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Equivalence notions for state space minimization of combinatorial filters
Hazhar Rahmani and Jason M. O’Kane

Abstract— Combinatorial filters are formal structures for
filtering and reasoning over discrete sensor data. This paper
presents a series of results addressing the question whether
the filter minimization problem (FM), an NP-hard problem of
state space reduction on such filters, and a variant of it, the
filter partitioning minimization problem (FPM), which requires
the reduced filter to partition the state space of the original
filter, can be solved via quotient operations under equivalence
relations of the state space. We first consider the well-known
notion of bisimulation and show that, although bisimulation
always yields feasible solutions to FM and FPM, it does not
necessarily induce optimal solutions. We also establish a con-
nection between filter reduction and the notion of simulation;
specifically, we show that FM is equivalent to the problem of
inducing a minimal filter that simulates a given filter. We then
introduce a variant of bisimulation, which we call compatibility,
and prove that FPM can always be solved by computing the
quotient of the input filter under a compatibility equivalence
relation having a minimum number of equivalence classes. On
the other hand, computing optimal solutions to FM requires
to look for relations beyond equivalence relations, and in fact,
FM can be solved by computing the quotient of the original
filter under a closed covering of the state space with minimum
number of compatibility classes. Subsequently, we introduce
two special relations, the union of all compatibility relations
and the mergeability relation, that are both computable in
polynomial time. By analyzing where these two relations become
an equivalence relation, we identify several classes of filters for
which FM and FPM are solvable in polynomial time.

I. INTRODUCTION

The ability of robots to perceive and maintain salient
information about their environments —and their own place
within those environments— is rightly considered to be an
essential ingredient for many forms of autonomy. As a result,
a central thread in modern robotics research is an effort to
design and understand filtering and estimation methods.

A number of robotics researchers in recent years have
considered these kinds of problems from the perspective of
combinatorial filters, which model those processes as dis-
crete transition systems. Combinatorial filters, first proposed
by LaValle [26], [27], are a general class of models for rea-
soning about systems that process discrete (rather than con-
tinuous) sensor data. Variations on the combinatorial filtering
approach have, under various names, been used for a wide
spectrum of tasks including localization [2], navigation [28],
[52], [55], exploration [25], manipulation [24], mapping [50],
target tracking [7], [13], [63], and story validation [62]. The
essence of the approach can be understood as describing
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Fig. 1. a) An environment with four landmarks 1-4, in which a mobile
robot (not pictured) moves along a continuous path. The robot can sense at
any time the cyclic order of landmarks as observed from its current position,
but it does not know the positions of the landmarks and it does not have
a compass nor odometers. The environment is (virtually) divided into 10
regions a-j, where at all points within a region, the same cyclic order of
landmarks is perceptible. The task of the robot is to provably tell at any
time whether it is in region f or not. b) A naı̈ve filter the robot can use to
accomplish its task. Notice that each state of the filter except state a−j has
also a loop labelled by the same cyclic order perceptible by the regions of
that state, but we have avoided drawing those loops for simplicity. c) The
smallest filter equivalent to the naı̈ve filter.

filtering processes as directed graphs, in which the vertices
represent the distinct states of the information maintained by
the filter, the directed edges are labeled with sensor readings
that induce transitions between states, and the vertex labels
indicate the output of the filtering process at each state.

Central to much of the research on combinatorial fil-
ters is the notion of minimality. Specifically, questions are
asked about the minimal state information required to be
maintained in the filter, in order to accurately express the
desired behavior. This concern naturally leads to questions
about equivalences between states in the filter: If we can
construct a filter for a given task in which no pair of
distinct states is equivalent, in the (thus far informal) sense
that the distinction between them is irrelevant to the filter’s
outward behavior, then the states utilized by that filter may
illuminate the information requirements of the task. Thus,
for a given combinatorial filter, we are interested in the filter
minimization problem (FM) of finding the smallest equivalent
filter. This problem was addressed by O’Kane and Shell [35],
[36] who proved that it is NP-hard. They proposed a heuristic
algorithm to solve FM, which forms the reduced filter by
merging pairs of states who are identified to be mergeable
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using iteratively forming and coloring conflict graphs. This
algorithm can also be used for a variant of FM, called
the filter partitioning minimization problem (FPM), which
requires the reduced filter to partition the state space of the
original filter.

This paper addresses FM and FPM by considering sev-
eral distinct state-equivalence relations in the context of
that problem. Specifically, we show that the well-known
state-equivalence concept of bisimulation —which is used
widely for the minimization of other discrete transition struc-
tures [48]— does not, as intuition might suggest, correctly
capture the notion of equivalence between states necessary
to minimize a filter optimally. Nonetheless, using bisimula-
tion we identify, in Section X, classes of filters for which
FPM or FM is solvable in polynomial time. The notion of
bisimulation also provided inspiration for the correct notions
of compatibility and mergeability for FM and FPM, which
we introduce in this paper.

A. Summary of contributions

The central question we address in this article is whether
there exists an equivalence relation on the state space of the
original filter, which when used for constructing a quotient
filter does lead to an optimally reduced filter, and if yes, what
is that equivalence relation.

After reviewing related work in Section II and presenting
in Section III, the formal definitions of the two problems
we study, the FM problem and the FPM problem, this paper
presents several new contributions.

1) In Section IV, we characterize exact solutions to FM
and FPM. We show that FPM is always solved by
finding over the state space of the filter, an equivalence
relation, which is always a compatibility relation, that
has the minimum number of equivalence classes, while
solving FM requires to search for relations beyond
equivalence relations and in fact solving FM is always
solved by finding a tolerance relation that specifies over
the state space of the filter, a covering with minimum
number of compatibility classes. In Section V, we show
that for some filters, the difference between the sizes of
the optimal solutions to FM and FPM can be in the
order of the size of filter.

2) In Section VI, we show that, though the bisimilarity
relation always yields feasible solutions to both FM
and FPM, it fails to produce optimal solutions for
some filters. We then complement this negative result
by describing what bisimilarity reduction actually does
achieve: namely that it induces the filter with smallest
number of states, among all filters who behave the
same as the original filter, and whose languages are
identical to the language of the original filter, a problem
we call strong filter minimization (SFM). This result
appears in Section VII. We show, in Section VIII, that
FM is equivalent to the problem of finding a minimal
filter that simulates the original filter, a problem we
refer to as minimal simulation filter (MSF). We also
introduce a variant of MSF—the minimal partitioning

Fig. 2. a) A Venn diagram showing the connection between the bisimilarity
relation ∼F , the union of all compatibility relations fF , and the merge-
ability relation ./F for a typical filter F with state space V . Note that it
is possible that two or all these three relations coincide for some filters.
(b) A Venn diagram, over the space of state-state relations, showing the
relationships between the set of all bisimulation relations (B), the set of
all compatibility relations (C), and the set of all compatibility equivalence
relations (M) for a typical filter F with state space V .

simulation filter (MPSF), which requires the reduced
filter to partition the state space of the original filter—
and show that FPM is equivalent to this variant of MSF.
These results together characterize the relationship be-
tween filter reduction and the well-known concepts of
(bi-)simulation.

3) Finally, we show how these concepts can be used to
identify classes of filters that can be minimized in
polynomial time, in spite of the hardness [36] of FM
and FPM in general. Specifically, we show that if the
union of all compatibility relations, the counterpart of
the bisimilarity relation for the notion of compatibility,
is an equivalence relation, then that relation induces
an optimal solution for both FM and FPM. We also
introduce the notion of a mergeability relation, which is
a particular type of compatibility relation. We show that,
if the mergeability relation of a filter is an equivalence
relation, then that relation induces an optimal solution
to FM. Because these two special relations can be
computed in polynomial time, this provides an avenue
to reduce certain classes of filters in polynomial time.
Section X describes several such classes.

Concluding remarks appear in Section XI.
A preliminary version of this work appeared at

ICRA 2018 [40]. In addition to revisions throughout, the
results in Sections V, VIII, and X are new in this version.

B. A minimal motivating example

Before previewing our technical results, let us examine a
simple example that illustrates the idea. Figure 1 shows the
setting, inspired by the work of Tovar et al. [54], where the
aim is to construct a combinatorial map of the environment
and perform various tasks such as patrolling and navigation
using robots with extremely simple sensors.

Suppose a mobile robot moves in an environment in
which there are four landmarks 1-4. The robot does not
know its location and it does not have a compass nor any
odometer, but it does have a sensor by which it can sense
the cyclic order of landmarks as observed from its current
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position. That is, the sensor reports the order in which the
landmarks would be observed in a counterclockwise scan
starting (without loss of generality) at the landmark with the
smallest number. To illustrate, suppose the robot is located
as shown in Figure 1a, at a location in region a. From
that position, the sensor reads 1243 as the cyclic order of
landmarks.

Figure 1 shows a (virtual) decomposition of the environ-
ment into ten regions a-j, where each region is a set of
positions from which the robot sees the same cyclic order of
the landmarks. Notice that such a decomposition is obtained
by a set of half lines, in which each half line is created for
two landmarks whose order is swapped in the cyclic order
observed by the robot if the robot crosses that half line.

The task of the robot in this example is to determine at any
time, based on the information it receives through sensing the
cyclic order of landmarks, whether it is located in region f
or not.

A naı̈ve combinatorial filter for this task appears in Fig-
ure 1b. Each of the fifteen states in this filter corresponds to
a set of possible regions that might contain the agent. Edges
indicate changes to that set that result from changes of the
robot’s perception of the landmarks’ cyclic order. Colors on
the states indicate the filter’s output, with the darker node
corresponding to certainty that the agent is in region f and
the lighter nodes indicating otherwise.

For the original filter in Figure 1b, FM has only one
optimal solution, with 3 states. This optimally-reduced filter,
which is shown in Figure 1c, is also an optimal solution to
FPM; note that the state space of the reduced filter partitions
the state space of the original filter in the sense that each state
in the original filter is mimicked by only a single state (rather
than several states) in the reduced filter. In regard with FM,
it is possible that several states in the reduced filter together
play the role of a state in the original filter. This optimal
solution in Figure 1c is not only preferred to the naı̈ve
filter for the robot to keep but it also reveals the fact that
perhaps surprisingly the sensor reading ’1423’ corresponding
to region d, which is not adjacent to the target region f , is
a crucial one for the robot to achieve its task. In contrast,
applying the technique of bisimulation minimization does
not reduce the state space of the original filter at all. In
Theorem 3, we describe a class of combinatorial filters on
which bisimulation minimization does not reduce the state
space of the original filter at all, whereas the optimally
reduced filter has only two states.

C. An example of a combinatorial filter as a plan

In the specific example we consider here, a combinatorial
filter is used to navigate in an environment, using an approxi-
mated generalized Voroni graph (GVG) of the environment to
reach a goal location, starting from full location uncertainty.
For an example, see in Figure 3 a map of a typical university
building [5], [6], which we have augmented with its GVG
in red. We have also shown a simpler environment with
its GVG in Figure 3b for illustration. Figure 3c shows a
naı̈vely-constructed combinatorial filter, which the robot can

Fig. 3. a) A map of the third floor of ACES building of University of Texas
at Austin [5], [6], [34]. The map is overlaid with the generalized Voronoi
graph (GVG) of the environment in red. b) A simple environment and its
GVG for illustration purposes. c) A naı̈vely-constructed combinatorial filter,
which the robot can use to navigate through the environment in part b) to
reach point 3, starting from full location uncertainty.

use to navigate through that environment to reach point 4,
starting from full location uncertainty. Each state of this filter
represents a set of possible locations in which the robot can
be. Each location is written in the form AB to mean that the
robot has arrived at junction A from junction B. Each state
is labeled with an angle (0, π/2, π, etc), which is, in fact,
the output or the color of the state, and tells the robot which
corridor to follow. For example, angle 0 tells the robot to
go straight, while angle π tells the robot to turn around and
follow the corridor from which it has entered the junction.
Each transition of the filter shows how the state changes
in response to those movements. Each transition is labeled
with an observation which consists of a list of directions the
robot can observe to leave the next junction. For example,
the label of the transition from state ’all’ to state 21 is
{0, π, π/2}, which means that when the robot is entering
junction 2 from junction 1, the set of all possible directions
it observes to leave junction 2 are {0, π, π/2}. The robot
executes the plan represented by a filter by repeatedly doing
the movement associated with the current state, observing the
set of all possible directions in the junction using its sensor,
and transitioning in the graph from the current state using a
transition labeled by the perceived observation.

