisfied.

We focus on preferences specified in LDLf , rather than
some other specification language, because of its balance of
human legibility, expressivity, and efficiency of computation.
One alternative would be Linear Temporal Logic for Finite
Traces (LTLf ). However, De Giacomo and Vardi [7] showed
that this language is not as powerful as it was traditionally
assumed, and hence, they proposed LDLf as a strictly more
expressive language with similar computational complexity
to LTLf .

Based on these preferences, we define for the traces
of finite trajectories, a cost function f : (2AP )∗ →
{0, 1, · · · , nn} as follows:

f(σ̂) = Σσ̂ /∈traces(ψi)n
n−i. (1)

Notice that a trajectory that violates higher ranked prefer-
ences receives a higher cost compared to one who violates
lower ranked preferences. Accordingly, among two finite
trajectories, the one with lower cost is preferred.

Our plans, however, will be infinite trajectories, for the
traces of which we define a new cost function fω :

Algorithm 1: OPTIMALPREFERENCEPLANNING

1 Input: A transition system T , an LTL formula ϕ, and a
sequence of n LDLf formulas ψ1, ψ2, . . . , ψn
Output: An infinite path π = s0s1s2 · · · on T such
that trace(π) � ϕ and fω(trace(π)) is minimized.

2 for i = 1 to n do
3 Di ← LDLF2DFA(ψi)
4 F ← INTEGRATEDFAS2FILTER(D1, D2, . . . , Dn)
5 Aϕ ← LTL2BÜCHIAUTOMATON(ϕ)
6 P ← Aϕ × T × F
7 if not HASACCEPTINGRUN(P) then
8 return nil
9 (r1, qf , r2)← MINIMAXACCEPTINGRUN(P)

10 π = CONVERT2PATHONTS(r1, qf , r2)
11 return π

(2AP )ω → {0, 1, · · · , nn}, such that for any σ ∈ (2AP )ω ,

fω(σ) = max
i≥0

f(σ[..i]). (2)

We combine these elements to form the OPP problem.

Problem: Optimal Preference Planning (OPP)
Input: A transition system T , an LTL formula ϕ, and

n LDLf formulas ψ1, ψ2, · · · , ψn.
Output: An infinite path π over T such that trace(π) �

ϕ and fω(trace(π)) is minimized.

V. ALGORITHM DESCRIPTION

This section describes an algorithm for the OPP problem.
The algorithm operates in three phases. First, we construct
a representation of the given preferences in the form of a
combinatorial filter whose outputs are the costs as determined
by Equations 1 and 2. Then, the algorithm forms a product
graph of this filter with a Büchi automaton for the LTL
goal specification, forming a certain type of state-weighted
Büchi automaton the accounts for both the goal and the
costs arising from violated preferences. Finally, we can
generate the optimal solution trajectory on this automaton.
Algorithm 1 summarizes the process.

A. Cost filters

The first step in Algorithm 1 is to construct a representa-
tion that integrates the effects of all of the LDLf formulas.
This structure is defined as follows:

Definition 7: A filter is a tuple F = (V, Y, τ, v0, c), in
which V is a finite set of states; Y is an alphabet; v0 is
the initial state; τ : V × Y → V is a complete transition
function; and c : V → {0} ∪ Z+ is a coloring function that
assigns a non-negative cost to each state.

This kind of filter can be viewed as a slight generalization of
the standard deterministic finite automaton, in which, rather
than a single distinction between accepting or non-accepting
states, the filter can produce many different output values.
For any word w ∈ Y ∗, we write τ∗(v0, w) to denote the
state the automaton reaches when word w has been read.



Fig. 3. (a) A DFA D1 accepting traces satisfying LDLf formula ψ1 =
[true∗]¬d1 (b) A DFAD2 accepting all the traces satisfying LDLf formula
ψ2 = [true∗]¬d2 (c) Filter F constructed by Lemma 1 for D1 and D2.

Note in particular that a filter partitions the set of all finite
words in Y ∗ such that all words w for whom c(τ∗(v0, w))
are equal fall into a single equivalence class.

We leverage a filter to represent the cost function f
(Equation 1), as implied by the following result.

