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Optimization and Protein Folding
 Theoretically, the structure with the minimum total 

energy is the structure of interest
 Total energy is defined by the force-field

 The core of Ab Initio protein folding is optimization
 A robust optimization method is cruicial for successful 

protein folding algorithms
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Optimization Problem
• Given an objective (cost) function f(x) find the optimal 

point X* such that:

• Optimization is the root of most computational problems
• Many different approaches with their unique set of 

advantages and disadvantages

{
X , X*

∈Rn

f X :RnR

f X*
≤f X ∀X



02/17/10CSCE 769

Monte Carlo
 Easiest to implement
 Very effective for low dimensional problems
 Very ineffective for large dimensional problems
 Algorithm consists of randomly sampling space and 

accepting the point X* with the smallest value of 
objective function

for i=1 to 10000 {
X = random(range)
If f(X) <= f(X*) then X*=X

}
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Gradient Descent 
(Conjugate Gradient, Hill Climbing)

 Start with some initial point X0

 Calculate Xk+1  from Xk in the following way: 

 Here  is the descent step size parameter
  needs to be selected carefully. Too small or too large can 

have severe consequences.

 Calculate f(Xk+1 )

 Go to step 2.

xk1=xk±ρ .∇ f  xk 
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Gradient of A Function
• A multi-dimensional 

derivative
• For an n-dimensional function 

produces an n-dimensional 
vector pointing at the direction 
of highest increase

• Following the direction of the 
gradient will increase f(x) 
optimally

• Following in the opposite 
direction of the gradient will 
decrease f(x) optimally

• Example:

f  x , y , z =x2 yxyzy33xy  z

∇f  x , y ,z =
2 xyyz3yz

x2xz3y23xz

xy−
3 xy
2z


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Example of Gradient ascend

f(x) = -x2 - 5; 
xmax  = 0, fmax  = 5

xk f'(xk)=-2x xk+1=xk+0.4*f'(xk)
1.5 -3 0.3
0.3 -0.6 0.06
0.06 -0.12 0.012
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Example of an Objective (Cost) Function
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Gradient Descent
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Simulated Annealing Metropolis 
Algorithm

Calculate Xj

Start at Xi

f(Xj) < f( Xi) Xi = Xj

Yes

Accept Xj with

Pr = e

(f X f X )

KT
i j( ) ( )

No

Adjust T

?
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Pseudo PASCAL code

Initialize(istart , T0, L0);
k := 0; i := istart ; 
repeat

for i := 1 to Lk do
begin

 Generate(Xj from Xi);
if f(j) < f(i) then i := j;

   else
if (exp(f(i) -f(j))/Tk) > random[0,1) then i := j

    end;
k := k+1; 
Calculate_Control(TK);

end;
Calculate_Length(Lk);

until stop criterion
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Contribution of Simulated Annealing

Simulated annealing helps to escape from the local minima.
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Limited Success with GD

  