Given a GVG and a goal location, there is a simple
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algorithm by which one can make a naı̈ve combinatorial filter
the robot can use to navigate, starting from total location
uncertainty, to reach that goal location. Unfortunately, those
naı̈vely constructed combinatorial filters can be big for real-
world applications, but fortunately filter reduction assists
reduce resource consumption.

D. Motivation for minimization

We now consider in Figure 4, a simple example, intro-
duced by Tovar et. al. [53], that shows a family of filters for
which the minimal filter is much smaller than the original
filter. In this example two agents are located in a donut-
shaped environment divided into n regions by n sensor
beams. The task of the system is to determine at any time
whether the two agents are in the same region or not. When
an agent crosses a beam, the system knows which beam it
was, but it does not know which agent it was, nor does it
know if the crossing was clockwise or otherwise. We also
assume that at no time, the two agent simultaneously cross a
single or two separate beams. Let R = {1, 2, · · · , n} be the
set of all regions and let (r, r′) be a tuple showing that the
first agent is in region r and the second agent is in region
r′. Accordingly, the set of all such tuples, i.e., the set of all
possible region assignments, is A = R×R and the set of all
subsets of possible region assignments is I = pow(R×R).
Each element of I is a configuration the environment could
be in, and accordingly, each element of I represents a state
of the naı̈ve filter used for accomplishing the task of the
system. Subsequently, for each n, the naı̈ve filter for a donut-
shaped environment with n regions has 2n

2 − 1 states in the
worst case (including some states that may be unreachable).
A minimal filter for accomplishing the same task of the
naı̈ve filter has many fewer states. As an example, for an
environment of 3 regions, the naı̈ve filter has 511 states while
the minimal filter, as shown in the right side of Figure 4, has
only 4 states.

Note that although there is a process by which we can
make a naı̈ve filter for any instance of this problem with any
n, it is not known how we can make the minimal filter for
that instance. Subsequently, we need to make the naı̈ve filter,
but because that filter is very big, we need to minimize it.

II. RELATED WORK

Building on a foundation of prior work on minimalism in
robotics [12], [18], [29], combinatorial filters were originally
formulated by LaValle [26], [27]. The key idea is to make,
from the data accessible to the robot, a smallest abstraction
still adequate to solve a given task.

Interest in forming combinatorial filters that are minimal,
in the sense of minimizing the number of states, is motivated
not only by the reduction in resources needed to execute such
filters, but also by the insight into the nature of the under-
lying problems that arises from identifying the information
required to solve those problems. The problem of performing
this reduction automatically was first studied by O’Kane and
Shell [35], [36], who proved via a reduction from the graph
3-coloring problem that the filter minimization problem is

Fig. 4. (left) A region divided by n sensor beams, in which two agents
are located. When an agent crosses a beam, the system knows which beam
sensor it was, but it does not know which agent it was, nor does it know
the direction of crossing. The agents do not simultaneously cross beams.
The task of the system is to determine at each time weather the agents are
in the same region or not. (right) The smallest filter the system can use
for accomplishing its task for an environment of 3 sensor beams.

NP-hard. Saberifar et al. [47] showed that several special
cases of filters, including tree and planar filters, remain hard
to minimize, and that the filter minimization problem is NP-
hard even to approximate. Recently, Zhang and Shell [64]
proved that FM can be solved by finding a covering of the
filter’s state space and then presented an algorithm that uses
a SAT formulation to compute an exact solution to FM.
Our own prior work [41] proposed three different integer
linear programming formulations of the filter partitioning
minimization (FPM) problem, a variant of FM in which it is
required the reduced filter to partition the state space of the
original filter.

Bisimulation was discovered independently in at least
three different fields: in modal logic, by van Benthem [56];
in process theory, by Milner [33] and Park [38]; and in set
theory, by Forti and Honsell [15] (See the elaboration of San-
giorgi [48] upon the origins of bisimulation and simulation.)
It is currently used across many fields, including automata
and language theory [44], [45], coalgebra and coinduction
[14], [46], and dynamical and control systems [20], [57].
Generally speaking, bisimulation can be used for at least two
purposes: either to prove that two objects are behaviorally
equivalent, or to minimize the size of a structure by forming
the quotient under the coarsest bisimulation equivalence re-
lation between elements of the original structure. This paper
focuses on the latter application. Computing this coarsest
bisimulation equivalence relation is generally performed us-
ing partition refinement algorithms [23], [37]. Details about
bisimulation quotient algorithms appear in the survey by
Cleaveland and Sokolsky [10].

The original notion of simulation was introduced by Mil-
ner [30]–[32], and later refined by Park [38]. This notion—
which unlike bisimulation, is “uni-directed”—is used to
prove that an object (for example, a state or a transition sys-
tem) mimics another object; to show that a system is a correct
implementation of a smaller, abstract system; and to make
a smaller structure who with the original structure mutually
simulate each other. In the latter case, the smaller structure
is obtained by making the quotient of the original structure
under the simulation equivalence relation—the equivalence
kernel of the largest simulation relation over the state space
of the original filter. Various algorithms for simulation-based



5

minimization and computing the largest simulation relation
have been suggested by Cleaveland et al. [9], Henzinger et
al. [21], Tan and Cleaveland [51], Ranzato and Tapparo [43],
Bustan and Grumberg [8], Ranzato [42], and Gentilini et
al. [16]. The algorithm of the latter was later corrected by
van Glabbeek and Ploeger [58].

In the context of transition systems, apart from simulation
equivalence and bisimulation equivalence, a variety of other
kind of notions of equivalence on the state space of transition
systems, including trace equivalence, failure equivalence,
and readiness equivalence, among many others, have been
introduced. For surveys, see [11], [19], [49], [59], [60].

The idea of using (bi)simulation-based equivalences for
state space reduction has been used for a variety of
other structures than transition systems, including tree au-
tomata [1], [1], [22], Markov chains [3], Markov decision
processes [17], fuzzy transition systems [61], and timed
systems [39].

III. DEFINITIONS

This section presents basic definitions used throughout the
paper.

We are interested in filters that model the behavior of a
robot in response to a discrete, finite sequence of observa-
tions. The following definitions are equivalent to the those
introduced by O’Kane and Shell [36].

Definition 1: A filter is a 6-tuple (V, Y, C, δ, c, v0) in
which:
• V is a finite set of states,
• Y is a set of possible observations, representing the

input space of the filter,
• C is a set of outputs, sometimes called colors, repre-

senting the outputs produced by the filter,
• δ : V ×Y → V ∪{⊥} is the transition function of filter,
• c : V → C is a function assigning to each state v ∈ V

a color, and
• v0 ∈ V is the initial state.

The set of all possible observation sequences is denoted
Y ∗. Given an observation sequence s = s1s2 · · · sn, we use
si..j to denote the subsequence sisi+1 · · · sj . For each i, the
subsequence si..i of s represents the observation si. Filters
are readily shown as directed graphs, in which the states are
vertices and edges are determined by the transition function.
Recall the examples in Figure 1b–c.

In this definition, we use symbol ⊥ to mean null, and if for
a state-observation pair (v, y) it holds that δ(v, y) = ⊥, then
we mean that state v does not have any outgoing transition
labeled y. We interpret this to mean that we can be sure
that observation y will not, because of some structure in the
robot’s environment, occur when the filter is in state v. In the
graph view, there would simply be no outgoing edge from v
labeled y.

Note that Definition 1 ensures that from any state, for
any observation, at most one transition can happen. The next
definition makes this idea more precise.

Definition 2: Let F = (V, Y, C, δ, c, v0) be a filter, v ∈ V
be a state, and s = s1s2 · · · sn ∈ Y ∗ be an observation

sequence where each si is a member of Y . We say that s is
trackable from v if there is a sequence of states q0, q1, ..., qn
such that:

• q0 = v, and
• δ(qi, si+1) = qi+1 for all 0 ≤ i < n.

Notice in particular that if s is trackable from some state
v, then the corresponding state sequence q0, q1, ..., qn is
unique. Given a state v ∈ V and an observation sequence
s ∈ Y ∗ trackable from v, we write δ∗(v, s) to denote the state
reached by tracing s starting from v. If s is not trackable from
v, we write δ∗(v, s) = ⊥. For the empty string ε, we define
δ∗(v, ε) = v for all states v, and define that ε is trackable
for all states v. For a state v ∈ V , we use Sv to denote the
set of all observation sequences that end in v when traced
from the initial state. i.e., Sv = {s ∈ Y ∗ | δ∗(v0, s) = v}

We can now define the language of a filter, which plays a
crucial role in filter reduction.

Definition 3: The language of a state v, denoted L(v), is
the set of all observation sequences trackable from v. The
language of a filter F , denoted L(F ), is the language of its
initial state: L(F ) = L(v0).

Before we can speak meaningfully about reduction of
filters, we need a definition of filter equivalence with respect
to a language.

Definition 4: Let F1 = (V1, Y, C, δ1, c1, v0) and F2 =
(V2, Y, C, δ2, c2, w0) be two filters with the same observation
space Y and the same color space C. Let L ⊆ Y ∗ denote
a language of observation sequences. We say that F1 is
equivalent to F2 with respect to L, denoted F1

L
== F2, if

for any observation sequence s ∈ L:

• δ∗1(v0, s) 6= ⊥,
• δ∗2(w0, s) 6= ⊥, and
• c1(δ∗1(v0, s)) = c2(δ∗2(w0, s)).

This definition says that any observation sequence that
is in L is trackable by both F1 and F2, and that both of
them produce the same output while tracing that sequence.
However, for observation sequences that are not in L, it does
not say anything about the outputs generated by the two
filters, nor does it require that the observation languages of
F1 and F2 should be the same. The central problem this
work studies is called the filter minimization problem.

Problem: Filter minimization (FM) [36]
Input: A filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗ and the number

of states in F ∗ is minimal.

Notice that this problem allows the language L(F ∗) of
the optimally reduced filter to be a proper superset of the
language L(F ) of the original filter. This is reasonable
because observation sequences in L(F ∗) − L(F ) will not
occur, as we assumed above.

We also study a variant of FM in which we require the
reduced filter to have a special property which we define as
follows.
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Definition 5: Let F1 = (V1, Y, C, δ1, c1, v0) and F2 =
(V2, Y, C, δ2, c2, w0) be two filters. Denoted F1 $ F2, we
say that F2 partitions the state space of F1 if for each v ∈ V1,
there is a single state w ∈ V2 such that for any observation
sequence s ∈ Y ∗, if δ∗1(v0, s) = v, then δ∗2(w0, s) = w.

We call this variant, the filter partitioning minimization
problem.

Problem: Filter partitioning minimization (FPM)
Input: A filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, F $ F ∗, and

the number of states in F ∗ is minimal.