Lemma 1: Let ψ1, ψ2, . . . , ψn be n LDLf formulas over
a set of automatic proposition AP , and let f be the function
in Equation 1 defined for these formulas. Then there exists a
filter F = (V, 2AP , τ, v0, c) such that, for each σ̂ ∈ (2AP )∗,
c(τ∗(v0, σ̂)) = f(σ̂).

Proof: The algorithm of De Giacomo and Vardi [7] en-
sures that, for any LDLf formula ψi, we can construct a DFA
Di = (Vi, 2

AP , τi, v0,i, Fi), for which L(Di) = traces(ψi).
From these DFAs, construct F = (V, 2AP , τ, v0, c) such that
• V = V1 × V2 × · · · × Vn,
• v0 = (v0,1, v0,2, . . . , v0,n),
• for any state (v1, v2, . . . , vn) ∈ V and any A ∈ 2AP ,

τ((v1, v2, . . . , vn), A)

= (τ1(v1, A), τ2(v2, A), . . . , τn(vn, A)), (3)
and

• for each state (v1, v2, . . . , vn) ∈ V ,

c((v1, v2, . . . , vn)) = Σvi /∈Fi
nn−i.

From the construction, it is easy to observe that f(σ̂) =
c(τ∗(v0, σ̂)) for any σ̂ ∈ (2AP )∗.

In Algorithm 1, lines 2–4 utilize Lemma 1 to construct a
cost filter F . Figure 3 shows an example. The interpretation
of this F is that the value assigned in F to the state reached
by some finite trajectory in T is equal to the cost determined
by the given preferences for that finite trajectory.

B. The product automaton

The next portion of Algorithm 1 (lines 5 and 6) forms
data structure that integrates both the preferences and the
goal specification. To do so, a specific product of automata
is constructed according to the following definition.

Definition 8: Given a transition system T =
(S,R, s0, AP, L), a Büchi automaton A =
(Q, 2AP , δ, q0, F ), and a filter F = (V, 2AP , τ, v0, c),
the product automaton P = A × T × F is a tuple
P = (QP , δP , q0,P , FP , wP) in which

1) QP = Q× S × V is a finite set of states;
2) q0,P = (q0, s0, v0) is the initial state;

3) δP ⊆ QP × QP is a transition relation, such that
((q, s, v), (q′, s′, v′)) ∈ δP if and only if (s, s′) ∈ R,
(q, L(s), q′) ∈ δ, and τ(v, L(s)) = v′;

4) FP = F × S × V is a set of accepting states;
5) wP : QP → {0} ∪ Z+ is a state-weighting function,

such that wP((q, s, v)) = c(v) for each (q, s, v) ∈ QP .

Notice that this product automaton P is itself a Büchi
automaton with the trivial alphabet, but to each state of it
a weight has been assigned.

The purpose of the product automaton is to encapsulate
the effects of both the goal mission and the preferences.
To demonstrate how, the following lemma establishes the
relationship between P and the Büchi automaton A derived
from the goal ϕ.

Lemma 2: Let T , A, F , and P be the structures in
Definition 8. It holds that for any accepting run rP =
(q0, s0, v0)(q1, s1, v1)(q2, s2, v2) · · · over P , the sequence
π = s0s1s2 · · · is a path for T such that trace(π) ∈ Lω(A).
Moreover, for any path π = s0s1s2 · · · in T such that
trace(π) ∈ Lω(A), there exists an accepting run rP =
(q0, s0, v0)(q1, s1, v1)(q2, s2, v2) · · · over P .

Proof: For the first claim, given the definitions of QP ,
Q0,P , and δP , the sequence π = s0s1s2 · · · is a path over T ,
and that the sequence r = q0q1q2 · · · is a run for trace(π) =
L(s0)L(s1)L(s2) · · · over A. Given the definition of FP and
that rP is an accepting run for P , sequence r, which is a run
for π, is an accepting run over A. Thus, trace(π) ∈ Lω(A).

