

Optimization

Homayoun Valafar

Department of Computer Science and Engineering, USC

CSCE 769

Optimization and Protein Folding

- Theoretically, the structure with the minimum total energy is the structure of interest
- Total energy is defined by the force-field

 $E_{Total} = \sum \left[w_{BOND}^{p} E_{BOND} + w_{ANGL}^{p} E_{ANGL} + w_{DIHE}^{p} E_{DIHE} + w_{IMPR}^{p} E_{IMPR} + w_{VDW}^{p} E_{VDW} + w_{ELEC}^{p} E_{ELEC} \right]$

- The core of Ab Initio protein folding is optimization
- A robust optimization method is cruicial for successful protein folding algorithms

Optimization Problem

• Given an objective (cost) function f(x) find the optimal point X* such that:

$$\begin{cases} X, X^* \in R_n \\ f(X): R_n \to R \\ f(X^*) \leq f(X) \forall X \end{cases}$$

- Optimization is the root of most computational problems
- Many different approaches with their unique set of advantages and disadvantages

Monte Carlo

- Easiest to implement
- Very effective for low dimensional problems
- Very ineffective for large dimensional problems
- Algorithm consists of randomly sampling space and accepting the point X* with the smallest value of objective function

```
for i=1 to 10000 {
X = random(range)
If f(X) <= f(X*) then X*=X
```


Gradient Descent (Conjugate Gradient, Hill Climbing) Start with some initial point X₀

• Calculate X_{k+1} from X_k in the following way:

$$x_{k+1} = x_k \pm \rho \cdot \nabla f(x_k)$$

- Here ρ is the descent step size parameter
 - ρ needs to be selected carefully. Too small or too large can have severe consequences.
- Calculate $f(X_{k+1})$
- Go to step 2.

Gradient of A Function

- A multi-dimensional derivative
- For an n-dimensional function produces an n-dimensional vector pointing at the direction of highest increase
- Following the direction of the gradient will increase f(x) optimally
- Following in the opposite direction of the gradient will decrease f(x) optimally
- Example:

$$f(x, y, z) = x^2 y + xyz + y^3 + 3xy \sqrt{z}$$

$$\nabla \vec{f}(x, y, z) = \begin{pmatrix} 2xy + yz + 3y\sqrt{z} \\ x^2 + xz + 3y^2 + 3x\sqrt{z} \\ xy - \frac{3xy}{2\sqrt{z}} \end{pmatrix}$$

Example of Gradient ascend

$$f(x) = -x^2 - 5;$$

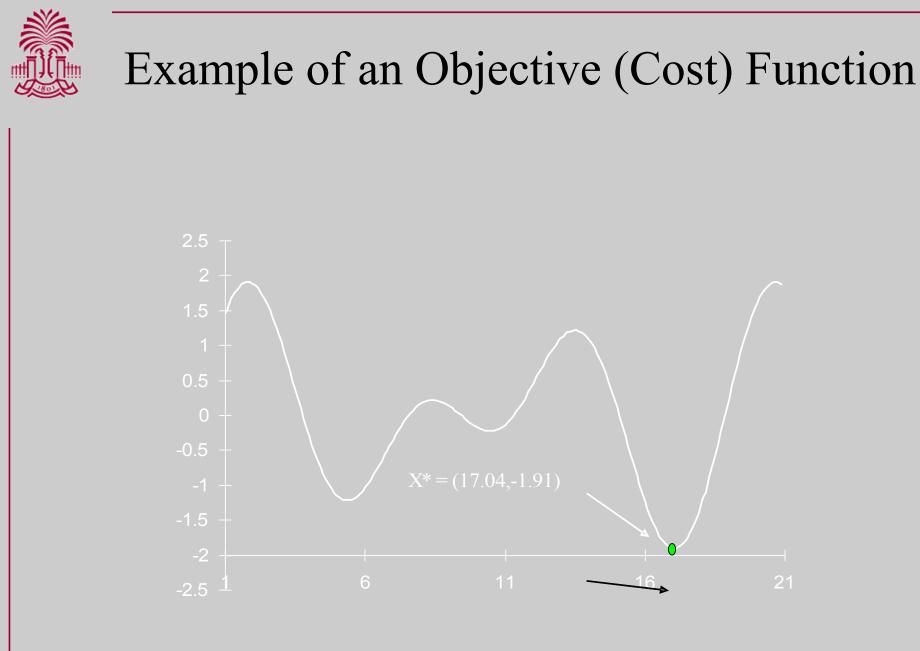
 $x_{nax} = 0, f_{nax} = 5$

			. 0 +/-+	
X _k	$\nabla f(x_k) = -2x$	$x_{k+1} = x_k + 0.4 * \nabla f(x_k)$	-5 -3 -1	0.3 2 4
1.5	-3	0.3	-5 -	
0.3	-0.6	0.06		
0.06	-0.12	0.012	-10 -	
0.012	-0.024	0.0024		
			-15 +/	
			-20 <u> </u>	