FPM requires not only the reduced filter to produce for
each observation sequence trackable by the original filter,
the same output produced for that observation sequence by
the original filter but it also enforces that for each state s of
the original filter, only a single state in the reduced filter to
play the role of s.

Because much of what follows deals with relations over
the set of a filter’s states, we will rely on some elements of
standard notation for such relations.

For a given filter F , we use IF to denote the identity
relation on the state set V of F , i.e. IF = {(v, v) | v ∈
V }. If R ⊆ V × V is an equivalence relation on V , then
it partitions V into a set of equivalence classes. For any
v ∈ V , the equivalence class of v in R is denoted [v]R, so
that [v]R = {w ∈ V | (v, w) ∈ R}. In particular, for any
v, w ∈ V , if (v, w) ∈ R, then [v]R = [w]R. Finally, the set
of all equivalence classes of R is called the quotient of V
under R, denoted V/R.

IV. FILTER MINIMIZATION VIA QUOTIENT OPERATIONS

In this section, we show how the process of filter reduction
can be understood as a quotient operation with respect to
certain kinds of relations over the states of the input filter.
Accordingly, each of the filter reduction problems, FM and
FPM, can be solved by finding some optimal relation over
the state space of the original filter.

A. Exact solution to FPM

For FPM we consider relations that indicate which pairs of
states should be ‘merged’ to form a reduced filter. Therefore,
we must establish conditions on the relation that guarantee
that this merging operation makes sense.

Definition 6: Let F = (V, Y, C, δ, c, v) be a filter and let
R ⊆ V ×V denote a relation over the states of F . We say that
R is a compatibility relation for F , if for any (v, w) ∈ R:

1) c(v) = c(w), and
2) for any y ∈ Y , if δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥, then

(δ(v, y), δ(w, y)) ∈ R.

Accordingly, two states are said to be compatible
if they are related by a compatibility relation. To il-
lustrate the notion of compatibility, consider filter F3,
depicted in Figure 5. Some compatibility relations for

Fig. 5. a) A sample filter F3. b) A minimal filter F4 such that F3
L(F3)
=====

F4 and L(F3) = L(F4). c) A minimal filter F5 such that F3
L(F3)
===== F5.

F3 are R1 = ∅, R2 = {(v0, v1)}, and R3 =
{(v3, v2), (v5, v4), (v5, v5), (v2, v3), (v4, v5)}. 1

Now we can define the notion of a quotient filter with
respect to a compatibility equivalence relation.

Definition 7: For a filter F = (V, Y, C, δ, c, v0), and a
relation R ⊆ V × V that is both a compatibility relation
and an equivalence relation (henceforth, a compatibility
equivalence relation), the quotient of F under R is the filter
F/R = (V/R, Y,C, δ′, c′, [v0]R), in which

δ′([v]R, y) =

{
[δ(w, y)]R if ∃w ∈ [v]R with δ(w, y) 6= ⊥
⊥ otherwise

and c′([v]R) = c(v).

Note that Definition 6 ensures that every transition in a quo-
tient filter is well-defined. Because R must be a compatibility
relation, if two states v and w that share some outgoing
observation y are merged, then the resulting states δ(v, y) and
δ(w, y) must be merged as well. Consider filter F3 depicted
in Figure 5. A compatibility equivalence relation for this
filter is R = IF3

∪ {(v3, v2), (v5, v4), (v2, v3), (v4, v5)}. The
quotient of F3 under this relation, F3/R, is filter F4, depicted
in Figure 5.

The next three lemmas establish that, though this quotient
operation may increase the language of the filter, it does not
change the behavior, in the sense of Definition 4.

Lemma 1: For any filter F = (V, Y, C, δ, c, v0) and
any compatibility equivalence relation R for F , L(F ) ⊆
L(F/R).

1Note that the notion of compatibility relation is different from the usual
notion of simulation, in that its second condition is weaker than is required
of a simulation relation. In fact, two states can be compatible (can exist in a
compatibility relation) while neither of them simulates another. We discuss
simulation in more detail in Section VIII.
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Fig. 6. It illustrates the induction in the proof of Lemma 1, Lemma 2, and
Lemma 3. The induction is on the lengths of observation sequences and it
states that for each observation sequence s, if filter F reaches state v by
tracing s from its initial state, then filter F/R, the quotient of F under a
compatibility equivalence relation R, reaches state [v]R by tracing the same
observation sequence from its own initial state.

Lemma 2: For any filter F = (V, Y, C, δ, c, v0) and any

compatibility equivalence relation R for F , F
L(F )
==== F/R.

Lemma 3: For any filter F = (V, Y, C, δ, c, v0) and any
compatibility equivalence relation R for F , F $ F/R.

Proof: Let us prove Lemmas 1, 2 and 3 all together.
Assume F/R is defined according to Definition 7. By
induction on the length of observation sequences s ∈ Y ∗ we
show that if s ∈ L(F ) and δ∗(v0, s) = v for a v ∈ V , then
δ′
∗
([v0]R, s) = [v]R. This means that for each state v ∈ V ,

there is a single state w = [v]R in F/R such that for each
s ∈ L(F ), if δ∗(v0, s) = v, then δ′

∗
([v0]R, s) = w, which

by Definition 5 means that F $ F/R, proving Lemma 3. It
also implies that if s ∈ L(F ), then s ∈ L(F/R), meaning
that L(F ) ⊆ L(F/R), proving Lemma 1. Furthermore,
the conclusion that δ′∗([v0]R, s) = [v]R will imply that
c(δ∗(v0, s)) = c′(δ′

∗
([v0]R, s)) given that c(v) = c′([v]R) by

Definition 7. This, coupled with Lemma 1 and Definition 4,
proves Lemma 2.

Now, we turn to the induction, which is illustrated in
Figure 6. The statement holds for the base case, i.e., s = ε,
since by definition it holds that ε ∈ L(F ), δ∗(v0, ε) = v0,
and δ′

∗
([v0]R, ε) = [v0]R. Assume that the statement holds

for all observation sequences s with length k, and let s′ be
any observation sequence with length k + 1. If s′ ∈ L(F ),
then s′ = sy for an observation sequence s with length k
and an observation y ∈ Y . Let δ∗(v0, s) = v for a state v.
By the induction assumption, it holds that δ′∗([v0]R, s) =
[v]R. Now, we have that δ∗(v0, s′) = δ(δ∗(v0, s), y) =
δ(v, y), and that δ′∗([v0]R, s

′) = δ′(δ′
∗
([v0]R, s), y)) =

δ′([v]R, y). Given that s′ ∈ L(F ), it holds that δ(v, y) 6= ⊥.
This by the definition of δ′ in Definition 7 implies that
δ′([v]R, y) = [δ(v, y)]R. Now, the inductive step is proved
since δ∗(v0, s′) = δ(v, y) and δ′([v0]R, s

′) = [δ(v, y)]R.

Next we prove that the state space of any optimal solution
to FPM can be seen as the quotient of the state space of the
original filter under some compatibility equivalence relation.
Let the input to FPM be a filter F1 = (V1, Y, C, δ1, c1, v0)
and let F2 = (V2, Y, C, δ2, c2, w0) be on optimal solution
of FPM with input F1. Given that F1 $ F2, for each
v ∈ V1 there exists a single state w ∈ V2 such that

Fig. 7. An illustration of the proof of Lemma 5. Filter F2 is a minimal

filter for which F1
L(F1)
===== F2 holds. The state space of F2 corresponds

to the quotient of the state space of F1 under the equivalence relation Rf .
The assumption for this relation is (v, w) ∈ Rf but (r, t) /∈ Rf .

for any observation sequence s, if δ∗1(v0, s) = v, then
δ∗2(w0, s) = w. Let f : V1 → V2 denote that one-to-one
mapping, i.e., for every observation sequence s ∈ L(F1),
δ∗2(w0, s) = f(δ∗1(v0, s)). We consider the following results.

Lemma 4: Function f is surjective.

Proof: We prove that each state in F2 is mapped to by
at least one state in F1 via f . For the sake of contradiction,
suppose that there exists a state z in F2 that is not mapped
to by f from any state in F1. There are two cases.

1) If no observation sequence that ends or passes through
z is in L(F1), then we can construct a new filter F3

from F2 by removing state z. Clearly, F1
L(F1)
===== F3

and F3 has fewer states than F2. This contradicts the
construction that F2 is minimal.

2) If there exists an observation sequence s ∈ L(F1) that
ends or passes through z when traced in F2, then let
k ≤ |s| be an integer such that δ∗2(w0, s1...k) = z. By
the structure of filters, and given that s ∈ L(F1), we
conclude that s1...|s|−1 ∈ L(F1), s1...|s|−2 ∈ L(F1),
. . . , and ultimately s1...k ∈ L(F1). This means that z =
f(δ∗1(v0, s1...k)), which is a contradiction.

Given such a function f , we define an equivalence relation
Rf ⊆ V ×V so that (v, w) ∈ Rf if and only if f(v) = f(w).
Note that there is a one-to-one correspondence between the
equivalence classes [v]Rf

of Rf and the states of F2.

Lemma 5: For any filter F1 and any optimal solution F2

to FPM with input filter F1, the equivalence relation Rf they
induce is a compatibility relation.

Proof: First observe that by the construction of Rf , for
any v, w ∈ V , if (v, w) ∈ Rf , then v and w are mapped to
a single state in F2. Let [v]Rf

be such a state. To show that
Rf is a compatibility relation, we prove that conditions (1)
and (2) of Definition 6 hold for any v and w for which
(v, w) ∈ Rf . Suppose that condition (1) does not hold,
that is, c1(v) 6= c1(w), which means c2([v]R) is different
from c1(v) or c1(w). Without loss of generality assume
that c1(v) 6= c2([v]Rf

). Let s ∈ L(F1) be an observation
sequence such that δ∗1(v0, s) = v. By definition of f , we
have that δ∗2(w0, s) = [v]Rf

. But, c1(δ∗1(v0, s)) = c1(v) 6=
c2([v]Rf

) = c2(δ∗2(w0, s)), which by Definition 4 contradicts

that F1
L(F1)
===== F3.
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Now suppose that condition (2) does not hold, which
means that there exists y ∈ Y , such that δ1(v, y) 6= ⊥ and
δ1(w, y) 6= ⊥ but (δ1(v, y), δ1(w, y)) /∈ Rf . Let r = δ1(v, y)
and t = δ1(w, y). We argue that if this is the case, then F2

is not a filter, which is a contradiction. Figure 7 illustrates
this proof. Let s1 and s2 be two observation sequences that
end in v and w, respectively, when traced by F1. This means
that states v and w are in the same equivalence class of Rf ,
and thus, they are mapped to a single state, such as [v]Rf

, in
F2; hence, both s1 and s2 end in [v]Rf

when traced by F2.
Consider also that observation sequences s1y and s2y end
in r and t, respectively, when traced by F1. Observe that
from state [v]Rf

there should be two outgoing edges with
the same label y, one of which goes to [r]Rf

and another
goes to [t]Rf

. Because F2 is a filter, the only way to reach
r by tracing s1y from the initial state is to have an edge
labeled by y, that goes from [v]Rf

to [r]Rf
. We can use the

same argument to prove that there should be an outgoing
edge labeled by y that connects [v]Rf

to [t]Rf
. This implies

that F2 has two edges labeled y from [v]Rf
, a contradiction.

In particular, since Rf is both an equivalence relation and
a compatibility relation for F1, it is meaningful to consider
the quotient filter F1/Rf . Moreover, F1/Rf is structurally
identical to the minimal filter F2. Of course, in the context
of filter partitioning minimization, F2 is unknown, so we
cannot expect to compute F1/Rf directly.

