Lecture 2

or “Something clever”

Review from last time

Let’s convert the following to binary and to hex:

91

10

Convert the following to binary and hex:

123,

Finishing Adders

Figure 1.2 A 4-bit adder.

ay b, a3 bs a, b; “ a b, 0
2RI ER
Full Full Full Full
Adder Adder Adder Adder

o ' v

Cs S4 53 Sz S

e |et's say we have two 4 bit numbers and we
are adding them together. We are storing the
answer inside of another 4 bit number. Is this

a problem?

Let’s try it

1111
0111 +

4 bits

If we add A and B together, and there is a carry
on the last bit, where does it go?

This is called overflow. It occurs when an
arithmetic operation is out of range and
indicates an error

If 2 n-bit numbers are added together and they
produce an (n+1) bit result, it is called overflow

Binary Coded Decimal (BCD)

e As we have said before, most computers
operate on binary numbers
e People can’t (normally) read these numbers,

so the computer has to:

o On input: Convert from Decimal to Binary
o On output: Convert from Binary to Decimal

e Decimal output still needs to be codes into
binary, digit by digit

Table 1.7 Binary-coded decimal codes.

Decimal 8421 5421 2421 Excess 3 2of 5
digit code code code code code
0 0000 0000 0000 0011 11000
1 0001 0001 0001 0100 10100
2 0010 0010 0010 0101 10010
3 0011 0011 0011 0110 10001
4 0100 0100 0100 0111 01100
5 0101 1000 1011 1000 01010
6 0110 1001 1100 1001 01001
7 0111 1010 1101 1010 00110
8 1000 1011 1110 1011 00101
2 1001 1100 1111 1100 00011
unused 1010 0101 0101 0000 any of
1011 0110 0110 0001 the 22
1100 0111 0111 0010 patterns
1101 1101 1000 1101 with O, 1,
1110 1110 1001 1110 3.4, or5

1111 1111 1010 1111 I's

Other codes

e ASCII: Alphanumeric information
e Gray code: Consecutive numbers differ by
only 1 bit

o Useful in coding the position of a continuous device
and error detection

Table 1.8 ASCIl code.

—

aza,a, a, 010 011 100 101 110 111
0000 space 0 @ P i P
0001 ! 1 A Q a q
0010 - 2 B R b r
0011 # 3 C S c s
0100 S 1 D T d t
0101 % 5 E U e u
0110 & 6 F V f v
0111 ’ 7 G W g W
1000 (8 H X h X
1001) 9 I Y i y
1010 = - J Z j z
1011 + : K [k {
1100 < L \ 1 |
1101 = M] m }
1110 . > N - n ~
1111 / ? O o delete

Let’s try it

Lets code the word “Logic” into ASCII

Table 1.9 Gray code.
Number Gray code Number Gray code
0 0000 8 1100
1 0001 9 1101
2 0011 10 1111
3 0010 11 1110
1 0110 12 1010
5 0111 13 1011
6 0101 14 1001
7 0100 15 1000

Done with Ch. 1!

What did we learn?

e \What digital systems are
e Truth tables for systems
e Number systems
o Binary, decimal, hexadecimal
o Conversion between these
e Binary addition and adders
Overflow and it’s effects
e Binary Coded Decimal, ASCII, Gray code

What we didn’t cover

These topics are also in Ch. 1, but we didn’t
cover them in lecture

e Signed numbers and two’s compliment
e Binary Subtraction

Some help

It will probably be useful to go through the
solved problems at the end of the first chapter

If you still need help, stick a question in the box
and | will email you some help

Chapter 2!

This chapter is about combinational systems
Our goals are to:

e Develop the tools to specify combinational
systems

e Develop an algebraic approach for the
description, simplification, and
iImplementation of combinational systems

Continuing Examples

e A system with 4 inputs, A, B, C, and D, and one output,
Z, such that Z=1 if three of the inputs are 1

e A system to do 1 bit of binary addition. It has 3 inputs
(the 2 bits to be added plus the carry from the next
lower order bit) and produces two outputs, a sum bit
and a carry to the next higher order position

More examples

A system with 9 inputs, representing two 4-bit
binary numbers and a carry input, and one 5 bit
output, representing the sum

Design process for Combinational

Systems

Step 1: Represent each of the inputs and output in binary

Step 1.5: If necessary, break the problem into smaller
subproblems

Step 2: Formalize the design specification either in the
form of a truth table or of an algebraic expression
Step 3: Simplify the description

Step 4: Implement the system with the available
components subject to the design objectives and
constraints

e A gate is a network with one output
e (Gate is the basic component for
Implementation

e For example, an OR gate is shown below:

A

Y
B

IEENEEEN
N

D

Going from A, B to Y is not instantaneous

We will get into this more later, but this is
something you should know

This is why you simplify systems

Don’t Care Conditions

e For some input combinations, it doesn't
matter what the output is
e Represented as X

e Examples of don't cares:
o Some input combinations that never occur

o When one system is designed to drive a second

system, some input combination of the first system
will make the second system behave the same way

Example of Don’t Cares

e |[f for some combination of A, B, C, System
Two behaves the same way no matter if J is
0 or 1, then J is a don’t care in this case

A—> J

-
System System

8 One K . Two

cC ——>»

Truth Tables

Time to go back to the Continuing Examples!

Here Is a new one

e A single light (that can be on or off) that can
be controlled by any one of 3 switches. One
switch is the master on/off switch. If it is off,
the light is off. When the master is on, a
change in the position of one of the other
switches will cause the light to change state

One more new one...

e A system that has as its input the code for a
decimal digit, and produces as its output the
signals to drive a seven-segment display,
such as those on most digital watches and
numeric displays

Seven segment display