For the second claim, given that π ∈ Lω(A), there exists
an accepting run r = q0q1q2 · · · ∈ Qω for trace(π) over
A. Also duo to that τ is a complete function, there exists
a unique run v0v1v2 · · · for trace(π) on F . Considering
the way the components of P are constructed, it is easy
to observe that rP = (q0, s0, v0)(q1, s1, v1)(q2, s2, v2) · · ·
is a run over P . Having the definition of FP and that the
sequence r = q0q1q2 · · · is an accepting run over A, it holds
that inf(r) ∩ F 6= ∅, which implies that for infinitely many
i’s, (qi, si, vi) ∈ FP . Thus, run rP is accepting over P .

Lemma 2 establishes that, for any accepting run over the
product automaton, there is a feasible solution for the OPP
problem, and likewise for any feasible solution of OPP, there
is an accepting run over the product automaton.

The key remaining question is when that solution is
optimal, in the sense of minimizing the cost of preference
violations. To answer that question, we first define a function
fP over the infinite runs of P . Specifically, for any infinite
run rP = p0p1p2 · · · ∈ QωP , we let

fP(rP) = max
i≥0

wP(pi). (4)

Between function fP and fω there is a special connection,
revealed by the following lemma.

Lemma 3: Given the structures T , A, F , and P from
Definition 8, let π = s0s1s2 · · · be an infinite path
over T such that trace(π) ∈ Lω(A) and rP =
(q0, s0, v0)(q1, s1, v1)(q2, s2, v2) · · · be any run over P .
Then fP(rP) = fω(trace(π)).



Proof: Due to the construction of P , the sequence r =
q0q1q2 · · · is a run for trace(π) overA, and t = v0v1v2 · · · is
a run for trace(π) over F . For any i ≥ 0, wP((qi, si, vi)) =
c(vi). Therefore, maxi≥0 wP((qi, si, vi)) = maxi≥0c(vi),
which implies that fP(rP) = fω(trace(π)).

An impact of Lemma 2 combined with Lemma 3 is that
to solve OPP, we can compute the state-weighted Büchi
automaton P , and then find on P an accepting run rP that
minimizes fP(rP). Subsequently, the projection of rP on T
will be a solution to OPP.

C. Trajectory generation

The final phase of Algorithm 1, shown in lines 7–10, is to
find an optimal accepting run over P . As a first step, using
standard algorithms for checking emptiness of the language
of a Büchi automaton, one can decide in O(|QP |) time
whether the input P has a feasible solution or not. If not,
Algorithm 1 reports an error and terminates.

However, if there is a feasible solution, then there may
be many —even infinitely many— optimal solutions. Fortu-
nately, we need to find only a single solution. The following
result establishes that we need only search for solutions with
a specific structure.

Lemma 4: If the OPP instance with product automaton
P has a feasible solution, then it has an optimal solution
of the form rP = r1(qfr2)ω where r1, r2 ∈ Q∗P , qf ∈ FP ,
r1[i] 6= qf for any 0 ≤ i < |r1|, and r2[j] 6= qf for any
0 ≤ j < |r2|.

Proof: The idea is that from any optimal solution r′P ,
we can construct an optimal solution of the form rP =
r1(qfr2)ω such that fP(r′P) = fP(rP). Given that r′P is
accepting—going through an accepting state infinitely many
times—we have that r′P = r1qfr2qfr3 · · · for a qf ∈ FP
such that ri ∈ Q∗P for any i ≥ 1, and qf does not
appear in any of the ri’s. Now, from r′P , we construct
rP = r1qfr2qfr2 · · · = r1(qfr2)ω . Clearly, run rP is defined
over the automaton given that r1qfr2qf was a prefix of
r′P , and that rP is accepting given that qf ∈ inf(rP).
To show that fP(r′P) = fP(rP), observe that it holds that
fP(r′P) ≤ fP(rP) given that r′P is optimal, and it holds that
fP(r′P) ≥ fP(rP) given the definition of fP (Equation 4)
and that r′P contains all the states of rP .

The upshot of Lemma 4 is that we can restrict our attention
to solutions composed of a prefix that reaches some accepting
state qf , followed by repetitions of a cycle including qf . The
following lemma restricts this form of run further.