Nevertheless, the impact of Lemma 5 is that we can view
the problem of filter partitioning minimization as equivalent
to the problem of identifying a suitable compatibility equiv-
alence relation with which to construct a quotient filter —
there always exists some such relation for which the quotient
leads to the minimal filter. This directly implies the following
result.

Theorem 1: Let F be a filter and let R be a compatibility
equivalence relation for F with minimum number of parti-
tions. The filter F ∗ = F/R is a minimal filter for which

F
L(F )
==== F ∗ and F $ F ∗ holds.

Proof: By Lemma 2 and that R is a compatibility
equivalence relation, F

L(F )
==== F ∗. If F/R is not minimal,

that is if there is another filter F2 with fewer number of
states than F/R, then by Lemma 5, the relation R would
not be a compatibility equivalence relation with minimum
number of equivalence classes.

B. Exact solution to FM

Zhang and Shell [64] proposed an algorithm for computing
an exact solution to FM. Their algorithm first constructs
the compatibility graph of filter, which is an undirected
graph whose vertices are the states of filter and its edges
connect pairs of distinct compatible states. Then, it forms a
SAT formulation that aims to find a clique covering of the
graph with minimum number of classes subject to a list of
zipper constraints where each constraint enforces that if a
set of states are merged, then the set of states they go by
an observation must also be merged. An exact solution to

Fig. 8. a) A sample filter F . b) A minimal solution of FPM for filter F .
c) The minimal solution of FM for filter F .

FPM is computed by finding over the same graph, a clique
partitioning rather than a clique covering. The difference
between a partitioning and a covering is that a state is
assigned to one and only one class of the partitioning while
a state can be shared between two or several classes of the
covering.

To see how this differentiates between an optimal solution
to FM and an optimal solution to FPM, we use a filter similar
to that Zhang and Shell [64] used to demonstrate an optimal
solution to FM. This filter, named F , is shown in Figure 8a.
In this filter, those states that are compatible are connected
by dashed lines. In this filter, states v1 and v2 are compatible,
v3 and v4 are compatible, and v6 is compatible with both v5
and v7. Note that v5 and v7 are not compatible with each
other. FPM with input F has two optimal solutions, in one
of which, v6 is merged with v5, and in the other one, v6
is merged with v7. Figure 8b shows the one in which v6 is
merged with v5.

FM for the same filter has a single optimal solution, which
is shown in Figure 8c. Note that because an optimal solution
to FPM is computed by finding a partitioning rather than
a covering, in a solution to FPM state v6 is merged either
with v5 or with v7, while because an optimal solution to FM
is computed by finding a covering, in the optimal solution
to FM, state v6 is split between two compatibility classes
{v5, v6} and {v6, v7}.

We now formalize an exact solution of FM via the notions
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of relation and covering, but before that we first consider the
following definitions.

Given a filter F = (V, Y, C, δ, c, v0), a compatibility
class over V is a non-empty set L ⊆ V in which each
pair of states are compatible. A set of compatibility classes
M = {L1, L2, · · · , Lk} over V is closed if for every
y ∈ Y and i ∈ {1, · · · , k}, there exists a j ∈ {1, · · · , k}
such that

⋃
v∈Li:δ(v,y)6=⊥

δ(v, y) ⊆ Lj . We use ∆M(Li, y) to

represent one of such compatibility classes Lj . A closed
covering for V is a closed set of compatibility classes
M = {L1, L2, · · · , Lk} such that for each v ∈ V , there
exists at least an integer i ∈ {1, · · · , k} such that v ∈ Li.
Note that a closed covering for V always forms a tolerance
relation, a reflexive and symmetric relation, which is formed
by relating for each compatibility class of the covering, all
pairs of states within that class and also relating each state
with itself.

Given a closed covering of the state space of the filter, we
can form a quotient filter as follows.

Definition 8: For a filter F = (V, Y, C, δ, c, v0), and a
closed covering M = {L1, L2, · · · , Lk} of V , the quotient
of F under M is the filter F/M = (M, Y, C, δ′, c′, L0), in
which L0 is a compatibility class such that v0 ∈ L0, and
for each L ∈ M, δ′(L, y) = ∆M(L, y) if ∆M(L, y) 6= ∅
and otherwise δ′(L, y) = ⊥, and c′(L) = c(v), where v is a
state within L.

Accordingly, an optimal solution to FM is obtained by
computing a closed covering with minimum number of
classes.

Lemma 6: Let F be a filter with state space V and let
M be a closed covering of V with minimum number of
compatibility classes. The filter F ∗ = F/M is a minimal

filter for which F
L(F )
==== F ∗ holds.

Proof: The proof, which we omit, combines similar
results and proofs of Lemma 1, Lemma 2, and Lemma 5.

Consider that any compatibility equivalence relation over
the state space of the filter is a closed covering of the state
space, and therefore, any feasible solution to FPM is also a
feasible solution to FM. As result, any heuristic or greedy
algorithm for FPM can be used to compute a feasible solution
to FM. The next section studies how big the difference
between the sizes of optimal solutions to FPM and FM can
be.

V. MAXIMUM DIFFERENCE BETWEEN THE SIZES OF
OPTIMAL SOLUTIONS TO FM AND FPM

In this section, we show that there exist filters for which
the difference between the sizes of optimal solutions to FM
and FPM can be in the order of the size of the filter.

Theorem 2: For any n ≥ 10, there exists a filter F with n
states such that the difference between the sizes of an optimal
solution to FPM with input F and an optimal solution to FM
with input F is bn−64 c.

Proof: Let n be an integer such that n ≥ 10. We
first consider the case where n− 6 is divisible by 4, that is,

Fig. 9. An illustration of the proof of Theorem 2. a) A sample filter F
with n states. b) An optimal solution of FPM with input filter F . c) An
optimal solution of FM with input filter F .

where n is one of the numbers 10, 14, 18, 22, 26, . . . . For that
n, we construct the filter F , which has n states, as shown
in Figure 9a. This filter generalizes the filter we used in
Figure 8a. In fact, the number 10 in this theorem comes from
the fact that the filter in Figure 8a has 10 states and that the
filter in Figure 8a is the smallest filter within the family of
filters described by Figure 9a. To color the states of F , we
have used n−6

2 +4 distinct colors: 1 color for v0; 1 color for
vn−1; 1 color for vn−2; 1 color for vn−5, vn−4, and vn−3;
and the remaining n−6

2 colors for v1 through vn−6. Note
that the states in the second column, states v1 through vn−6,
appeared in pairs such that the two states of each pair have
the same color. Observe that in filter F , for each color, except



10

color blue, all states with that color are compatible. The
states that have color blue are vn−3, vn−4, and vn−5. States
vn−3 and vn−5 are not compatible with each other, but state
vn−4 is compatible with each of them. Each pair of the states
that appear in the second column have the same color and
the two states within each of those pairs are compatible only
with themselves, that is, for each i ∈ {1, 3, 5, · · · , n − 7},
vi is compatible with vi+1 and only with vi+1. Half of
those pairs have outgoing edges to state vn−4 and vn−5, and
the other half have outgoing edges to vn−3 and vn−5. In
an optimal solution to FPM, state vn−4 can be merged with
either vn−3 or vn−5. Part b of Figure 9 shows an optimal
solution to FPM. In that solution, state vn−4 is merged with
vn−5, and as a result, of the pairs in the middle column,
only those who have outgoing edges to vn−4 and vn−5 are
merged. Accordingly, only half of the pairs in the middle
column, or more precisely, n−6

4 states, are merged in the
optimal solution to FPM. The FM with input filter F in this
figure has only one optimal solution, which is shown in part c
of this figure. Consider that since an optimal solution of FM
is obtained by finding a covering of the state space rather than
a partitioning of it, the states with color blue are split into
two compatibility classes {vn−4, vn−5} and {vn−4, vn−3}.
State vn−4 is shared between the two classes. Because of
this, all pairs in the middle column are merged, and thus,
the optimal solution to FPM has n−6

4 states more than the
optimal solution to FM.

Now consider the case where n ≥ 10 but n − 6 is not
divisible by 4. In this case, we can always choose integers
n1 and j such that n = n1+j, n1 ≥ 10, n1−6 is divisible by
4, and j ∈ {1, 2, 3}. For example, if n = 13, then n1 = 10
and j = 3. As another example, if n = 28, then n1 = 26
and j = 2. For this case, we make a filter F1 with n1 states
such that F1 has n1 states exactly in the form of filter F in
Figure 9a and j extra states to each of which there is one
and only one transition labeled yn1−6+j from state v0 to
that state. We opt that none of those states to have outgoing
transitions. Additionally, we color those j extra states with
j distinct colors that are not used to color other states.
None of these extra j states are compatible with any other
state. Accordingly, neither in the optimal solution to FM
nor in an optimal solution to FPM, those states are merged.
Accordingly, for each filter F1, the difference between the
optimal solutions to FPM and FM is n1−6

4 . For this case, it
holds that bn−64 c = n1−6

4 , and as a result, the theorem is
proved.

According to this theorem, a feasible solution to FPM,
even an optimal one, does not necessarily give a good
solution for FM. An impact of this is that FM, which because
of being an NP-hard problem we can hope to find in a
reasonable amount of time only feasible solutions of it for
large filters, requires to be treated by heuristic and greedy
algorithms or other kind of techniques that are designed
specifically for FM, and those who are proposed for FPM
may not compute high-quality solutions for FM.

VI. BISIMULATION AND FILTER REDUCTION

In this section, we show that the well-known notion of
bisimulation does not always yield optimal solutions to FM
and FPM.

In fact, one apparently reasonable hypothesis is that the
notion of bisimulation may be useful for solving FM and
FPM. We show that although the bisimilarity relation is
indeed a compatibility equivalence relation, and hence, can
be used to compute feasible solutions to FM and FPM; it
does not, in general, induce minimal filters. We begin by
adapting the standard notion of bisimulation to filters.

Definition 9: Let F1 = (V1, Y, C, δ1, c1, v0) and F2 =
(V2, Y, C, δ2, c2, w0) be two (not necessarily distinct) filters.
A relation R ⊆ V1× V2 is said to be a bisimulation relation
for (F1, F2) if for any (v, w) ∈ R:

1) c1(v) = c2(w),
2) for any y ∈ Y , if δ1(v, y) 6= ⊥, then δ2(w, y) 6= ⊥ and

(δ1(v, y), δ2(w, y)) ∈ R
3) for any y ∈ Y , if δ2(w, y) 6= ⊥, then δ1(v, y) 6= ⊥ and

(δ1(v, y), δ2(w, y)) ∈ R
We say that state v in filter F1 is bisimilar to state w in

filter F2 if there exists a bisimulation relation R for (F1, F2)
such that (v, w) ∈ R or equivalently if v ∼(F1,F2) w, where
relation ∼(F1,F2), which itself is a bisimulation relation
for (F1, F2), is the union of all bisimulation relations for
(F1, F2). The notion of bisimulation can also be lifted to
the filters themselves, according to which F1 and F2 are
bisimilar, denoted by F1 ' F2, if there exists a bisimulation
relation R for (F1, F2) such that (v0, w0) ∈ R.

We use bisimulation between two filters in the next
section; in this section, we are concerned only about bisim-
ulation relations that relate states within a single filter,
that is, where in Definition 9, F1 = F2 = F =
(V, Y, C, δ, c, v0). Observe that any union of bisimulation
relations for a filter is itself a bisimulation relation. The
union of all bisimulation relations for F , denoted ∼F ,
is called the bisimilarity relation for F . Recall filter F3,
depicted in Figure 5. For this filter, we have ∼F3

= IF3
∪

{(v2, v3), (v3, v2), (v4, v5), (v5, v4)}.
Such bisimilarity relations are of interest in part because

they are suitable for constructing quotient filters.

