Structure Prediction

Homayoun Valafar
Department of Computer Science and Engineering, USC
Demonstration of AVOGADRO
SCOP

• Structural Classification of Proteins (SCOP) utilizes four levels of hierarchical structural classification
 – Class: general "structural architecture" of the domain
 – Fold: similar arrangement of regular secondary structures but without evidence of evolutionary relationship
 • No significant sequence of functional similarity
 – Superfamily: proteins that have low sequence identities, but whose structural and functional features suggest that a common evolutionary origin is probable
 • No sequence similarity but functional similarity
 – Family: proteins that are clearly evolutionarily related (sequence identity > 30%)
Structure Prediction Tools

- Structure prediction tools aim to provide structural information at various levels
 - Secondary structure predictors
 - PhD
 - PredictProtein (PHDsec, PHDacc, …)
 - HNN (Hierarchical Neural Network method)
 - Jpred
 - Tertiary structure predictors
 - Modeller
 - Prospect
 - Rosetta
 - I-TASSER
Secondary Structure Prediction Tools

• These programs accept a primary sequence and produce a predicted secondary structure per residue
• The most commonly known and used is PHD
• The results are usually in the form of a sequence of letters
 – H stands for Helical
 – E stands for Extended
 – L or T stand for Loop or Turn

AKYVCKICGYIYDEDAIDADGDPDNGVSPGTFEEIPDDWVCPCGAPKSEFEK
---EEE----EEE--------------------------------HHHH---
Neural Network Based SS Prediction Tool

The sequence

1 K
2 R
3 R
4 G
5 L
6 P
7 P
8 A
9 R
PHD

- Sequence alignment is performed against the library of all proteins with known structures
- A multiple sequence alignment is generated
- Results of sequence alignment are presented multiple ANN
- ANNs analyze the structure in a sliding window
- Results from different ANNs are combined and SSE are predicted
- Refer to pages 298-301 of the handout
PHD

First level
sequence to structure
In: profiles
Out: units for SSEs

Second level
struct to struct
In: output from first
Out: pred. for SSEs

Third level
Jury decision
In: output from four different networks

Hidden nodes
SS Prediction Tool Demo
Tertiary Structure Prediction Tools

- Over the past few years, a number different TSPT have been presented
- These tools present three distinct TSP strategies that are presented in the historical order and order of sophistication
 - Homology modeling tools
 - SWISS-MODEL
 - Threading tools
 - Threader
 - Prospect
 - Ab initio tools
 - Rosetta
 - I-TASSER
Homology Modeling Tools

- HMT leverage strong sequence identity (seq identity > 30%)
- The unknown protein needs to exhibit more than 30% seq identity to another protein with known structure
- Structure of the homologue is used as a template to fold the unknown protein
- Can be applied to proteins in the same “Family”
- If a family of proteins is not structurally characterized, then HMT do not apply
Limitations of Homology Modeling

- Homology modeling tools fail when
 - The target protein does not have a homologue in the PDB
 - Two structures can be very similar in structure but different in sequence
 - Homstrad database
 - Example: Peptidase M17
Threading Tools

- Apply to proteins in the same SuperFamily
- There maybe low sequence identity but evolutionary relationship is evident
- Threading strategy of the following four steps:
 1. A database of structure templates (CATH, SCOP, FSSP)
 2. A scoring function to evaluate fitness of a sequence to structure
 3. Threading alignment to align the target sequence with each of the structure templates
 4. Select the most optimal threading alignment
Limitations of Threading Tools

• Threading tools fails when the target protein is dissimilar in sequence and structure to what is in the PDB
• Can we still utilize the information in the PDB to construct a structure for a protein based on structures in Fold or Class level?
Ab Initio Protein Structure Prediction Tools

- This class of tools may be successful with even little sequence similarity.
- They may rely on a number of other tools such as SS prediction.
- They may seed the structure based on small conserved sequences (13 residues long).
- General force terms are deployed to further refine the structure:
 - VDW collision is not presented at the atomic level but at the residue level.