Lemma 5: There exists a run rP = r1(qfr2)ω for
Lemma 4 in which both r1 and r2 are simple; that is,
r1[i] 6= r1[j] for any 0 ≤ i 6= j < |r1|, and r2[i] 6= r2[j] for
any 0 ≤ i 6= j < |r2|.

Proof: The idea is to remove duplicate states from r1
and r2 until they become simple. Then, we need to show
that the new run is mapped by function fP to the same
value to which the original run was mapped. Assume that
r2 is not simple, that is, it passes through a state q at
least twice. Let r2 = q0q1 · · · qi · · · qjqj+1 · · · q|r2|−1 such

that qi = qj = q where i and j are respectively the first
and the last positions at which q appears. There are two
cases: the first one where j < |r2| − 1, and the second
one where j = |r2| − 1. In the former case, we replace
r2 by a new sequence q0q1 · · · qiqj+1 · · · q|r2|−1, and in the
later case, we replace r2 by a new sequence q0q1 · · · qi. In
both cases, the new sequence, which is clearly a run for
the automaton, passes through q exactly once. This process
of removing duplicate states is continued until r2 becomes
a simple cycle. The same process applicable on r1. Let
assume that the new run is r′P . Run rP was optimal, so
it holds that fP(rP) ≤ fP(r′P). Given the definition of fP
and that rP contains all states appeared in r′P , it holds that
fP(rP) ≥ fP(r′P). Therefore, fP(rP) = fP(r′P).

The combined impact of Lemma 4 and Lemma 5 is that
we can use some graph algorithms to synthesize an optimal
run. Specifically, if we think of P as a directed graph with
QP as its vertex set and with δP as its edge set, there is an
optimal run rP = r1(qfr2)ω for which r1 and r2 are simple
paths on this graph and, moreover,

1) path r1qf is a simple path from q0 to qf such that the
maximum weight of its vertices (states) is minimum
among all simple paths starting from q0 and ending at
qf , and

2) cycle qfr2qf is a simple cycle starting at qf such that
the maximum weight of its vertices (states) is minimum
among all simple cycles starting from qf .

Accordingly, for each qf ∈ FP , we can synthesize a run
rP,qf = r1(qfr2)ω by finding a path r1qf and a cycle qfr2qf
with those properties. Subsequently, we synthesize a solution
by choosing an optimal run among those runs synthesized for
all vertices (states) qf ∈ FP .

With these conditions in mind, the only thing remains is to
find, from a given source vertex to a given destination vertex,
a path that minimizes the maximum weight of its vertices.
Notice that for path r1qf , the source vertex is the initial state
and the destination vertex is qf , while for the cycle qfr2qf ,
both the vertex and destination vertex are qf . Finding this
kind of path is the concern of the problem minimax path
for vertex-weighted graphs, which can be solved in several
different ways.

a) Path extraction via Dijkstra’s algorithm: One option
is to find the paths by a modified version of one of the well-
known algorithms for the shortest path problem, including
Dijkstra’s algorithm. We run this algorithm for each state
qf ∈ FP twice, one to find a minimax path from the initial
state to qf (path r1qf ), and the other to find minimax path
from qf to qf (qfr2qf ). By combining these two parts, for
each accepting state qf , we synthesize a run of the form rP =
r1(qfr2) as described in Lemma 4 and Lemma 5. Among the
synthesized runs for all accepting states, we choose the one
with the minimum weight as the optimal solution. Hence,
the total running time is O(|FP |(|QP | log |QP |+ |δP |)), as
the time complexity of Dijkstra’s algorithm to compute a
minimax path is O(|QP | log |QP | + |δP |). For sparse au-
tomata, this descends to O(|FP |(|QP | log |QP |)), and even
to O(|QP | log |QP |) for sparse automata whose numbers of



Fig. 4. An environment consisting of a corridor, an office, a kitchen, two
rooms, a conference hall, and a security room.

accepting states are constant. However, this complexity is
O(|QP |3) for dense automata with many accepting states.
Therefore, for dense automata we use the second algorithm,
described below.

b) Path extraction via Shapira-Yuster-Zwick: Alterna-
tively, one can solve the minimax path problem using any
algorithm for the maximum bottleneck path problem (also
called the maximum capacity path or widest path problem),
which is concerned with finding a path maximizing the
minimum weight of vertices in the path. For example,
one might use the algorithm of Shapira et al. [25]. For
this purpose, the weight of each vertex p is replaced by
(maxp′∈QP wP(p′)) − wP(p). By doing so, any bottleneck
path in the converted graph becomes a minimax path from
that source to that destination in the original graph. Finding
the all-pairs bottleneck paths using this approach takes
O(|QP |2.575) time.