Lemma 7: The bisimilarity relation of every filter is both
a compatibility relation and an equivalence relation.

Proof: It is well known that the bisimilarity is an equiv-
alence relation (see, for example, Lemma 7.8 of Baier, Ka-
toen, and Larsen [4] for a proof). Also, by Definition 9, any
bisimulation relation —including the bisimilarity relation—
is a compatibility relation in the sense of Definition 6.

Because the bisimilarity relation of a given filter rep-
resents, in a certain sense, a coarsest partitioning of the
states into ‘mergeable’ subsets, intuition might suggest that a
quotient with the bisimilarity relation might perhaps produce
an optimally reduced filter, in the sense of the FM or the FPM
problem. The next result debunks this misconception.

Theorem 3: For any integer n ≥ 1, there exists a filter
Fn with n + 2 states, such that Fn/ ∼Fn

is larger than
the optimal solution F ∗n to FM by n states. The same filter
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Fig. 10. a) The construction of filter Fn, mentioned in Theorem 3. The
quotient of this filter under ∼Fn does not reduce its size. b) Filters F ∗n and
F ∗∗n , which are identical, are respectively the optimal solutions to FM and
FPM with input Fn. State vn+2 in filter Fn and state {vn+2} in filters
F ∗n and F ∗∗n have color 2; all other states in both filters have color 1.

Fn/ ∼Fn is larger than the optimal solution F ∗∗n to FPM by
n states.

Proof: For a given n, we construct a filter Fn with n+2
states, for which Fn/ ∼Fn

also has n+ 2 states. Figure 10a
shows the construction. In particular, note that for any pair
of distinct states (v, w), we have v �Fn w; this is because
if v ∼Fn w, then they must have the same color, meaning
that there must exist 1 ≤ i 6= j ≤ n + 1 such that v = vi
and w = vj , and if this is the case then by the definition
of bisimulation relation, we must have that vi+1 ∼Fn

vj+1,
vi+2 ∼Fn

vj+2, ..., and ultimately vi+k ∼Fn
vn+2, which

is a contradiction. Therefore ∼Fn= IFn , and Fn/ ∼Fn is
structurally identical to Fn — no two states will be merged.
In contrast, for any n, each of the optimally reduced filters
F ∗n and F ∗∗n has exactly two states, as shown in Figure 10b.

In particular, Theorem 3 implies that bisimulation-
quotienting does not always induce optimal solutions to the
FM and the FPM problems, and in fact, that the differ-
ence in size between the optimally reduced filters and the
bisimilarity-quotient filter cannot be bounded.

Note that by Definition 9, for two states to be bisimilar,
not only they must agree on their outputs but also for each
observation, either both of them must have an outgoing
transition labeled with that observation or none of them must
have an outgoing transition for that observation. Accordingly,
bisimulation imposes a strong condition for two states to be
merged, and this, results to the fact that bisimulation does
not yield enough reduction for some filters. Yet, we can
still use bisimulation to make an extent of reduction, but for
real-world applications in robotics, we may not be satisfied
with the amount of reduction we achieve with bisimulation.
Both the examples in this theorem and Figure 1 show that
for some filters, bisimulation does not reduce the size of
the filter at all while the minimal filter is much smaller
than the original filter. Intuitively, if the underlying system
or the problem of interest does not enjoy a big deal of
symmetry and indistinguishability, then bisimulation does not
offer much reduction. To illustrate these notions of symmetry
and indistinguishability, consider an environment similar to
that in Figure 1 but in which the four landmarks are on the
four corners of a square and the robot could not distinguish
between some landmarks. It is usually for the filters of this

kind of situations happens that some states become bisimilar,
and thus, bisimulation can help to reduce the size of the
filter. These notions also arise in problems similar to that in
Figure 4, where the shape of the environment is symmetric
and in which when a robot crosses a beam, the system knows
which beam sensor it was except that it cannot distinguish
between some beams.

VII. STRONG FILTER MINIMIZATION

In this section, we introduce a variant of filter mini-
mization problem for which the bisimilarity relation always
produces an optimal solution.

Section VI showed that, although quotient with the bisim-
ilarity relation produces an equivalent filter, that filter may
not necessarily be minimal. In this section, we provide
some insight into why that happens, by showing that this
kind of bisimilarity quotient instead solves a variant of
the filter minimization problem, in which the language of
the reduced filter must be identical to the language of the
original filter, rather than merely a superset of it. Specifically,
this section shows that bisimilarity-quotienting solves the
following problem.

Problem: Strong Filter Minimization (SFM)
Input: A filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, L(F ) = L(F ∗),

and the number of states in F ∗ is minimal.

Now we can state the main result of this section.

Theorem 4: For any filter F , the bisimilarity quotient
F/ ∼F is a solution to the SFM problem for F .

Proof: It suffices to prove only that SFM is equivalent
to the problem of finding a minimal filter F ∗ such that
F ' F ∗. The rest is due to the well-known fact about
bisimulation minimization, that the quotient of a structure
under its bisimilarity relation is a smallest structure that is
bisimilar to the original structure. For a proof of this result in
the context of transition systems, see [4]. The only difference
here is that filters are concerned with observation sequences
with finite-length rather than observation sequences with
infinite-length.

Therefore, we need to prove that F ' F ∗ if and only if
F

L(F )
==== F ∗ and L(F ) = L(F ∗). Let F = (V, Y, C, δ, c, v0)

and F ∗ = (V ′, Y, C, δ′, c′, v′0). For the direction ⇒, assume
by contradiction that F ' F ∗, that is, v0 ∼(F,F∗) v

′
0, but

either L(F ) 6= L(F ∗) or for an observation sequence s ∈
L(F )∩L(F ∗), c(δ∗(v0, s)) 6= c′(δ′

∗
(v′0, s)). Figure 11 shows

the proof.
For the former case, assume, without loss of generality,

that s be an observation sequence such that s ∈ L(F ) but
s /∈ L(F ∗). Let integer k, where 1 ≤ k < |s|, be the smallest
index such that δ′∗(v′0, s1..k) = ⊥ and let y = sk..k. Clearly,
δ(δ∗(v0, s1..k−1), y) 6= ⊥ but δ′(δ′

∗
(v′0, s1..k−1), y) =

⊥. This by the second condition of Definition 9 implies
that δ∗(v0, s1..k−1) 6∼(F,F∗) δ′

∗
(v′0, s1..k−1), which, in

turn, by the same condition of that definition implies that
δ∗1(v0, s1..k−2) 6∼(F,F∗) δ

∗
2(v′0, s1..k−2). Applying the same
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Fig. 11. Part of the proof of Theorem 4, which shows by contradiction that

if F ' F ∗ then F
L(F )
==== F ∗ and L(F ) = L(F ∗). a) The contradiction

assumption that L(F ) 6= L(F ∗). Without loss of generality, we assume
s to be an observation sequence in L(F ) but not in L(F ∗). Integer
k is assumed to be the smallest integer such that s1..k /∈ L(F ∗) but
s1..k−1 ∈ L(F ∗). Given that state δ∗(v0, s1..k−1) has a transition for
observation sk but state δ′∗(v′0, s1..k−1) does not have a transition for
that observation, by the second condition of Definition 9, those two states
are not bisimilar, i.e., δ∗(v0, s1..k−1) 6∼(F,F∗) δ

′∗(v′0, s1..k−1), and this,
via a series of implications (δ∗(v0, s1..k−2) 6∼(F,F∗) δ

′∗(v′0, s1..k−2),
δ∗(v0, s1..k−3) 6∼(F,F∗) δ′∗(v′0, s1..k−3), ...) implies that v0 is not
bisimilar with v′0, meaning that F and F ∗ are not bisimilar, which is a
contradiction. A similar argument applies for when we assume that there
is an observation sequence s such that s ∈ L(F ∗) but s /∈ L(F ).
b) The contradiction assumption that for an observation sequence s ∈
L(F ) ∩ L(F ∗), c(δ∗(v0, s)) 6= c′(δ′∗(v′0, s)). Given that those two
states δ∗(v0, s) and δ′∗(v′0, s) do not have the same color, by the first
condition of Definition 9, they are not bisimilar, i.e., δ∗(v0, s) 6∼(F,F∗)
δ′∗(v′0, s) and this, via a series of implications (δ∗(v0, s1..|s|−1) 6∼(F,F∗)
δ′∗(v′0, s1..|s|−1), δ∗(v0, s1..|s|−2) 6∼(F,F∗) δ′∗(v′0, s1..|s|−2), ...),
implies that v0 6∼(F,F∗) v

′
0, meaning that F is not bisimilar to F ∗, which

is a contradiction.

condition k−3 more times implies that v0 6∼(F,F∗) v
′
0, which

means that F 6' F ∗, another contradiction.
For the later case, given that c(δ∗(v0, s)) 6= c′(δ′

∗
(v′0, s)),

by the first condition of Definition 9 it holds
that δ∗(v0, s) 6∼(F,F∗) δ′

∗
(v′0, s), which by the

second condition of the same definition implies that
δ∗(v0, s1..|s|−1) 6∼(F,F∗) δ′

∗
(v′0, s1..|s|−1), which in turn

implies that δ∗(v0, s1..|s|−2) 6∼(F,F∗) δ′
∗
(w0, s1..|s|−2),

δ∗(v0, s1..|s|−3) 6∼(F,F∗) δ′
∗
(w0, s1..|s|−3), ..., and finally

v0 6∼(F,F∗) v′0, which means that F 6' F ∗ and is a
contradiction.

For the direction ⇐, we need to prove that if F
L(F )
==== F ∗

and L(F ) = L(F ∗), then F ' F ∗. Consider that from

L(F ) = L(F ∗) and F
L(F )
==== F ∗, it is implied that for all

s ∈ L(F ), c(δ∗(v0, s)) = c′(δ′
∗
(v′0, s)). Accordingly, we

consider the relation R =
⋃
s∈L(F ){(δ∗(v0, s), δ′

∗
(v′0, s))}.

Each tuple of states δ∗(v0, s) and δ′
∗
(v′0, s) related by this

relation have the same color, thereby satisfying the first
condition of Definition 9. Also because F

L(F )
==== F ∗ and

L(F ) = L(F ∗), for each observation y, if one of these
two states has an outgoing transition labeled y, then the
other one also has an outgoing transition labeled y. Then
the states δ(δ∗(v0, s), y) and δ′(δ′

∗
(v′0, s)), y) are likewise

related by R, satisfying the second and the third conditions of
Definition 9. Hence, R is a bisimulation relation for (F, F ∗)

in sense of Definition 9. Also, given that (v0, v
′
0) ∈ R, it

holds that v0 ∼(F,F∗) v
′
0, which means that F ' F ∗.

Consider also that since the bisimilarity relation is a
compatibility equivalence relation, by Lemma 3 the optimal
solution to SFM always partitions the state space of the
original filter, that is, F $ F/ ∼F .

Corollary 1: SFM can be solved in polynomial time.

Proof: Beyond Theorem 4, we need only to show that
given a filter F = (V, Y, C, δ, c, v0) both (a) the bisimilarity
relation ∼F and (b) the quotient of a filter and a relation,
can be computed in polynomial time.