CSCE 769

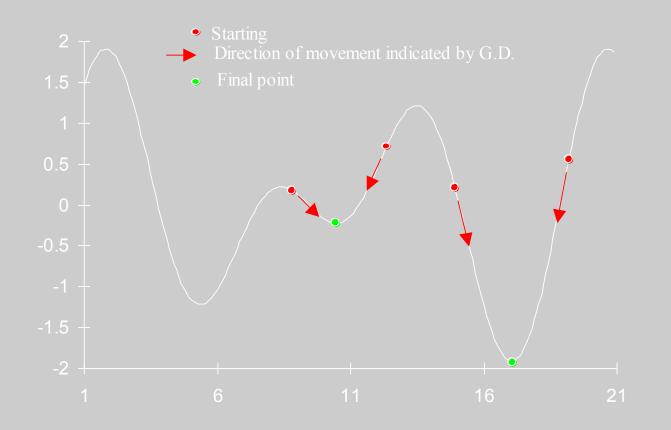
02/17/10

SOUTH CAROLINA

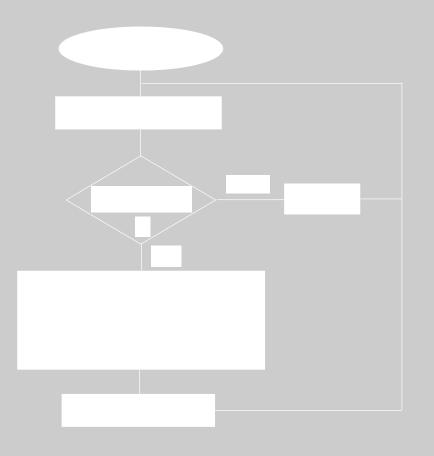


CSCE 769

Gradient Descent



Simulated Annealing Metropolis Algorithm



CSCE 769

Pseudo PASCAL code

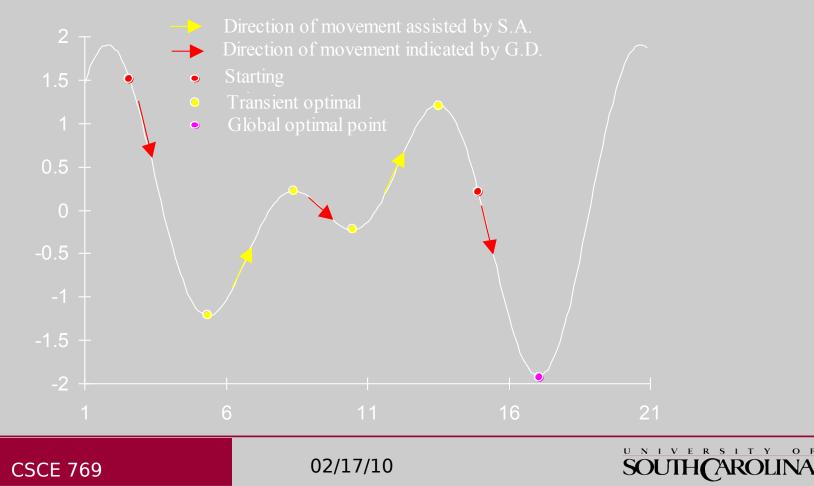
```
Initialize(i_{sat}, T_0, L_0);
k := 0; i := i_{start};
repeat
    for i := 1 to L_k do
    begin
          Generate(X_i from X_i);
          if f(j) < f(i) then i := j;
          else
                    if (\exp(f(i) - f(j))/T_k) > random[0,1) then i := j
          end;
          k := k+1;
          Calculate Control(T_{K});
    end;
    Calculate_Length(L_k);
until stop criterion
```

UNIVERSITY

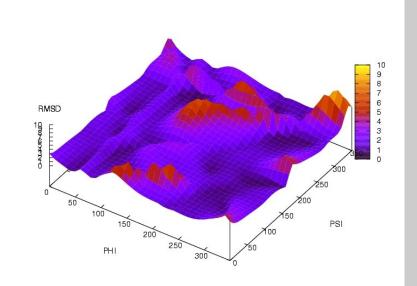
SOUTHCAROLINA

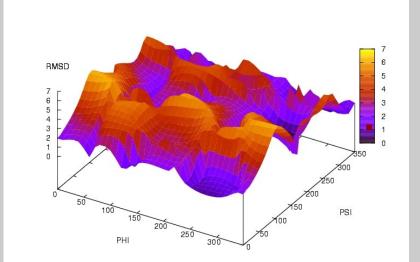
Contribution of Simulated Annealing

Simulated annealing helps to escape from the local minima.



Limited Success with GD





SOUTH CAROLINA

CSCE 769