Combining these options gives the following analysis of
the process of generating the optimal path in P .

Lemma 6: For any state-weighted Büchi automaton P =
(QP , δP , Q0,P , FP , cP), an optimal trajectory can be gener-
ated in time O(min(|FP |(|QP | log |QP |+|δP |), |QP |2.575)).

Thus, our algorithm for synthesizing an optimal accepting
run on P is based on this lemma. This algorithm decides
based on the sizes of δP and FP—or more precisely, whether
|FP |(|QP | log |QP | + |δP |) < |QP |2.575)—one of the two
algorithms mentioned above.

VI. IMPLEMENTATION AND COMPUTED EXAMPLES

We have implemented Algorithm 1 in Java. In this section,
we present example instances, to illustrate its operation in
solving OPP problems. The computed results were executed
on an Ubuntu 16.04 computer with a 3.6GHz processor.

For the first example, called dept, we use the environ-
ment in Figure 4, in which a mobile robots moves within
a university department consisting of a corridor, an office,
a kitchen, two rooms, a security section, and a conference
hall. Blue rectangles show regions of interest to the robot,
consisting of c in the conference hall, d1 the first entrance
of the conference hall, d2 the second door of the conference
hall, d3 the third door of the conference hall, r1 in the first
room, r2 in the second room, u in the security room, k in
the kitchen, and o in the office.

Suppose the robot is tasked with this non-trivial goal:
Take the keys from office o but before that do not go
to any of d1, d2, r1, r2, or k. Additionally, visit c,

r1, r2, and k in that order. After completing these
tasks, stay in k.

In completing this goal, the user prefers the robot to maintain
several behaviors, modeled as preferences, if possible:

1) Do not go to the office.
2) Do not use door d1.
3) Do not exit through door d2 from the conference hall.
4) Do not use door d3.
5) Check the security room before going to room r1.

Details of the encoding into an instance of OPP and a
solution trajectory, as computed by our implementation, and
shown in the left column of Figure 5. Notice that due to the
goal specification, the first preference cannot be satisfied.
Also, since preferences 2, 3, and 4 cannot be satisfied
together, the planner satisfies preferences 2 and 3, which have
higher priority. In addition, preference 5 is also satisfied.

Figure 6 illustrates a second example, called race, in
which an autonomous race car travels around a cyclic track.
Its goal is to circle the track repeatedly, visiting the pit
(p) infinitely often to refuel. States in the transition system
model both the region in which the race car is moving
(r1, r2, r3, r4, p) and its current speed (‘f’ast, ‘m’edium, or
‘s’low). Several preferences are associated with this robot’s
motion.

1) Do not accelerate or decelerate abruptly. That is, do not
change speed from fast directly to slow, nor from slow
directly to fast.

2) Drive slowly in the pit.
3) Do not drive fast on the curves.
4) Do drive fast on the straight parts.

An encoding and solution are shown in Figure 5.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a framework for solving temporal
motion planning problem, in the presence of user-specified
preferences on the solution trajectories. It is essential to
make the size of the product automaton as small as possible.
To do so, one need to abstract away from the transition
system those propositions that are irrelevant to the logical
formulas of the mission and the preferences, to minimize
those automata for the missions and the preferences, and also
to minimize the filter. To reduce the size of the automata
and the filter, one can use the well-known technique of
bisimulation minimization (See [3], [23]).

Future work, inspired by [32], will consider learning user
preferences, for the sorts of the infinite horizon scenarios
addressed here. We also consider a more general case where
the preferences are LTL formulas rather than LDLf formulas.
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