A simple efficient algorithm for constructing the bisimi-
larity relation starts with assigning the set {(v, w) ∈ V ×V |
c(v) = c(w)∧∀y ∈ Y, (δ(v, y) = δ(w, y) = ⊥∨c(δ(v, y)) =
c(δ(w, y)))} as the initial value to a variable R. Then, in
each iteration of a loop, all members of R that fail to satisfy
all three conditions of Definition 9 are removed from R.
This loop continues until no additional members of R can
be removed; at that time, we have R =∼F . Clearly, the
time complexity of this algorithm is O(|V |4 × |Y |). This
relation has at most |V |2 members, hence, the filter F/ ∼F
is constructed in O(|V |4 × |Y |) time.

As an example of this theorem, consider again filter F3

from in Figure 5. The quotient of this filter under ∼F3
is

filter F4, depicted in the same figure. The language of F3 is
equal to the language of F4. Filter F5, depicted in the same
figure, represents the smallest filter who is equivalent to F3

with respect to the language of F3. In this case, we have
L(F3) ⊂ L(F5).

Knowing now that making the quotient of a filter under
bisimilarity relation does not always optimally reduce the
size of that filter, in the next section, we are interested
in realizing the connection between filter reduction and a
weaker notion of bisimulation called simulation.

VIII. SIMULATION AND FILTER REDUCTION

In this section, we prove that the FM problem is equivalent
to the problem of finding a minimal filter that simulates the
original filter.

To do so, we introduce a definition of simulation relation
between states of two filters, adapting the standard notion
for transition systems.

Definition 10: Let F1 = (V1, Y, C, δ1, c1, v0) and F2 =
(V2, Y, C, δ2, c2, w0) be two filters. A relation R ⊆ V1 × V2
is said to be a simulation relation for (F1, F2) if for any
(v, w) ∈ R:

1) c1(v) = c2(w), and
2) for all y ∈ Y , if δ1(v, y) 6= ⊥, then δ2(w, y) 6= ⊥ and

(δ1(v, y), δ2(w, y)) ∈ R
We say that state w simulates state v if there exists a

simulation relation R for (F1, F2) such that (v, w) ∈ R. The
union of all simulation relations for (F1, F2), which is called
the similarity relation for (F1, F2) and denoted ≺(F1,F2), is
itself is a simulation relation. It also can be computed in time
polynomial to the size of F1 and F2.
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Fig. 12. a) A sample filter F6 b) An example of a filter that simulates
F6. For both filters, states in the left column have color 1, states in the
middle column have color 2, and states in the right column have color 3.
The similarity relation for (F6, F7) has been depicted by dashed lines.

Just as with bisimulation, the notion of simulation, which
is defined thus far between states of two filters, can be lifted
to filters themselves. We write F1 � F2, indicating that filter
F2 simulates filter F1, if there exists a simulation relation R
for (F1, F2) such that (v0, w0) ∈ R. Equivalently, F1 � F2

if v0 ≺(F1,F2) w0.
To illustrate this notion of simulation, consider filters F6

and F7, depicted in Figure 12. Some simulation relations for
(F6, F7) are:
• R1 = {(v1, w0)},
• R2 = {(v1, w0), (v3, w3)},
• R3 = {(v1, w0), (v3, w3), (v2, w2), (v5, w4), (v4, w4)},

and
• R4 = R3 ∪ {(v0, w0)}.

Note that ≺(F6,F7)= R4.
The following theorem establishes a strong connection

between simulation (in the sense of Definition 10) and filter
equivalence (in the sense of Definition 4).

Theorem 5: For any filters F1 and F2, F1 � F2 if and
only if F1

L(F1)
===== F2.

Proof: We first prove that if F1 � F2 then F1
L(F1)
=====

F2. Assume for a contradiction that the statement F1 � F2

holds but the statement F1
L(F1)
===== F2 does not hold. By

Definition 4, the statement F1
L(F1)
===== F2 does not hold in

two cases: either (1) where L(F1) * L(F2) or (2) where
there exists an observation sequence s ∈ L(F1) ∩ L(F2)
such that c1(δ∗1(v0, s)) 6= c2(δ∗2(w0, s)).

For the former case, assume that s be an observation
sequence such that s ∈ L(F1) but s /∈ L(F2). Let
integer k, where 1 ≤ k < |s|, be the smallest index
such that δ∗2(w0, s1..k) = ⊥ and let y = sk..k. Clearly,
δ1(δ∗1(v0, s1..k−1), y) 6= ⊥ but δ2(δ∗2(w0, s1..k−1), y) =
⊥. This by the second condition of Definition 10 im-
plies that δ∗1(v0, s1..k−1) ⊀(F1,F2) δ

∗
2(w0, s1..k−1). This by

the same condition implies that δ∗1(v0, s1..k−2) ⊀(F1,F2)

δ∗2(w0, s1..k−2). Again by applying the same condition k−3
more times, we conclude that v0 ⊀(F1,F2) w0. And, this

contradicts that F1 � F2.
For the later case, given that c1(δ∗1(v0, s)) 6=

c2(δ∗2(w0, s)), by the first condition of Definition 10
it holds that δ∗1(v0, s) ⊀(F1,F2) δ∗2(w0, s). This by
the second condition of the same definition implies
that δ∗1(v0, s1..|s|−1) ⊀(F1,F2) δ∗2(w0, s1..|s|−1). Again
by applying the second condition, we concludes
that δ∗1(v0, s1..|s|−2) ⊀(F1,F2) δ∗2(w0, s1..|s|−2),
δ∗1(v0, s1..|s|−3) ⊀(F1,F2) δ∗2(w0, s1..|s|−3), ..., and finally
v0 ⊀(F1,F2) w0, which contradicts that F1 � F2.

We now prove that if F1
L(F1)
===== F2 then F1 � F2. For

the sake of contradiction assume that F1
L(F1)
===== F2 but

F1 �(F1,F2) F2, that is, v0 ⊀(F1,F2) w0. It is easy to observe
that since v0 ⊀(F1,F2) w0, there must exist an observation
sequence s ∈ L(v0) ∩ L(w0) such that δ∗1(v0, s) ⊀(F1,F2)

δ∗2(w0, s). This by Definition 10 means that either (1)
c1(δ∗1(v0, s)) 6= c2(δ∗2(w0, s)) or (2) for an observation
y ∈ Y , δ1(δ∗1(v0, s), y) 6= ⊥ while δ2(δ∗2(w0, s), y) = ⊥,
which means that sy ∈ L(F1) while sy /∈ L(F2). If any
of these two cases holds, then it means that the statement
F1

L(F1)
===== F2 does not hold, which is a contradiction.

To see an impact of Theorem 5, we first consider the
following problems.

Problem: Minimal simulation filter (MSF)
Input: A filter F .

Output: A filter F ∗ such that F � F ∗ and the number of
states in F ∗ is minimum.

Problem: Minimal partitioning simulation filter (MPSF)
Input: A filter F .

Output: A filter F ∗ such that F � F ∗, F $ F ∗ and the
number of states in F ∗ is minimum.

Next we establish the following result.

Corollary 2: Given a filter F , any optimal (feasible) so-
lution to FM with input F is an optimal (feasible) solution
to MSF with the same input, and vice versa. Also, any
optimal (feasible) solution to FPM with input F is an optimal
(feasible) solution to MPSF with the same input, and vice
versa.

Proof: The result follows from Theorem 5 and the
definitions of the filter minimization problem and the filter
partitioning minimization problem.

As a result, the filter minimization problem can be thought
of finding a minimal filter simulating the original filter.

In the context of transition systems, the problem of
computing a minimal transition system that simulates a
given transition system is a trivial problem since transition
systems are, in general, “nondeterministic” and, therefore,
the minimal solution has always |C| states—one state for
each “color”—between any pair of which there is a transi-
tion labeled y for any “nondeterministic” (action) y. That
approach, however, cannot be used here since combinatorial
filters are “deterministic” while the constructed structure (the
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Algorithm 1: UNIONOFALLCOMPRELATIONS

Input : A filter F = (V, Y, C, δ, c, v0)
Output: The union of all compatibility relations for

(F1, F2)

1 R← ∅
2 forall (v, w) ∈ V × V do
3 if c(v) 6= c(w) then
4 continue
5 add← true
6 forall y ∈ Y do
7 if δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥ then
8 if c(δ(v, y)) 6= c(δ(w, y) then
9 add← false

10 if add = true then
11 R← R ∪ {(v, w)}
12 updated← true
13 while updated = true do
14 updated← false
15 forall (v, w) ∈ R do
16 forall y ∈ Y do
17 if δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥ then
18 if (δ(v, y), δ(w, y)) /∈ R then
19 R = R/{(v, w)}
20 updated← true
21 return R

one with |C| states) is “nondeterministic”; in other words,
the final structure does not fit into Definition 1.

IX. THE UNION OF ALL COMPATIBILITY RELATIONS AND
THE MERGEABILITY RELATION

In this section, we introduce two special compatibility
relations which are used to identify a taxonomy of filters
that are minimizable in polynomial time.

By the discussions of the Section IV, to solve FPM
for given filter F —one without any unreachable states,
of course— one can make the quotient filter under some
compatibility equivalence relation, and to solve FM for F ,
one need to make a quotient filter under a closed covering of
the state space of F . Section VI proved that the bisimilarity
relation ∼F is not always the appropriate relation for this job,
and Section VIII showed that any minimal filter equivalent
to the original filter is always a minimal filter that simulates
the original filter.

Another intuitive possibility would be to use the
union of all compatibility relations, analogous to the
definition of the bisimilarity relation as the union of
all bisimulation relations. As an example, this rela-
tion for filter F3 depicted in Figure 5, is IF3 ∪
{(v0, v1), (v1, v0), (v2, v3), (v3, v2), (v4, v5), (v5, v4)}. For a
given filter F , we write fF to denote this the union of
all compatibility relations for F . Trivially, fF is itself a
compatibility relation for F .

In addition, we can compute fF in time polynomial in the
size of F . See Algorithm 1 for a simple approach to doing

Fig. 13. A filter for which the union of all compatibility relations is not
an equivalence relation. State v0 has color 1, states in the middle column
have color 2, state v4 has color 3, and state v5 has color 4.

so. The intuition is to begin with a relation containing state
pairs that are compatible for observation strings of length
at most one, and then to iteratively delete state pairs that
violate Definition 6 for successively longer strings. The time
complexity of this algorithm is O(|V |4|Y |), where V and Y
are, respectively, the state space and the observation space
of the input filter.

The next lemma shows that, unfortunately, fF may not
be suitable for solving FPM, because for some filters it
is not an equivalence relation. (Recall Definition 7, under
which quotient filters are well-defined only for compatibility
equivalence relations.)

Lemma 8: For any filter F = (V, Y, C, δ, c, v), the re-
lation fF is reflexive and symmetric. However, there exist
filters F for which fF is not transitive.

Proof: For the first claim, consider that in sense of
Definition 6, the identity relation IF = {(v, v) | v ∈ V } is
a compatibility relation for F . By definition of fF , it is a
superset of IF , and therefore fF is reflexive. To prove that
fF is symmetric, one need to show that if v fF w, then
w fF v. Suppose that v fF w. This means that there exists
a compatibility relation R for F such that (v, w) ∈ R. By
the symmetry of conditions (1) and (2) of Definition 6 with
respect to v and w, if R is a compatibility relation for F ,
then so is R−1. The relation R−1 contains (w, v), and so
does fF given the definition of fF .

For the second claim, to observe that fF may not be tran-
sitive, let F be the filter depicted in Figure 13. For this filter,
we have fF = IF ∪ {(v1, v2), (v2, v1), (v2, v3), (v3, v2)}.
This relation is not transitive since v1 fF v2 and v2 fF v3
hold but v1 fF v3 does not.

In an important sense, Lemma 8 should not be a surprise.
Since the filter partitioning minimization problem is NP-
hard [36], [47], and F/fF can be computed in polynomial
time, if Lemma 8 were false, that would imply that P = NP .

However, any filter F with state space V for which fF is
indeed an equivalence relation, then F/fF is guaranteed to
be an optimal solution to FPM with input F , and because
in this case fF is a minimal closed covering of V , we
conclude that F/fF is an optimal solution for FM too.
Moreover, given any filter F , it takes polynomial time to
check whether fF is an equivalence relation or not. This
implies that solving FM and FPM for any filter for which
fF is an equivalence relation takes polynomial time in size
of F . This fact gives a roadmap to recognize some classes
of filters for which the filter minimization problem and the
filter partitioning minimization problem are in P , specifically
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by looking for classes of filters for which the union of all
compatibility relations can be proven to be an equivalence
relation. Section X uses this fact to identify a several of these
kind of classes.

A question here is does there exist any other efficiently
computable relation other than the union of all compatibility
relations, that if it has a special property, then FM or FPM
for the given input filter is solvable in polynomial time.

In the sequel, we answer that question, but first consider
the following definition.

Definition 11: Let v and w be two states in a filter F . We
say that v is mergeable with w if there exists a compatibility
equivalence relation for F such that (v, w) ∈ R, and we say
that v is not mergeable with w otherwise.

The idea of this definition is that by Definition 7, mak-
ing quotient filters is well-defined only under compatibility
equivalence relations. Accordingly, if v and w cannot be
related by any compatibility equivalence relation F , then
they are not collapsed into a single state in any correctly
reduced filter.

Clearly, any pair of mergeable states are compatible,
but the reverse does not necessarily hold. For an example
of a filter in which a pair of compatible states are not
mergeable, consider Figure 14. The union of all compatibility
equivalence relations for the filter F8 in this figure is fF8

=
IF8 ∪ {(2, 3), (3, 2), (0, 1), (1, 0), (3, 4), (4, 3)}, which has
been depicted in part (b) of that figure by the graph CGF8 .
Notice that the mentioned graph does not need to have loops
and it does not need to be a directed graph given that we
implicitly know that the union of all compatibility relations
for any filter is reflexive and symmetric. Although states 2
and 3 in this filter are compatible, we argue that they are not
mergeable. To do so, we need to show that no compatibility
relation containing (2, 3) is an equivalence relation. Let R
be any compatibility relation that contains (2, 3). Due to the
assumption that R is a compatibility relation and contains
(2, 3), by the second condition of Definition 6, relation R
must contain (0, 1). Given the same condition and that R
contains (0, 1), it must contain (3, 4) too. But, relation R
cannot be transitive since it has (2, 3) and (3, 4) but cannot
contain (2, 4) duo to that 2 6 fF8

4. Thus, R is not an
equivalence relation.

This example shows that in the quest for an optimal
solution to FPM via a compatibility equivalence relation
with minimum number of partitions we can immediately
throw away unmergeable pairs since we know that such pairs
cannot be related by any compatibility equivalence relation.
As a result, to find a compatibility equivalence relation with
minimum number of partitions, we can search among subsets
of a relation stronger than fF . That relation is defined as
follows:

Definition 12: The mergeability relation for filter F , de-
noted ./F , is the union of all compatibility equivalence
relations for F .

Equivalently, relation ./F contains all state pairs (v, w)
such that v is mergeable with w. Given this, v is mergeable
with w in the sense of Definition 11 if and only if v ./F w.

Fig. 14. a) A filter for which the union of all compatibility relations does
not coincide with its mergeability relation b) The graph of the union of all
compatibility relations for filter F8 c) The helper graph created for filter
F8 by Algorithm 2. d) The graph of the mergeability relation for filter F8.
In this example, states 2 and 3 are compatible, but they are not mergeable.
States 0 and 1 have color white. States in the middle column have color
blue. State 5 has color light-green, and state 6 has color red.

A point worth mentioning about Definition 12 is that ./F
is a superset of what we are looking for—a compatibility
equivalence relation with minimum number of partitions—to
solve FPM. Moreover, relation ./F is a compatibility relation
given that it is the union of some compatibility relations.
Unfortunately, for some filters, it is not an equivalence
relation, and hence, may not be always used for making
quotient filters.

Lemma 9: For any given filter F , relation ./F is reflexive
and symmetric. However, there exist filters F for which ./F
is not transitive.

Proof: For reflexivity, observe that for any filter F ,
relation IF = {(v, v) | v ∈ V } is an equivalence relation
and is also a compatibility relation for F in the sense
of Definition 6. Thus, by definition of ./F , it holds that
IF ⊆./F . For symmetricity, observe that by the definition
of ./F , for any v and w such that v ./F w, there exists a
compatibility equivalence relation R for F such that (v, w) ∈
R. Given that R is an equivalence relation, we have that
(w, v) ∈ R. Now, since R ⊆./F , it holds that w ./F v.

With respect to the second claim, observe that the merge-
ability relation of the filter F in Figure 13 is ./F= IF ∪
{(v1, v2), (v2, v1), (v2, v3), (v3, v2)}, which is clearly not
transitive.

An important point about the mergeability relation is that
if for a filter F the relation ./F is an equivalence relation,
then F/ ./F is a minimal filter that is equivalent to F and
also partitions the state space of F . This is due to the fact
that in this case, the relation ./F is the coarsest compatibility
equivalence relation for F . More importantly, there exist
filters F for which fF is not an equivalence relation while
./F is an equivalence relation. An example of this kind of
filters is filter F8, depicted in Figure 14.

A question remaining here is whether we can compute the
mergeability relation, which is the union of all compatibility
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equivalence relations, in time polynomial in the size of the
filter. The question is relevant because if the answer is yes,
then the filter partitioning minimization problem is solvable
in polynomial time for the class of filters F for which ./F
is an equivalence relation. Note that an algorithm that con-
structs the mergeability relation by constructing and unioning
all compatibility equivalence relations seems likely to require
superpolynomial time, since otherwise one could solve FPM
in polynomial time merely by making the quotient operation
under one of those constructed compatibility equivalence
relations—one with the minimum number of equivalence
classes.

We answer this question in positive by providing Algo-
rithm 2. This algorithm computes the mergeability relation
by removing all unmergeable pairs from fF , i.e., it sets
./F= fF −NF , where NF is the set all unmergeable pairs
that are compatible.

To compute NF , we check any pair of compatible states
(v, w)—only those in which v 6= w, of course—to see if
they can be related by a compatibility equivalence relation
for F or not. Specifically, we try to construct a compatibility
equivalence relation with minimum number of members that
contains (v, w). If we fail in constructing such a relation,
then it means that v 6./F w, and thus, we put (v, w) in
NF . Lines 2-12 of this algorithm construct as a helper, a
directed graph G = (V ′, E′), used for the construction of
those compatibility equivalence relations. Each vertex of this
graph is a pair of states (v, w) ∈ V 2 such that v fF w and
v 6= w. Each edge ((v, w), (x, z)) of this graph indicates that
any relation R containing (v, w) needs to contain (x, z) too
in order to be a symmetric compatibility relation. Lines 6-
8 of the algorithm add those edges that enforce the second
condition of compatibility relation (See Definition 6). Lines
9-11 add edges enforcing the symmetricity of the constructed
relation. The reader can check why for no v ∈ V we
need to add a vertex (v, v) to that graph, and that why the
enforcement of condition 2 of Definition 6 is made only
between nodes (v, w) and (x, z) where (v, w) 6= (x, z).

To illustrate this kind of graph, see filter F8 in Figure 14,
the helper graph for which has been drawn in part c of the
same figure.

Lines 17-24 of this algorithm use this graph to check
for each pair of distinct compatible states (v, w) if v is
mergeable with w or not. This is done by constructing
relation Rv,w, whose initial value is the union set of I and
DFS(G, (v, w)), where the procedure call DFS(G, (v, w))
performs the standard depth first search algorithm and re-
turns as a relation, the union of all vertices in G that are
reachable from vertex (v, w). Notice that the procedure call
DFS(G, (v, w)) returns all tuples (x, z) ∈ V ′ that must be
contained in any symmetric compatibility relation that relates
v to w. Lines 19-24 of this algorithm check if Rv,w is an
equivalence relation or not, and if not, check if it can be
extended to an equivalence relation being a compatibility
relation too. If the while loop broke in line 22, it means
that we could not add a tuple (a, c) to Rv,w to resolve the
intransitivity of (a, b) and (b, c) and thus Rv,w cannot be a
compatibility equivalence relation. But, if the while loop did

Algorithm 2: MERGEABILITYRELATION

Input : A filter F = (V, Y, C, δ, c, v0)
Output: The mergeability relation for F

1 f← UNIONOFALLCOMPRELATIONS(F )
2 V ′ ← ∅, E′ ← ∅
3 forall (v, w) ∈ f do
4 if v 6= w then
5 V ′ ← V ′ ∪ {(v, w)}
6 forall distinct vertices (v, w), (x, z) ∈ V ′ do
7 if δ(v, y) = x and δ(w, y) = z for a y ∈ Y then
8 E′ ← E′ ∪ {((v, w), (x, z))}
9 forall (v, w) ∈ V ′ do

10 if ((v, w), (w, v)) /∈ E′ then
11 E′ ← E′ ∪ {((v, w), (w, v))}
12 Create a helper graph G := (V ′, E′)
13 I ← ∅
14 forall v ∈ V do
15 I ← I ∪ {(v, v)}
16 N ← ∅
17 forall (v, w) ∈ V ′ do
18 Rv,w ← DFS(G, (v, w)) ∪ I
19 while Rv,w contains some tuples (a, b) and (b, c)

such that (a, c) /∈ Rv,w do
20 if (a, c) /∈ f then
21 N ← N ∪ {(v, w)}
22 break
23 else
24 Rv,w ← Rv,w ∪ DFS(G, (a, c))
25 ./← f−N
26 return ./

not break in that line, it means that when the while loop is
exited, relation Rv,w, which by that time is transitive, is the
smallest compatibility equivalence relation that relates v to
w. At line 25, the relation ./F is computed by performing a
set subtraction.

The time complexity of this algorithm is O(|V |4|Y | +
|V |8). Notice that computing f and G each takes
O(|V |4|Y |). At any time of the algorithm, relation Rv,w
has a size of O(|V |2). The for-loop in line 17 is performed
O(|V |2), in each iteration of which it takes O(|V |2) to
compute Rv,w in line 18 and it takes O(|V |6) time to
run lines 19-24. Note that Algorithm 2 is presented in a
simple form for clarity. The time complexity can be improved
by using some simple optimizations. For example, if the
algorithm did not break in line 22, then we can mark all
pairs in Rv,w as mergeable and we do not need to do the
while-loop of line 17 on them, and if the algorithm did break
in line 22, then we mark all pairs in Rv,w as unmergeable
and again we do not run the while-loop in line 17 for any
pair in Rv,w.

Notice that for filters F for which fF is an equivalence
relation, it holds that ./F= fF . This is because for this kind
of filters, we have that (1) fF ⊆./F , which is due to the
definition of ./F and that fF is a compatibility equivalence
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relation for F , and (2) ./F⊆ fF , which holds for any filter
given the definition of fF and that ./F is a compatibility
relation.

In the next section, we identify several classes of filters for
which filter minimization or filter partitioning minimization
is solvable in polynomial time.

X. SPECIAL CLASS OF FILTERS

In this section, we identify several classes of filters for
which FM or FPM can be solved in polynomial time. To do
so, we identify where the union of all compatibility relations
or the mergeability relation becomes an equivalence relation.

One such special class of filters consists of filters is
one we call observation-at-most-once-in-a-color filters. An
observation-at-most-once-in-a-color filter is a filter in which
for any observation, from all states with the same color,
there is at most one outgoing edge labeled by that ob-
servation. Such filters are a generalization of the class
that Saberifar et al. [47] called once-appearing-observations
filters. The difference between once-appearing-observations
and observation-at-most-once-in-a-color filter is that in the
former each observation appears only once while in the latter
an observation can appear more than one time in the filter,
but only once from the states of each color. This kind of
filters might arise in applications where the observations are
produced by distinct and identifiable sensors, and for each
group of “related” situations or locations, a distinct sensory
data is observable from at most a single situation or location
of that group. In particular, this can happen in environments
similar to those in Figure 4 but with different shapes. The
following theorem proves that solving the filter minimization
problem and the filter partitioning minimization problem for
this class takes polynomial time in size of the input filter.

Problem: Observation-at-most-once-in-a-color Filter
Minimization (OBS-AT-MOST-ONCE-IN-A-COL-FM)

Input: An observation-at-most-once-in-a-color filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, and the number

of states in F ∗ is minimal.

Theorem 6: OBS-AT-MOST-ONCE-IN-A-COL-FM ∈ P .

Proof: According to the discussion above, if we prove
that for any observation-at-most-once-in-a-color filter F =
(V, Y, C, δ, c, v0) the relation fF is an equivalence relation,
then the proof is complete. It is easy to observe that since
in F no distinct states with the same color shares an
outgoing edge labeled with the same observation, we have
fF = {(v, w) | c(v) = c(w)}. This relation is clearly an
equivalence relation.

A similar result holds for filter partitioning minimization
of the same family of filters.

Problem: Observation-at-most-once-in-a-color Filter
Partitioning Minimization (OBS-AT-MOST-ONCE-IN-
A-COL-FPM)

Input: An observation-at-most-once-in-a-color filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, F $ F ∗, and

the number of states in F ∗ is minimal.

Theorem 7: OBS-AT-MOST-ONCE-IN-A-COL-FPM ∈ P .

Proof: It follows from the fact that FM and FPM share
the same optimal solution for a filter for which the union of
all compatibility relations is an equivalence relation.

The second class consists of filters which we call at-most-
two-comp-states-in-a-col—a filter that for each color, at most
two states with that color are compatible. An example of
filters that fall into this class are the class of filters in which
for each color, at most two states with that color exist.

Problem: At-most-two-comp-states-in-a-col Filter
Minimization (AT-MOST-TWO-COMP-STATES-IN-A-
COL-FM)

Input: An at-most-two-comp-states-in-a-col filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, and the number

of states in F ∗ is minimal.

Theorem 8: AT-MOST-TWO-COMP-STATES-IN-A-COL-
FM ∈ P .

Proof: It follows from the fact that the union of all
compatibility relations for any at-most-two-comp-states-in-
a-col filter F is always transitive, and that for any filter F ,
that relation is reflexive and symmetric by Lemma 8.
The same result holds for filter partitioning minimization of
the same family of filters.

Problem: At-most-two-comp-states-in-a-col Filter
Partitioning Minimization (AT-MOST-TWO-COMP-
STATES-IN-A-COL-FPM)

Input: An at-most-two-comp-states-in-a-col filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, F $ F ∗, and

the number of states in F ∗ is minimal.

Theorem 9: AT-MOST-TWO-COMP-STATES-IN-A-COL-
FPM ∈ P

A similar class consists of filters which we call at-most-
two-merg-states-in-a-col—a filter that for each color, at most
two states with that color are mergeable. Note that this
class is different than at-most-two-comp-states-in-a-col filters
because a filter that has more than two compatible states per
color may not be a at-most-two-comp-states-in-a-col, but it
could be an at-most-two-merg-states-in-a-col filter.

Problem: At-most-two-merg-states-in-a-col Filter
Partitioning Minimization (AT-MOST-TWO-MERG-
STATES-IN-A-COL-FPM)

Input: An at-most-two-merg-states-in-a-col filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, F $ F ∗, and

the number of states in F ∗ is minimal.

Theorem 10: AT-MOST-TWO-MERG-STATES-IN-A-
COL-FPM ∈ P .

Proof: It follows from the fact that the mergeability
relation for any at-most-two-merg-states-in-a-col filter F is
always transitive, and that for any filter F , that relation is
reflexive and symmetric by Lemma 9.
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At-most-two-comp-states-in-a-col and at-most-two-merg-
states-in-a-col filters arise, for example, in applications where
the task of interest might need a filter with a high number
of colors (outputs) and each color is assigned to only a
few states. This usually happens in localization and state
estimate settings, where each state of the filter represents en
estimation of the robot’s position and only those states who
estimate close positions are assigned the same color.

Another class consists of filters which we call
mergeability-is-bisimilarity— a filter for which the
mergeability relation coincides with the bisimilarity relation.

Problem: Mergeability-is-bisimilarity Filter Partitioning
Minimization (MERG-IS-BISIM-FPM)

Input: A mergeability-is-bisimilarity filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, F $ F ∗, and

the number of states in F ∗ is minimal.

Theorem 11: MERG-IS-BISIM-FPM ∈ P .

Proof: For any filter F in this class, ./F=∼F . By
Lemma 7, the relation ∼F is an equivalence relation.

A subclass of class mergeability-is-bisimilarity filters con-
sists of filters largest-compatibility-is-bisimilarity— a filter
for which the union of all compatibility relations coincides
with the bisimilarity relation. In fact, this subclass consists
of filters F for which, ./F= fF =∼F .

Both FM and FPM for this class of filters are solvable in
time polynomial to the size of the filter.

These two kinds of filters, mergeability-is-bisimilarity and
largest-compatibility-is-bisimilarity filters, arise in applica-
tions where the only feature of the system that can help
reduce the size of the filter is due to some symmetry or
indistinguishability in the environment or the underlying
problem. This usually happens in tracking problems.

A subclass of largest-compatibility-is-bisimilarity filters
are filters Saberifar et al. [47] called no-missing-edges– filters
for which, from any state, for any observation, there is an
outgoing edge labeled by that observation. This kind of
filters can be generalized to a class we call color-no-missing-
edges filters. A filter is color-no-missing-edges if for any two
states v and w for which c(v) = c(w), for any observation
y, if δ(v, y) 6= ⊥ then δ(w, y) 6= ⊥. An application in
which color-no-missing-edges arise is navigation in grid
environments, where from all cells of a row or column, the
same set of observations are observable, and from each of
them, the same set of actions are available.

Problem: Color-no-missing-edges Filter Minimization
(COL-NO-MIS-EDG-FM)

Input: A color-no-missing-edges filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, and the number

of states in F ∗ is minimal.

Theorem 12: COL-NO-MIS-EDG-FM ∈ P .

Proof: By the definition of color-no-missing-edges for
each observation y, and for any two states v and w that share
the same color, we have that either δ(v, y) = δ(w, y) = ⊥

or (δ(v, y) 6= ⊥) ∧ (δ(w, y) 6= ⊥). In this case, the three
conditions of Definition 9, taking F1 = F2 = F , are identical
to the conditions of Definition 6. Therefore, fF =∼F , which
by Lemma 7, relation fF is an equivalence relation.

A similar result holds for filter partitioning minimization
of that kind of filters.

Problem: Color-no-missing-edges Filter Partitioning
Minimization (COL-NO-MIS-EDG-FPM)

Input: A color-no-missing-edges filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, F $ F ∗, and

the number of states in F ∗ is minimal.

Theorem 13: COL-NO-MIS-EDG-FPM ∈ P .

XI. CONCLUSION

In this paper, we showed that the bisimulation quotient,
which is widely used for reducing the size of transition
systems, is not always appropriate for optimally reducing
the size of combinatorial filters. However, we also showed
that it is useful when one needs to prevent expansion of the
language of a filter under minimization. We conclude that
both filter minimization and filter partitioning minimization
problems can be done by constructing a quotient filter, but
for filter partitioning minimization we need to look for an
equivalence relation while for filter minimization we need
to look for a covering. While any feasible solution to FPM
is a feasible solution to FM, a feasible or even an optimal
solution to FPM may not be a good feasible solution to FM.

If the union of all compatibility relations or the merge-
ability relation for a filter is an equivalence relation, then
one can optimally reduce the size of that filter. By way of
example, we identified several classes of filters for which
this is the case.

Knowing that making the quotient of a filter under a
compatibility equivalence relation (closed covering) with
minimum number of classes produces an optimal solution to
FPM (FM), future work might consider the design of efficient
heuristic algorithms for finding a such relation (covering).
It is also interesting to attempt to identify practical filters
for which finding a compatibility equivalence relation with
minimum number of classes can be done in polynomial time.

Finally, the filter partitioning minimization problem for
filters for which the helper graph in Algorithm 2 has no
edges is reduced to the problem of vertex clique partitioning
for the graph of the mergeability relation, and several classes
of graphs for which the vertex clique partitioning are in P
have been recognized. This approach may provide a roadmap
for finding additional classes of filters that can be minimized
in polynomial time. In addition, given that previous works
do not consider computing feasible solutions to FM and they
only attempt to make feasible solutions to FPM by heuristic
algorithms and integer linear programming formulations,
future work may consider designing heuristic algorithms for
FM.

There are several related problems that remain open.
Consider that any optimal solution to FPM can be obtained
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by finding within the mergeability relation, a compatibil-
ity equivalence relation that has a minimum number of
equivalence classes as a subset of the mergeability relation.
Also, one can show, by example, that there exist filters for
which not all pairs related by the mergeability relation are
related by a compatibility equivalence relation with minimum
number of classes. Accordingly, there exists a relation that
relates only those pairs that are related by a compatibility
equivalence relation with minimum number of equivalence
classes. This relation is a subset of the mergeability relation
and one can always find an optimal solution to FPM, by
searching for a compatibility equivalence relation within this
relation. A question that remains open is that whether that
relation can be computed in time polynomial in the size of
the input filter or not. Another problem that remains open
is the problem of whether a similar relation containing only
pairs of states that are within a compatibility class of a closed
covering with minimum number of compatibility classes can
be computed in polynomial time. Such a relation can be
used to search within it for a closed covering with minimum
number of compatibility classes to make an optimal solution
to FM. In addition, it is not known whether, for each of those
two relations, the conditions that assure a pair is related by
that relation can be posed in a natural way as conditions to
define a variant of the notion of compatibility relation whose
definition should be similar in nature to Definition 6.

Note that both closed coverings and compatibility equiv-
alence relations are, in fact, sets of compatibility classes in
which all the states within each class are compatible with
each other. It is not known under what conditions a com-
patibility class is within a closed covering (a compatibility
equivalence relation) that yields an optimal solution to FM
(FPM).

Another interesting open problem is to establish more
general conditions that determine for which classes of filters
FM can be solved in polynomial time. The approach utilized
in Section X to identify some such classes was based on
analyzing where the union of all compatibility relations be-
comes an equivalence relation. Another approach, however,
would be to impose conditions that guarantee a filter has only
a polynomial number of distinct closed coverings. Under
such conditions, FM could be solved in polynomial time by
enumerating the closed coverings. Additionally, notice that
for each of those filters in Section X for which FM is solvable
in polynomial time, there is a single unique closed covering
with minimum number of classes. Accordingly, another
interesting line of inquiry would be to find classes of filters
that have more than one closed covering with minimum
number of classes, but still one such closed covering can
be constructed in polynomial time. Similar questions may
be posed for FPM, considering the mergeability relation
instead of the union all compatibility relations and also
considering compatibility equivalence relations instead of
closed coverings.
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